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Master Langevin equations: Origin of asymptotic diffusion
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We extend the master-equation treatment of dynamical evolution of a system-plus-reservoir con-
figuration including the propagation of initial correlations as a noise source. Specializing into the
quantum harmonic oscillator coupled to a fermionic heat bath, we develop a model for the diffusion
matrix in the space of diagonal density operators. It can be shown that mean values of observables
undergo Langevin-like motion and, in particular, that the mean value and dispersion of the oscillator
quanta approach the canonical equilibrium values. A final interpretation of the characteristics and
role of the noise source is given.
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I. INTRODUCTION

The irreversible dynamics of two coupled components
of a macroscopic, isolated system is a well-known text-
book subject in statistical physics [1]. The most popular
and useful realizations of such a situation are the Brown-
ian particl" "ventually subjected to a conservative ex-
ternal force field —in its thermal reservoir and the sin-
gle particle in an environment of identical partners, to
which it couples through a two-body interaction. The
standard probabilistic approaches lead one to formulate
the above problem in terms of the density matrix or the
distribution function of the selected particle, whose evo-
lution is governed by a master equation in the case of the
Brownian object, and by a kinetic equation for the N
body system [2, 3]. Accordingly, the expectation values
of the observables of interest satisfy damped equations
of motion, whose solutions exhibit asymptotic decay to-
wards the thermodynamic equilibrium values. Comple-
mentary to the dissipative behavior of the mean values,
the covariances and dispersions bring into evidence the
diffusive action of the heat bath, whose strength is related
to the intensity of the damping through a Huctuation-
dissipation relationship [4—7]. Such effects have been
extensively investigated for both the classical and the
quantal Brownian motion; however, a statement of the
Huctuation-dissipation theorem in the quantal case has
not been made for general thermal environments sur-
rounding the macroscopic particle.

More recently, due to the increasing amount of ex-
perimental work devoted to extract information of far-
from-equilibrium dynamics in N-fermion systems such
as nuclei, new insights have been put forward regarding
the role of the reservoir. The initial cluster correlations
[8] seem to be very substantial in the process of frag-
ment formation preceding the disassembly of a hot nu-
cleus, and the so-called phase-space Huctuations [9, 10]
are capable of accounting for a variety of dynamical ef-
fects involving the moments of the one-body distribution
function. In this context, and in the same spirit of for-

mer authors such as Bixon and Zwanzig [11] and Van
Kampen [12], Ayik and Gregoire [9] have recently devel-
oped an extension of the Boltzmann-Uehling-Uhlenbeck
(BUU) kinetic equation that attempts to incorporate the
initial two-body correlations with which the N-body sys-
tem is constructed, in the manner of a fluctuating source
appearing in the above equation of motion. The dis-
tribution function in the Wigner representation then be-
comes a stochastic variable in distribution space, and this
character is transmitted to every mean value of dynamic
observables. This view has been complemented by the
approach of Randrup and Remaud [10], who derive the
same evolution equations in phase space stemming from a
Fokker-Planck description of the stochastic Wigner func-
tion. While several numerical experiments have been al-
ready published [13,14] along these lines, the manifesta-
tions of the noise upon the collective variables have been
also investigated [15] in the close-to-equilibrium regime,
giving rise to a clear Brownian behavior with a well-

identified fluctuation-dissipation relationship.
In the standard derivation of the master equation,

the initial system-reservoir correlations are usually dis-
regarded; such a procedure is valid insofar as one is in-
terested in the asymptotic regime, since usually the life-
time of microscopic correlations is short in a macroscopic
environment. However, as in the N-particle system, ini-
tial correlations may be relevant in the small time scale,
where their propagation gives rise to stochastic kicks on
the evolving density matrix of the Brownian particle. It is
then of interest to take a deeper view on the characteris-
tics of the noise associated to the initial system-reservoir
correlations and attempt to achieve an interpretation of
the origin of their fluctuation-dissipation relationship.

