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Stochastic transient of a noise-perturbed Haken-Zwanzig model
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A bivariate nonlinear model perturbed by external white noises is investigated stochastically. Atten-
tion is concentrated on the transient properties before the nonequilibrium phase is achieved. Effects of
both additive and multiplicative noises are found to weaken stability and to slow down transient process-
es. The critical exponent describing this slowing-down phenomenon near a noise-induced instability is
estimated for various types of noises. Results derived with two versions of stochastic calculus are com-
pared systematically.
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I. INTRODUCTION

Noise-affected dynamics have been one of the most im-
portant topics in nonequilibrium physics [1,2]. Noises
are unavoidable for open systems which are subject to
external constraints and perturbations [3]. Studies of
noise effects could enable us to stabilize the operation of
nonequilibrium systems. On the other hand, we could
gain more insight into the transition phenomena which
could not be found in equilibrium counterparts [1,4—6].

Steady-state (SS) properties of noisy systems have at-
tracted most of the attention [1—3,7,8]. Transient pro-
cesses, which are a unique part of nonequilibrium phys-
ics, deserve more effort. Noise problems are usually
difficult ones since ordinary Riemann calculus would fail
in treating the noise parameters which fluctuate random-
ly and rapidly in time [1]. Most of the studies have been
limited to one-dimensional systems. Approximate and
concise stochastic transients in both one- and two-
dimensional systems can be derived by employing a
moment-expansion scheme [4—6].

Critical slowing down, like other dynamic critical phe-
nomena in equilibrium systems, is well documented, and
is properly described by statistical mechanical theories
[9]. In nonequilibrium systems, however, results are frag-
mented and conclusions are controversial [4,6, 10—12]. It
is reasonable to believe that external noises disturb the
transient processes and slow down the relaxation. More
studies on stochastic transients near a noise-induced in-
stability are needed.

In this report, we treat a bivariate Haken-Zwanzig
model [13,14], which was used to demonstrate the slaving
principle in synergetics and is related to the more com-
plex ABCDE model [15]. The model is described by two
order parameters which satisfy a set of coupled rate equa-
tions,

dQ

dt f (u s) —Eu us

ds =fz(u, s) = —ys+ u

where rate parameters (e, y) are nonnegative, and so are
(u, s).

In Sec. II we discuss the transient properties described
by the deterministic rate equations, and those described
with considerations of internal fluctuations. White noise
formulations are developed in Sec. III. Noise-affected
transients due to additive and multiplicative noises are
treated in Sec. IV. In Sec. V we present a unique
phenomenon of critical slowing down near a noise-
induced instability. Results are discussed in Sec. VI.

II. DETERMINISTIC TRANSIENT
AND INTERNAL FLUCTUATIONS

A, = —(y/2) [1+&I —8e/y ] . (3)

Therefore a nontrivial system at any initial state will re-
lax toward the coexisting SS. While the stability of this
SS depends strongly on the value of y, the time scale
characterizing the transient is found to be depending
mainly on the parameter e. Figure 1 demonstrates two
typical transients of deterministic u (t) and s (t).

Equation (3) predicts that restoration of the SS from
any small deviation will show an oscillatory pattern if
y & 8e. Numerical results seem to suggest that this con-
clusion is also applicable to a global relaxation from an
initial state which could be very far away from equilibri-
um.

The time required to achieve a SS is infinite in

Analytical solution of u (t) and s (t) from Eq. (1) is not
feasible; numerical method is required. A complete
description of the solution involves assignments of values
to the two rate parameters (E, y) and the two initial con-
ditions (uo, so).

Unlike the one studied previously [5], this two-
dimensional model is stable and has two fixed points
which are given as SS solutions of Eq. (1),

(u„s, ),=(0,0),
(u„s, )„—(&ey, e) .

The first SS describes the extinction of dynamic process,
and is unstable for the choice of e)0 and y)0. The
second one describes the coexistence of two modes (u, s),
and is stable since the stability eigenvalue is given by
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mathematical sense. This is true for both monotonic and
oscillatory relaxations. Technically, we can define the re-
laxation time as the time interval for a system to relax to-
ward the SS within an accuracy of, say, one part in 10 .
This criterion, or the other, would reflect the computa-
tion or measurement resolution. It is found that the re-
laxation time depends sensitively on the values of e and

y, and is roughly the same for typical choices of initial
conditions uo/u, -so/s, —10

The dynamic system should be described by a probabil-
ity function P(u, s;t) if internal fluctuations are taken
into consideration. For Markovian processes with
single-step variations in u and s, P(u, s;t) is found to
satisfy a master equation which can be written as

d, P(u, s;t) =e(u —1)P(u —l, s, t)+s (u +1)P(u + l, s;t)+y(s +1)P(u, s +1;t)
+u P(u, s —1;t)—[eu+su+yu+u ]P(u, s;t) . (4)

O 'tJ X$ XJ Xg XJ ~

With the moment-expansion scheme [4], the moment
equations derived from the master equation (4) can be ex-
pressed as

dQ
QS

E'0 s 0 o = —ys+u +o.„„,
do Mlt dQ=2(eo.„„so„„——uo „,)+2eu-

dt dt

Analytical solution of P ( u, s; t) is unlikely for this
differential-difference equation.

