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This paper describes a procedure to steer rapidly successive iterates of an initial condition on a
chaotic attractor to a small target region about any prespecified point on the attractor using only
small controlling perturbations. Such a procedure is called "targeting. " Previous work on targeting
for chaotic attractors has been in the context of one- and two-dimensional maps. Here it is shown
that targeting can also be done in higher-dimensional cases. The method is demonstrated with
a mechanical system described by a four-dimensional mapping whose attractor has two positive
Lyapunov exponents and a Lyapunov dimension of 2.8. The target is reached by making very small
successive changes in a single control parameter. In one typical case, 35 iterates on average are
required to reach a target region of diameter 10, as compared to roughly 10 iterates without the
use of the targeting procedure.

PACS number(s): 05.45.+b

I. INTRODUCTION

A chaotic process has sensitive dependence on initial
conditions which prevents long-term predictions of the
state of the system. Chaotic dynamics typically exhibit
highly irregular behavior and are represented mathemat-
ically by so-called "strange attractors" whose small-scale
structure is very complex.

Chaotic behavior is manifest in physical processes like
turbulent fluid flow [1], the fluttering of a driven flexi-
ble beam [2, 3], and the irregular oscillations of a forced
damped nonlinear pendulum. Despite the complexities
of chaotic behavior, the sensitive dependence on initial
conditions can be exploited to direct the system to some
desired final state (like a saddle periodic orbit embedded
in the attractor) by a carefully chosen sequence of small
perturbations to some control parameter. We call this
targeting.

Ott, Grebogi, and Yorke [4] introduced the idea that
control of chaos could in some cases be attained by feed-
back stabilization of one of the infinite number of unsta-
ble periodic orbits that naturally occur in a chaotic at-
tractor. Their method has been used to control a driven,
flexible beam about a saddle fixed point in a laboratory
experiment whose dynamical behavior was well approxi-
mated by a two-dimensional map [5].

Romeiras et al. [6] recently extended these ideas and
applied them to stabilize saddle periodic points in an
attractor in four dimensions arising from a map that de-
scribes a kicked double rotor. They showed that control
can be achieved (perhaps after several thousand itera-
tions) by using only one control parameter, even when
the attractor has two positive Lyapunov exponents (the
Lyapunov dimension [7] of the attractor is 2.8).

In this paper we discuss the targeting type of control
problem for a chaotic system. We assume that we are
given some initial condition on the attractor, and we wish
to rapidly direct the resulting trajectory to a small region
about some specified point on the chaotic attractor. Be-
cause of the inherent exponential sensitivity of chaotic
time evolutions to perturbations, one expects that this
can be accomplished using only small controlling adjust-
ments of one or more available system parameters.

This was demonstrated theoretically and in numerical
experiments for the case of a two-dimensional map by
Shinbrot et al. [8] and also in a laboratory experiment
for which the dynamics were approximately describable
by a one-dimensional map [9]. The object of our paper is
to present an eFicient method of targeting and to demon-
strate its applicability in systems of higher dimensionality
than previously considered.

As an example, we consider the double-rotor map [10],
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which is four dimensional. Using our targeting proce-
dure, we find that typical points on the double-rotor
attractor can be steered to within 10 of a given tar-
get point on the attractor in an average of 35 itera-
tions. Although there is more than one positive Lya-
punov exponent, the control is achieved by making suc-
cessive changes to a single parameter (here the strength
of the kick).

Because the dimension of the double-rotor attractor
(for the set of parameters chosen in [6]) is about 2.8, the
average distance between nearest neighbors in a subset
of N points on the attractor [ll] scales as N i~2 s. This
implies that about 10ii iterations of the map are required
on the average to come within 10 4 of the target without
the control. Since the control procedure described below
can steer the initial condition to within 10 of the target
in about 102 steps, the method gets to the target about
102 times faster than the uncontrolled chaotic process.

For speci6city, the description of the numerical method
in Sec. III relies on the existence of two positive Lyapunov
exponents, but it can be adapted in principle to maps
where the attractor has any number of positive exponents
and/or is higher dimensional. All calculations described
in this paper required only a few minutes on a desktop
work station.