For this sake, in this work we adopt Ayik and
Gregoire's point of view and develop a model for the fluc-
tuating source in the master equation of a quantal har-
monic oscillator in a fermionic heat bath [16—19]. This is
presented in Sec. II. In Sec. III, we discuss the effects of
this noise on the oscillator observables and dispersions; in
particular, we give a prescription to extract the diffusion
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coefflcient for any quantity, once the diffusion matrix in
probability space is known. The whole procedure is il-
lustrated computing the correct dispersion in the phonon
number. The discussion and Anal summary is presented
in Sec. IV.

II. STOCHASTIC BROW'NIAN MOTION MODEL

The physical problem under consideration is the relax-
ation of a sytem 8 due to its coupling to a heat reservoir
72,. Let H be the total Hamiltonian of the combined
system-plus-reservoir configuration,

H = Hg+ HR+ Hg~,

with HsR the driving interaction and let, at any time t,

where

bR„(t) = i(—n)TrR[HSR) e ' 'PS~'Rl(0)])n)

is the contribution of the noise source to the time deriva-
tive of the population . A more elaborate description of
the fluctuating kernel (5) depends on the specific choice
of the interaction HsR, which in turn determines the
structure of the downwards and upwards transition rates,
respectively, W+ and W in Eq. (4). In favor of a defi-
nite illustration, we select the quantal Brownian motion
(QBM) [16—19] model that considers the coupling of the
oscillator to a ferrnionic heat bath. The QBM interaction
1S

P(t) = PS(t)PR(t) + PSR (2)
HsR = ) (A „I'tbtb + A*„I'btb ), (6)

be the total density operator, with psR the correlated,
i.e. , nonfactorizable, contribution to the statistical rna-
trix. The well-known reduction-projection techniques
[16] lead to the master equation for the reduced density
matrix of the system in the form

pS(t) = i [HS + Tr—RHSRpR(t), pS(t)]

where I t and bt (I' and b) are boson and fermion cre-
ation (annihilation) operators, respectively. The transi-
tion rates read as

Wg = 2vr) ~A „~ 6(k —k„—rI) x
p~(& pp) ~

0!)P

+ d7 TrR [HSR [HSR pS (t —'r) pR(t)]]

i TrR[HSR 8 pSR] ) (3)

where k, , e, , and p, are the momentum, the single parti-
cle, and the Fermi-Dirac population of the fermion state
~i), and 0 and q are the energy and momentum of an
oscillator quantum, related by the dispersion law

where Hg~ denotes the interaction Hamiltonian in
Heisenberg representation and TrR indicates a tracing
operation on the heat bath variables . A symmetric equa-
tion holds for the thermal reservoir; however, in most ap-
plications the latter is an extended object assumed to be
in thermodynamical equilibrium at any stage of the time
evolution of the system 8, i.e. pR(t) = pR(0) = pR.

In commonly investigated situations appearing in
quantum optics and nuclear or condensed matter physics,
the last term on the right-hand side of Eq. (3) plays no
role, either because one assumes that no initial correla-
tions have been built in the total system, or due to the
additional hypothesis that, even if such correlations had
been present, they would have damped away within a
time scale much shorter than the actual observation time
t. It is then clear that within the lifetime associated to
the evolution kernel e ' ', the macroscopically large di-

versity of choices for the irreducible matrix p&'R, which
remains an unknown entity for an observer concentrated
on the system S, permits one to regard the propagating
correlations as some external stochastic noise. In this
sense, the reduced density ps(t) is a stochastic process
in Liouville space that undergoes Brownian motion ac-
cording to the functional Langevin equation (3).