In Gaussian approximation, P (u, s; t) can be approxi-
mated by having its peak located at the mean values of
order parameters (u, s), and having its shape determined
by the three variances o.„„,o„,and o.„„where

I

relative fluctuations,

R, (t) = [o,, (t)]'"/x, (t),
to a system with large value of order parameter. System-
size effect may appear if (u, s) are small; this will happen
if (e, y) are assigned to small values. Figure 1 demon-
strates further that during transit, u(t) and s(t) may
drop to values so small that size effect comes into play
and the assumption of single-step processes fails.

III. WHITE NOISE FORMULATIONS

External fluctuations may appear as additive random
forcing or as variations in rate parameters. The deter-
ministic rate equations (1) should be rewritten as stochas-
tic differential equations,

do

dt
ds= —2yo.„+4uo.„,+2ys-
di '

dQ =f, (u, s)+D,g, (u, s)g, (t),dt

do „ =(e —
y

—s )o „,—uo.„+2uo „„.dt

Numerical treatment is required to solve these coupled
equations. Internal fluctuations usually introduce small

I I

f
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I I I
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I I I
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I I I

dS =f2(u, s)+D~g~(u, sg'~(t),
dt

where the multiplication function g, (u, s) describes the
state dependence of noises. For noises in rate parameters
e and y, we have, respectively, g, =u and g2= —s. For
additive noises, we have g, =g2=1. In Eq. (8), D; de-
scribes the amplitude of the fluctuating quantity,

A, ;, =A,;+D;g;, ,

where A, , is the averaged value of rate parameter (for the
case of additive noises, A, , =0). The random and rapid

fluctuating variables g;, are assumed to have zero mean,
and are 5-function correlated,

(g,, )=0, (g„g„,)=S„.S(t —t ) . (10)

o'»~~~I~»l»~l~«~~~@
0 2 4 6 8 10 12

The probability function P(u, s;t) is found to satisfy a
Fokker-Planck equation, which may assume a different
form for a different stochastic calculus. For the two pop-
ular interpretations, we have

d, P = —d„[f,+(v —1)D,g, B„g,/2]P+D, B„„[g,P]/2
—a, [f,+(v —1)D',g, a,g, /2]P+D,'a„[g',P]/2,

(11)

FICs. 1. Deterministic evolution of order parameters u (t)/u,
and s(t)/s, is represented by curves (a) and (b), respectively.
Solid curves are for (e,y)=(1, 1), and dashed ones are for
(~,y) =(1,10).

where v=1 and 2 stand, respectively, for the case of Ito
and Stratonovich interpretations.

The stochastic transient is described by the moment
equations derived from Fokker-Planck equation (11),
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dQ 5 =mu 's "f,+nu s" 'f2+(v —1)[D&mu 's "g,c)„g&+Danu s" 'gzc), g2]/2

D&m (m —1)u s "g&+D2n (n —1)u s" g2
(12)

These coupled equations of infinite hierarchy can be trun-
cated by using the moment-expansion scheme. The re-
sulting moment equations depend on the g; functions
which specify the type of noises.

IV. NOISE-PERTURBED TRANSIENTS

For the simple case of additive noises, both Ito and
Stratonovich calculus result in the same form of five mo-
ment equations,

d Q cE$

dt "' ' dt
=0 Q S 0, — Ps+A +0 QQ

I

u (t) and s (t) are very close to those of deterministic ones
with insignificant variances. This conclusion applies also
to the SS properties. We plot a typical result in Fig. 2.

External perturbations may appear as variations in rate
parameters. Inhuence of noise becomes state dependent
since the g; functions are no longer constant. There are
also three distinct types of multiplicative noises: those on
e (g, =u, gz =0), or on y (g~ =0, gz = —s), or on both of
them (g, =u, g2= —s). Again we shall consider only the
third type and assume that D, =Dz. The moment equa-
tions for both Ito and Stratonovich interpretations can be
written as

=2(eo „„ucr—„,—so „„)+D, ,dt

do
2/0 +4QO „+D2

dt

(13) ds

=[a+(v—1)D, /2]u —u s —o„, ,

= —[y —(v —1)Dr /2]s+u +o „„,
do = ( e —y —s )o.„,—u o „+2u cr„„.dt

do uu =2( acr „„—u cr „, scr „„—) +D, ( vo„„+u ), .
dt

(14)

This set of equations allows us to treat three types of
additive noises: those which occur in either one of the
two modes and on both modes at the same time. This
can be done by assigning appropriate values to D, . For a
concise presentation, we shall report results only for

For a moderate value of noise intensity, evolutions of

I ( ) & l

4 6 8 10 12

= —2ycr„+4u o „,+D~(vo„+s ),
dt

= [e—y —s+ (v —1)(D,+D )/2]o. „,

QOss+200

Again, for small and moderate values of D;, evolution
of the system is more or less deterministic. The SS mean
values of order parameters are slightly smaller than the
deterministic values, while the relative Auctuations R;
remain small. Only when noise in rate parameters, D;,
becomes comparable to the averaged mean do stochastic
aspects become significant.