Brief descriptions of the double-rotor map and relevant
background material on Lyapunov exponents are given in
Sec. II. The basic control procedure is outlined in Sec. III.
Some refinements to the method, which make the control
faster, are described in Sec. IV. Conclusions and results
are stated in Sec. V.

II. PRELIMINARIES

A. The double-rotor map

The double rotor is a mapping that describes the effect
of a sequence of impulse kicks on two thin, massless rods
connected as illustrated in Fig. l. A derivation of the
map is given in [10]; a slightly difFerent version, which
we use here, is described in [6].

The first rod, of length /i, pivots about Pi (which is
fixed), and the second rod, of length 282, pivots about P2
(which moves). The angles 8i(t), 82(t) measure the po-
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where the angles 8i and 82 are taken to lie in [0, 2vr].
The positions of the rods at the instant of the nth kick
are given by 8,
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sition of the two rods at time t .A point mass mi is
attached at P2, and point masses m2/2 are attached to
each end of the second rod (at Ps and P4). Friction at Pi
(with coefficient vi) slows the first rod at a rate propor-
tional to its angular velocity 8i(t); friction at P2 slows
the second rod (and simultaneously accelerates the first
rod) at a rate proportional to 82(t) —8i(t). The end of
the second rod marked Ps receives impulse kicks at times
t = T, 2T, . . . , always from the same direction and with
strength p. Gravity and air resistance are absent.

The double-rotor map is the four-dimensional map
z„+i= F(z„),defined by

v=T=I=mi =m2 ——E2 ——1,

FIG. 1. The double rotor.

and use the force p as the control parameter, taking as
the nominal value p = p = 9.

In the remainder of the paper, we write z„=F"(xo)
to mean the n times iterated point xc, i.e. , the point
obtained by iterating the map n times starting from xo.
The double-rotor map is invertible, so F "(xo) refers to
the nth iterate of x under the inverse map. The notation
F(x) means that the map is applied with the kick set
to its nominal value (here P = 9); the notation F(x, p)
means the map applied to 2: with the kick set to p.
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III. BASIC TARGETING PROCEDURE
In this section we outline the basic idea behind the con-

trol procedure. Some refinements to the basic procedure
will be discussed in Sec. IV.

Assume that we are given a typical point xT on the
attractor, which is to be targeted by the control. By
"typical" we mean that xT is not a periodic point and
has two-dimensional stable and unstable manifolds asso-
ciated with it. Let xo, xq, . . . , xT q be the T preimages
of xT, as shown in Fig. 2. We will call this set of points,
together with the Lyapunov basis associated with each
point, a path to the target. (If the point to be targeted
is a periodic point, then we replace it by a surrogate non-
periodic target point xT chosen sufficiently near to the
actual target. )

Suppose that the map is iterated from an arbitrary

X7

X]

Yo

Xo

FIG. 2. Schematic diagram of the basic control procedure.
Two successive perturbations of the kick are applied at yo to
steer it to the stable manifold associated with the point xq,
which is a preimage of the target point.

B. The local Lyapunov basis

A numerical estimate of the Lyapunov exponents of
the double-rotor attractor can be obtained using the al-
gorithm of Benettin et al. [12] For the parameter values
given above, the attractor has two positive Lyapunov ex-
ponents iy ——1.21 and I2 ——0.26, and two negative
Lyapunov exponents, Is = —1.74 and L4 = —2.72. The
Lyapunov dimension [7] of the attractor is 2.8.

We assume that if there are two positive and two
negative Lyapunov exponents associated with x, then
there typically exists an ordered orthonormal basis
(up, uy, sp, sy) of IR (depending on x) such that the plane
spanned by up and uz is tangent to the unstable mani-
fold at x, and the plane spanned by so and sq is tangent
to the stable manifold at x. (We will call this set the
Lyapunov basis of x.)