In order to Bx ideas, we consider a quantum harmonic
oscillator coupled to an arbitrary heat reservoir. The
master equation for the occupation probability p„of the
nth oscillator state is well known; thus in the Markovian
limit one can write

A = c, fq/

with c, the speed of sound in the macroscopic environ-
ment. Furthermore, one has the detailed balance rela-
tionship

(9)

at any temperature T; the transition rates (7) can be
explicitly computed for a free Fermi gas [20], assuming
constant coupling matrix elements A~„= A, giving

m ~A~~ 1+exp[—P(2mc~
W+ ———

&
ln

q A~ 1+exp[—P(~mc~

x(1+ni),

+,' q' —
—,'fl —u)]

+ s' q2+ 2iA —p, )]
(10)

n1
W =W+ 1+n1

In these expressions, Az = (2m/AT)~ is the thermal
wavelength of fermions of mass m, ni is the mean number
of oscillator quanta at temperature T,

1
eA/T ] ' (12)

and p is the fermion chemical potential. Moreover, in-
troducing the effective decay rate

p„(t) = W [(n+1)p„~i —np„]
+W [np„, —(n~1)p„]+a@„(t), (4) we realize that
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W+ ——v(l + nr), (14)

R' = Vn1.

Now considering the interaction (6), after some algebra
one finds the following simple appearance for the noise
source in Eq. (5):

As in previous developments of the QBM model [16—20],
the notation here employed for matrix elements indicates
a transition from a configuration with a given number of
oscillator quanta and one labeled fermion state, to an-
other configuration with plus or minus one boson and a
difFerent fermion state, the remaining N —1 fermions not
undergoing any transition. If we now introduce an ensem-
ble of initial conditions on which all fluctuating quanti-
ties may be averaged, it is clear that the noise source (5)
averages to zero, i.e. ,

bK„(t) = 0, Vn,

since the ensemble contains all possible matrix elements
of p&'R appearing in (16) with all possible phases.

One needs to know the correlation 6K„(t)bK„',(t) in
order to characterize the fluctuations. A computation of
such a quantity for a quantum system has been performed
by Ayik and Gregoire [9] in the frame of the Boltzmann-
I angevin equations for fermions [actually, the so-called
(BUU) kinetic equation enriched with the propagation of
initial two-body correlations]. Their derivation is based
on two major assumptions: (i) the two-body correlation
operator p2 is expressed as the Hermitian adjoint of the
two-body interaction; and (ii) the time correlation of pz
at time t = 0 can be replaced by its value at a finite time

I

bK (t) = —& ).[& v n{n —1 ~l ps' Inp)

—A*„v'n+ l{n, o ipse'~~n+ lp)]e '( '-+'~)'

(16)

A test of the validity of this assumption is the fact
that this correlation kernel gives the appropriate diffu-
sion coefBcients for one-body, momentum dependent ob-
servables [15]. In what follows, we briefly summarize the
main steps and hypothesis of their procedure as applied
to the present case, for which we interpret the correlation
matrix elements in Eq. (16) as the transition amplitudes

= {Cs~(n)il' b„b I'b, b„~Cs~(n')).

The indicated matrix element then becomes a product of
boson and fermion occupation numbers. In addition, in
the noise correlation, each term contains a phase factor,
which for the above contribution is e'(+

(2) The noise correlation thus obtained is now inte-
grated over the time difference t —t . This gives rise to
the energy conserving kernel b(A —u „) that appears in
the transition probabilities in Eq. (7).

(3) Finally, one introduces an efFective white noise,

6K„(t)6K„',(t) = b(t —t')2D„„(t) (19)

whose correlation matrix D„„(t)is the integrated corre-
lation matrix of the actual noise, as arising from steps 1
and 2, where the occupation numbers have been taken at
the current time t. Its expression is

, +r, = {C'~~(n) ll'bt b IC'sR(n)),

wher~ ic'&R(n)) is the reservoir plus system state that
involves n phonons.