Figure 3 shows the noise-intensity dependence of mean
values and relative fluctuations. Results are derived from
the Stratonovich interpretation, and are found to have lit-
tle difference from those derived from the Ito interpreta-
tion and from those for additive noises. All three sets of
results predict the existence of a noise-induced instability.
At this unstable point, mean values (u„s, ) drop rapidly
while relative fluctuations diverge. This stochastic
behavior is represented by a vertical line in Fig. 3. It is
interesting to note that both additive and multiplicative
noises (in either one of the two representations) predict
the same behaviors. Quantitatively, they predict similar
values for the critical D at which the SS system becomes
unstable,

FIG. 2. Transient towards a coexisting SS of a system per-
turbed by additive noises with D& =D2=0. 1. Mean values (a)
and relative fluctuations (b) are plotted against time. Solid and
dashed curves stand, respectively, for the first (u) and second (s)
modes. (e, y ) = ( 1, 1 ) is assumed.

D 0 373 D 0 400 p D 0 409

In the above, superscripts 3, S, and I stand, respectively,
for additive noise, and multiplicative noises in the Strato-
novich and Ito interpretations.
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FIG. 3. SS values of scaled means (a) and relative fluctuations
(b) are plotted against the noise intensity. Solid and dashed
curves stand, respectively, for the first (u) and second (s) modes.
Multiplicative noises in the Stratonovich interpretation, and
( e, y ) = ( 1, 1) are assumed.

FIG. 5. Critical slowing down is demonstrated by plotting
the relaxation time (~) against the noise intensity (o;). Results
due to additive and multiplicative noises in the Stratonovich
and Ito interpretations are plotted, respectively, by dashed,
solid, and dotted curves.

For D larger than the critical value D„ the coexistence
phase transits to the extinction phase at which both
modes are subject to fluctuation catastrophe. This noise-
induced transition is purely stochastic in nature [4,5].

V. CRITICAL SLOWING DOWN

The narrow region preceding the instability can be
defined as a critical region, since the phenomena of abrupt
changes within this region resemble critical phenomena of

r=t, , a=(D, D)/D, . — (16)

Numerical results show that the divergence of ~ follows a
simple power law,

equilibrium systems. Detailed numerical investigations
show that relaxation times t, also increases abruptly
when the noise-induced instability is approached. This is
shown in Fig. 4 for three different sets of results.

The criticality can be better described by defining re-
duced parameters as,

5QQ Q I I I

J
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I

400—
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(17)

where the exponent I describes the critical slowing-down
phenomenon. It is estimated for the three sets of data as

I =0.449, I =0.434, I =0.437 .

300—

200—

( ) (b) (c}
It is interesting to see that we obtain roughly the same
critical exponent for these sets of data, as is shown in Fig.
5. In previous studies of one-dimensional systems of both
quadratic and cubic nonlinearities [4], we obtain the criti-
cal exponent I =1.0.
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FIG. 4. Relaxation times are plotted against the noise inten-
sity. Results due to additive (a), and multiplicative noises in the
Stratonovich (b) and Ito (c) interpretations are presented for
comparison.

VI. DISCUSSIONS AND CONCLUSIONS

Noises are found to have destructive effects on dynam-
ic systems. They raise fluctuations and destabilize the SS.
In studies of the present two-dimensional system and the
previous one-dimensional ones [4], we are able to esti-
mate the scope of the noise effects on the transient as well
as on the SS properties. It is found that noise effects de-
pend on types of noises, i.e., on the structures of the g
function. Usually additive noises cause smaller effects
than the multiplicative ones might. In general, effects are
insignificant for small and moderate values of noises.
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Studies on noise effects enable us to probe the stochas-
tic properties of noise-induced transitions which are
unique only to the nonequilibrium systems. More investi-
gation is needed in order to understand the nature of
phase transition and critical phenomena in nonequilibri-
um systems, especially the controversial issue of critical
slowing down [4,6, 10—12].

Both theoretical and experimental studies tend to favor
the usage of the Stratonovich interpretation in stochastic
formulation of physical systems [16—18]. We present
here both Stratonovich and Ito results for comparison.
For the present studies, they predict not only qualitative-
ly the same transient properties, but also quantitatively
the same exponent for the critical slowing-down
phenomenon.

Analysis of transient properties relies on approxima-
tion schemes. Our results are reliable, since fiuctuations

at SS and during transient are relatively small. Moment-
expansion approximation may fail if the relative Auctua-
tions approach the order of unity. The Auctuation catas-
trophe at the noise-induced instability and the phase
transition afterward cannot be described in our analysis.
They are only qualitatively predicted here.
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