The stable (unstable) manifold of x is the set of
points y with the property that ~~F"(x) —F"(y)

~~

—+ 0
[((F "(x) —F "(y)() ~ 0] as n —+ oo. In other words,
the trajectories of points on the stable manifold of x on
the average approach the trajectory of x under forward
iteration of the map. (The same is true for the back-
ward iterates of points on the unstable manifold. ) If x
has two positive and two negative Lyapunov exponents,
then both its stable and unstable manifolds are two di-
mensional.

initial condition in the basin of attraction for the double-
rotor attractor, and that one of the iterates (call it yp)
falls within a suitably small neighborhood of the point
xo in the path to the target. If yo falls close to one of
the other points x, (0 ( i & T —2), then we relabel the
point xo and replace T by T —i. Without the control,
the points y&, y2, . . ., rapidly diverge from the trajectory
xq, x2, . . ., starting at xo.

The idea behind the control procedure is to apply two
successive perturbations to the kick at yp and yq in or-
der to steer yp to a new point y2 that lies on the sta-
ble manifold S2 associated with x2. (That is, S2 is the
stable manifold of x2 for the unperturbed map at the
nominal kick value p = p.) We try to find two values
pp and pq close to the nominal value of the kick so that
y2 = F(F(yp, pp), p] ) E S2. Whenever the procedure
succeeds, the trajectory starting at the new point yq ap-
proaches the one leading to the target. Figure 2 illus-
trates the idea.

The approach of the trajectory starting from y2 to the
one leading to the target may not be uniform. However,
on the average, it should approach the target trajectory
at a rate proportional to e 't, where I3 is the largest
negative Lyapunov exponent and t is the number of iter-
ations, counting from y2.

Note also that if two different parameters could be var-
ied independently (for example, the kick and the coeffi-
cient of friction at one of the pivots), then we would try
to determine small perturbations of each parameter in
order to hit the stable manifold of xq, the next iterate in
the path to the target, rather than the stable manifold
of x2, which is two iterates down.

[Recall that two two-planes generically intersect at
a single point in R . We make two successive per-
turbations to the kick because the vectors gp
&F(F(yp, pp)~ pi)I&pp and g~ = &F(F(yp pp) I ~)I~a~
typically span a two-plane through y2 that intersects the
two-dimensional stable manifold S2 of xq at a unique
point yz. ]

The difficulty in finding the intersection point y2 is
that the stable manifold S2 associated with the point x2
is not well approximated by a plane except in a small
neighborhood of x2. Although ~~xp

—
yp~~ may be small

(perhaps of order 10 ), ~~x2
—

y2~~ generally is not (it
may be of order 1). In other words, the intersection of
the plane through y2 spanned by the gradient vectors go
and gq with the stable manifold S~ may be relatively far
from x2.

We can approximate S2 away from x2 by looking at
the inverse images of the stable manifold of a point that
is further down the path. Consider, for example, S8, the
stable manifold through xs. Under the inverse map, Ss
is an expanding set. Suppose we take a point z near
xs on the tangent plane to Ss. Although z does not
lie exactly on Ss, the inverse images F ~(z), F 2(z), . . .
approach the corresponding sets S7, S6, . . . because under
the inverse map, errors damp out along the directions
spanned by the Lyapunov vectors associated with the
positive exponents.

Let so and sq be the Lyapunov basis vectors associated
with the negative Lyapunov exponents at xs (i.e., sp and
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si span the tangent plane to Ss at xs). If op and oi
are small numbers, then z = xs + apso + o.qsq should be
close to S8, and its inverse images should approach the
corresponding stable sets quickly. In particular, F s(z)
should lie very close to the stable set S2 associated with
xq even though ~~F (z) —

xz~~ may not be small.
The basic control step is to determine values o.p and o.»

together with two values of the kick pp and p~, such that

F (xs + clpsp + clisi) = F(F(gp, pp), pi)
= y~. (2)

Equation (2) often can be solved numerically using New-
ton's method. Figure 2 is a schematic illustration of the
situation.

The contracting nature of the stable sets means that
harp and oi typically are small. For the double-rotor
map used here, clap and o.