(1) As one writes the noise correlation, i.e. ,

6K„(t)b'K', (t) in terms of (16), eight terms involving a
product of two correlation matrices appear. One then
assumes that the averaging procedure in the ensemble of
initial conditions, denoted by the overbar, suppresses the
intermediate generalized projector operator in the prod-
uct p~')(t)p('l(t'). In other words, a typical contribution
1s

2D„„(t)= 6 (W~[(n+1)p„+r+np„]+ W [np„r+(n+1)p ]

—r, n(W+p„+ W-p„r) —b +r, (n + 1)(W+p +r + W p)). — (20)

In this expression, p is the averaged mth level popula
tion at time t,, namely the solution of the deterministic
master equation [21],

p = W+[(m+1)p +r mp ]+W [mp —
r —{m+1)p ].

(21)

This reflects, on the one hand, the fact that the fluc-
tuating kick at time t originates in a correlation propa-
gated from some arbitrary previous instant. On the other
hand, the diagonal term of D„„exhibits the gain-plus-
loss structure characteristic of difFusion processes [12],
a structure that shows up as well in the sum of both
off-diagonal terms. In particular, one may compute the
difFusion matrix (20) at equilibrium; let

p~= e"1

1+n1 (22)

The role of D„„(t)as the diffusion matrix for the popu-
lation of oscillator quanta becomes clear on very simple
grounds. Indeed, close to thermodynamic equilibrium
the average occupation evolves as [21, 22]

p (t) = p."+e "'p (o) (24)

with 2: = A/T and nr given in (12). One finds, recalling
Eq. (13),

D„'„, = ve "*(6„„[(n+1)e *+n] —b„r,„n
a„+,„.(n+1)e-*—j. (23)
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We can then compute the covariance of the occupation
probabilities,

(t) = 6 (t)6 (t) (26)

with the decay rate v given in (13). Thus the presence of
an added fluctuating velocity 6K„[Eq. (24)] should be
replaced by

t

p„(t) = p'„~+e "'p„(0)+ dt'e "~' 'lbK„(t).
0 Moreover, in addition to arbitrary observables, one could

consider the moments of the density operator ps as
stochastic processes. In other words, if

ng(t) = T„[n"p, (t)]
= ) n"p„(t)

(3S)

(39)

From (24), (27), and (30) we thus learn that in the close-
to-equilibrium regime,

Deq
~q (t) = ' (1 —e '"')

with 6p„= p„(t) —p„(t). A closed expresion can be at-
tained if we specialize D„„i(t)into its equilibrium value
(20); in such a case, we get an integrated formula,

(27)

valid for vt && 1.

III. BROWNIAN MOTION OF OBSERVABLES

Given the stochastic time evolution (4), any operator Q
acting on the system coordinates that exhibits a diagonal
part Q„Q„[n)(n~ in the Fock basis will undergo Brown-
ian, Langevin-like evolution with multiplicative noise. In-
deed, the expectation value

q(t) = &.[Qp. (t)]

=) Qp (t)

(»)
(29)

with K~(t) = Q„Q„p„(t) a dissipative velocity and
bKq(t) = Q„Q„6K„(t) a stochastic noise with corre-
lation

6K„(t)6K„,(t) = ) Q„2D„„.(t)Q„.6(t —t')
n, n'

= 6(t —t') 2DZ(t)

being Dq(t) the diffusion parameter for this stochastic
field. From (26), one may as well extract the dispersion
of the observable

q = 6q'(t) = q'(t) —[q(t)]' (33)

In addition, we note that since the fluctuation 6q(t) is
induced by 6p(t),

(where Tr means a tracing operation on the Hilbert space
of the system) satisfies

q(t) = K, (t) + 6K, (t)

it is straightforward to show that Eq. (4) is equivalent to
the coupled system [22, 23],

g „(kl
nt, =W+) (—1) "I Inp+i

&&)

+W ) ~
~np+kW ni,

- (k+11
)

+ 6'Kg(t) (40)

with the specific noise source

6K,(t) =) n"6K„(t). (41)

ni = —vni ~ W +6Ki(t) (42)

whose Quctuating solution is

ni(t) =ni(0)e "'+ni(1 —e ')
t

dt'e "~' ' lbKi(t') (43)
0

keeping in mind the relation (15).
The boson occupation number nj is then recovered as

the equilibrium ensemble averaged first moment; its co-
variance (33), (36) is

Deq
oz, (t) = ' (1 —e "'), (44)

while a straightforward calculation of the diffusion coef-
ficient defined in Eq. (23) gives, at any time,

Since the analytical solution of the deterministic sys-
tem for the ensemble averages ng is known, one might in
principle fold the fluctuations (41) into that solution and
obtain the fluctuating moments nt, (t) . A set of correla-
tions o&~&, ——bnkbng~ could be established in this manner;
this is just an alternative to the covariance matrix o.

of Eq. (27). Being both a moment and an observable, the
mean number of quanta nq, proportional to the mean ex-
citation energy of the oscillator, is specially interesting.
One easily obtains from (40),

6q(t) = q(t) —q(t)

=).Q 6p

we have

(34)

(»)
2D, (t) = W +(W++ W )ni(t).

Using (13), we readily obtain

DP = t ni(l+ni),

(45)

(46)

(t) = ) .Q (t)Q '
n n'

(36) i.e. ,

tr„', = ni(l+ ni). (47)



304 C. O. DORSO, E. S. HERNANDEZ, AND J. L. VEGA

Equation (47) expresses a well-known relationship for
the dispersion of the mean photon number in a fluctu-
ating electromagnetic field with detailed balance (see,
for example, Refs. [22, 23] and references therein), while
Eq. (46) is the particular fluctuation-dissipation relation-
ship for a boson system. The specific nature of the driv-
ing mechanism and the thermal environment appear in
the dissipation rate v, which for a fermionic reservoir
reads [cf. Eqs. (10) and (13)] as

1+exp[—P(2rnc, + s' q —20 —p)]
q A2~ 1+exp[ —P(-,'rnc2+ s' q'+ 2iA —p)]

(48)

IV. SUMMARY AND CONCLUSIONS

In this work we have analyzed the temporal evolution
of the QBM model (i.e. , a fermionic system coupled to a
bosonic heat reservoir) when the eff'ects of the initial cor-
relations between the system of interest and the bosonic
bath are taken into account.

These correlation terms give rise to a noise source
whose statistical properties are given by its mean value
(over the ensemble) and its temporal correlation. The
latter has a structure of the type gain+loss which is char-
acteristic of the diffusion process. This term is of primary
importance because it appears in the evaluation of the
fluctuations of the observables.

At this point, it is interesting to summarize the way
in which this term is calculated. First, using the stan-
dard techniques developed for the resolution of the QBM
model one obtains an expression for the time correla-
tion of the noise source . This result already contains
a specific selection of the system-plus-reservoir correla-

tion operator. Next, one sums up all the contributions
for all times and then one makes the assumption intro-
duced in Ref. [9] that at any time t the correlation of
the noise source can be replaced by an efFective white
Gaussian one with the same diffusion matrix. This is
the expression that we use to calculate the fluctuations
of the observables; in particular, when the observable is
the occupation number ni the correct asymptotic limit
is obtained.

It must be stressed that the above procedure is in fact
equivalent to replacing the true initial (nonkinetic [2])
correlation by some kinetic one which gives the same
diffusion matrix in density matrix space. In this way
one does not keep track of uncontrollable correlations;
instead, one contemplates in the description only the
strictly kinetic ones appearing in the collision kernel cor-
responding to the close to equilibrium evolution, which
of course produce the correct asymptotic regime. This
means that although some extra degree of stochasticity
has been introduced in the description, it is not related
to the early history of the system but is a manifestation
of the dynamics itself in the long-time run.

The results here encountered support the idea that the
kinetic correlations are those responsible for the asymp-
totic diffusive behavior of real systems, once the initial
nonkinetic ones have been washed away by the collisions.
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