& typically are of order 10
even when

~~ j2 —
xq~~ is of order 1. Thus, a success-

ful solution of Eq. (2) determines two consecutive kicks
such that the trajectory starting from the new point
j2 = F(F(yp, pp), pi) falls within 10 of the trajectory
leading to the target after six iterations. [The values of
a.p and cri in a typical solution to Eq. (2) depend on the
negative Lyapunov exponents associated with the points
on the path. More negative exponents lead to smaller
values of harp and err. ]

There is nothing special about the choice of S8 and the
use of six inverse iterations to find an intersection point
on S2. For example, if the target point is x6, then we
try to find a point on Sq whose fourth iterate lands close
to x6.

If the target point is at, say, x2p, then one can look at
the inverse image of points on S9 or Sjp instead of S8.
Going further down the path (say to Sp or Sip) typically
yields a point whose appropriate inverse image is closer
to the stable set S2. However, it also makes the numeri-
cal solution of Eq. (2) more ill conditioned. [If we look at
the inverse images on S8, then it is necessary to evaluate
the matrix product DF (xs)DF (x7) DF (xs)
If we look at Sip instead, then we must evaluate
DF (xip)DF (xp) DF (x3), and so on. These
matrix products become more singular as more terms
are added. ] Thus there is a tradeoff between numerical
precision and approximation errors arising from the dy-
namics. For the parameters of the double-rotor map used
in this investigation, we have found that six inverse it-
erations is a good compromise between the accuracy in
finding, say, y2 and the accuracy in iterating to the tar-
get. (Of course, fewer iterations of the inverse map are
used as the controlled trajectory gets within six iterates
of the target. )

Because of small errors in the initial approximation of
S8 and numerical roundoK errors, the control described
above must be repeated from time to time in order to
keep the new trajectory close to the path leading to the
target. For instance, the two kicks pp and pq might be
applied successively to yp, afterward, the system might
be set to the nominal value of the kick p for the next
six iterations. The resulting point will be about 10

away from the target trajectory. The control step can
be repeated at xs in order to steer the trajectory close
to x~6, etc. Only very small perturbations of the kick are
required at xs to accomplish this, because the controlled
trajectory is usually within 10 s or so of the path to the
target at this point.

It is not always possible to solve Eq. (2). Sometimes
Newton's method diverges because good starting val-
ues of the parameters cannot be obtained by linearizing
Eq. (2). In such cases, it is not possible to initiate a con-
trol at the point yp in order to bring the trajectory close
to the target. If the procedure fails, then we must wait
until the trajectory again approaches a neighborhood of
xp and try again.

For the parameter values described above, we have suc-
cessfully found solutions to Eq. (2) about 90% of the time
when ~~xp

—yp ~~
& 0.01 and about 50% of the time when

~~xp
—

yp~~ & 0.05. Moreover, the controlled trajectory
rapidly approaches the trajectory leading to the target
once a solution to Eq. (2) is determined. Typically, the
distance between xis and yis (after two iterations of the
control procedure) is close to the numerical precision of
the computer (about 10 i4).

The basic control method described above can be ap-
plied when there is only one positive Lyapunov exponent.
In that case, one must determine only a single perturba-
tion pp to the kick so that the new point gi = F(yp, pp)
intersects the stable manifold Si of xi (the next point in
the path) because Si is three dimensional.

The method can be extended to other maps in different
dimensions in a straightforward way. For example, if the
attractor sits in a six-dimensional space and has three
positive Lyapunov exponents, then the basic control pro-
cedure requires three successive changes to a single pa-
rarneter to hit the three-dimensional stable manifold of
the appropriate point in the path. If three parameters
can be varied independently, then one tries to hit the
stable manifold of xi, and so on.

We note that the double-rotor map for the parameters
we investigate is not hyperbolic. In particular, there ex-
ist saddle fixed points in the attractor which have one
unstable direction and three stable directions. This is
in contrast to our determination that orbits for typical
points on the attractor (i.e. , almost every point with re-
spect to the natural measure) have two positive and two
negative Lyapunov exponents. In spite of this nonhy-
perbolic situation, we do not find any problem in our
numerical experiments. As we iterate, the stable man-
ifold of each point in the paths to the target appears
to be two dimensional. (This is not surprising since the
set of points for which this is not true has zero natural
measure.

Finally, we remark that it is possible in principle to
steer a given initial condition to the target using a se-
quence of four perturbations of the kick in order to hit a
point on the trajectory leading to the target. For exam-
ple, if xp, x» x~, . . . is a trajectory leading to the target
and if yp is a point near xp, then one can try to apply
a sequence of kicks po~ p» p2& p3 at yolky»y2~y3 in order
to hit x4. In practice, we have not been able to use
this approach, because it is not possible to get an accu-
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rate linearization of the problem unless the corresponding
trajectories are extremely close together.

IV'. REFINEMENTS

z
n T

secondary path

The procedure described above works well, but it has
the disadvantage that the map must be iterated a large
number of times before reaching a neighborhood of one
of the points in the path leading to the target. A long
path increases the likelihood that a given iterate lies near
a point on it, but then many control steps are required
to reach the target.

Our objective is to steer a typical iterate to the tar-
get point in as few steps as possible. In this section we
describe some refinements to the basic control procedure
that allow us to do this in an average of 35 steps.

We build a hierarchy or "tree" of paths leading to the
target as follows. Suppose we have already selected a
target point xT and have a path xo, xi, . . . , xT i on the
attractor leading to it. (In the results described below,
the path has 20 points, so T = 20.) We iterate the map
(possibly from an arbitrary initial condition in the basin
of attraction) until we obtain a point z„that lies in a
suitably small neighborhood of one of the points in the
target path. We store z„,together with a path of T
points now leading to z„.(The Lyapunov basis of each
point must also be stored. )

Of course, it is possible to apply the targeting pro-
cedure to the point z„in order to steer the trajectory
starting from z„to a small neighborhood of the target
point. The reason for building the tree before applying
the targeting procedure is to increase the probability that
a given iterate lies near a path leading to the target point.
In this respect, we imagine that it is possible to observe
the dynamics for a time before initiating the targeting
procedure. This new path is part of the second level of
a tree whose root is the path leading to the target. If we
have an iterate that falls within a suitable neighborhood
of one of the points z„T,z„z+q,. . . , then we can apply
the control procedure described in Sec. III using z„as
an interim target. The idea is to steer the iterate to z„,
so that the controlled iterate now lies in a neighborhood
of one of the points leading to the target xT. Then the
control procedure is repeated (starting in a small neigh-
borhood of z„)with xT as the target. If both the root
and the secondary path have 20 points, then the control
steers the iterate to the target in no more than 40 steps.
Figure 3 is a schematic illustration of this approach.

Other paths are added to the tree in similar fashion. As
the map is iterated, we check to see whether the current
point falls suitably close to one of the points in a previ-
ously stored path. If it does, then the point is added to
the tree, together with its T = 20 preimages (and their
associated Lyapunov bases). The tree can be made as
large and as deep as required, depending on the amount
of computer memory available. In the results described
here, we limit the tree to a total of 500 paths, each of
length 20 (for a total of 104 points) and three levels (so
there are no more than 60 steps from any point in the
tree to the final target). Thus, the tree is not full; that
is, not every point has a path at a lower level in the tree

~zn —1

XT
0
XT ] X]

~ root
xo path

FIG. 3. Schematic illustration of the hierarchy of paths
leading to the target point.

leading to a point in its neighborhood. The tree is built
with fewer than 10s total iterations of the double-rotor
map and occupies about three megabytes of computer
memory.

Once the tree is built, it is possible to steer points to
the target very quickly, as follows. Let zo be a point on
the attractor. If zo is not close to any of the points in
the path tree, then we create a new set of points A by
making n small random perturbations to the kick. Here
A = (zr' . zi' ——F(zo, pa+ g;), 1 & i & n), where g, is a(i} ('} =
random variable in a small interval around 0. Typically
we take g, from a uniform distribution in the interval

[
—0.05, 0.05].

We now check whether any of the points in A lies near
any of the points in the path tree. If so, then we attempt
the control procedure. If it is successful, then we have
steered the point zo to the target in no more than 61 steps
(the first step consists of the random kick, followed by no
more than 60 steps of the control procedure). Each of the
points in A can be iterated (using the nominal value of
the kick) until one of them can be steered successfully to
the target.

V. RESULTS

The control procedure has been tested using a variety
of initial and target points. The first numerical experi-
ment is done in a two-step process. In the first step, the
tree is constructed as described above (with a total of 104
points in 500 paths on three levels) and stored for later
use.

The second step begins by reading in the tree. An ar-
bitrary initial condition is selected and iterated 104 times
to allow transients to die out. In this step, the target-
ing procedure is attempted whenever an iterate z„falls
within 0.05 of a point in the tree. Otherwise, we con-
struct a set A consisting of 100 points (F(z„,P+ g, ))roor
as described above. (Here g, is a uniformly distributed
random variable in [

—0.05, 0.05].) The targeting proce-
dure is attempted from any point in A that falls within
0.05 of a point in the tree. If it is successful, then we
record the distance of the controlled point from the tar-
get and the number of map iterations required to get
there.

The points in A are iterated until we find one that
lies within 0.05 of a point in the tree. In no case is it
necessary to iterate any point in A more than five times
before a successful control can be achieved.
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On the average, the control takes 30 steps, so that the
initial point can be steered to the target in a total of 35
steps (five iterations from the random kick and 30 steps
using the control). In this numerical study, no more than
65 steps are required (60 steps using the control and five
iterations of the random perturbation). In each case, the
point can be steered to within 2 x 10 4 of the target point,
and frequently much closer (the median distance is 10
from the target). The changes to the kick required to
initiate the control are typically of order 10 i; once the
point gets close to the trajectory leading to the target, the
perturbations become much smaller (typically of order
10 or less).

The targeting procedure takes relatively few iterates
because we have built a moderately large tree containing
paths that lead quickly to the target. This tree requires
about 10 total iterations to build.

One may not be willing to observe the system for this
length of time in order to build a tree of paths leading
to the target. As an alternative, one can still achieve
rapid control by simply taking a larger set A of randomly
perturbed points. For example, we took a single path of
50 points leading to an arbitrarily chosen target point.
We then took another initial condition zo at random from
the attractor and attempted the targeting procedure as
follows.

For each iterate z„in the trajectory starting at zo,
we made 1000 small random perturbations of the kick.
That is, the set A contained 1000 points of the form

F(z„,p+ rl, ) where rl, is a uniformly distributed random
variable in [

—0.05, 0.05]. In this experiment, we found
that typical points on this trajectory could be steered to
a small neighborhood of the target in an average of 35
iterates (and in no case more than 114 iterates), about
as quickly as in the first experiment discussed above.

If the set A is reduced to 100 points instead, then the
average control time rises to 181 iterates (with a maxi-
mum of 909 iterates). The increase is due to the greater
length of time required before one of the perturbed points
approaches a neighborhood of one of the points in the
path to the target. Nevertheless, the control procedure

is still reasonably fast, even when a tree of paths to the
target is not used.

The numerical method requires modest computer re-
sources. It takes about 10 min and three megabytes of
memory to build the path tree described in Sec. IV on
a desktop workstation. Once the tree is built, about 10
min of computer time are required to attempt the con-
trol procedure from 104 difFerent initial conditions on the
attractor.

VI. CONCLUSIONS

The numerical method employed here attempts to di-
rect iterates on a chaotic attractor to a prespecified target
point on the attractor. This is done by finding a sequence
of small perturbations to an available system parameter
(or parameters) to direct the trajectory of a given initial
condition to the stable manifold of a point on a trajectory
leading to the target. The number of iterates required to
reach a neighborhood of the target point can be reduced
by building a hierarchy of paths leading to the target.

The method can be adapted in principle to chaotic
attractors with any number of positive Lyapunov expo-
nents. For the double-rotor map, which has four vari-
ables, and in the case we study, the attractor has two
positive and two negative Lyapunov exponents. On the
average, initial conditions can be steered to a small neigh-
borhood (of size 10 or less) of an arbitrarily chosen tar-
get point in 35 iterates using a hierarchy of paths leading
to the target point.
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