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Short-time electric-field dynamics at a neutral point in strongly coupled plasmas
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Recent theoretical analyses of the two-time joint-probability density for electric-field dynamics in a
strongly coupled plasma have included formal short-time expansions. Here we compare the short-time-
expansion results for the associated generating function with molecular-dynamics-simulation results for
the special case of fields at a neutral point in a one-component plasma with plasma parameter I"=10.
The agreement is quite good for times w,t <2, although more general application of the short-time ex-

pansion requires some important qualifications.

PACS number(s): 52.25.—b, 05.40.+j, 05.20.Gg, 05.90.+m

I. INTRODUCTION

The radiative and transport properties of an impurity
(ion or atom) in a plasma are determined largely by the
local electric field E(z). The characterization of this field
as a function of time provides the primary description of
the plasma environment on the impurity. The probabili-
ty density for finding a field value € at a given time Q(¢)
has been studied for some time and there are quite accu-
rate approximations for practical calculation even under
conditions of strong coupling [1]. In contrast, the joint
distribution for a field value €' at time O and a value € at
time ¢, Q(g,t;€’,0), has received little attention until re-
cently [2—5]. Even the results for an ideal-gas environ-
ment (Holtsmark limit) are not known for this latter case
[6].

References [3] and [4] studied a number of formally ex-
act limits for Q(g,¢;€’,0). One of these is the short-time
limit of the generating function associated with
Q(g,t;€’,0). It was noted there that the expansion is not
uniform and therefore its domain of validity is unknown
a priori without comparisons to more controlled calcula-
tions. Independently, others [5] now have performed
computer-simulation studies of this generating function
for the special case of fields at a neutral point in a one-
component plasma. Strong-coupling conditions were
studied, with plasma parameters I'=1, 5, and 10
[T=(Ze)?/rokyT, where Ze is the charge, kg is
Boltzmann’s constant, T is the temperature, 7, is the ion
sphere radius (47nr} /3=1), and n is the density]. Here
we specialize the short-time expansion to this case, de-
scribe a suitable approximation to evaluate the
coefficients, and report the comparison to simulation re-
sults at the strongest coupling conditions considered,
I'=10. The agreement is quite good for w,? =2, where
cop=(47rnZZe2/m)1/2 is the plasma frequency. In the
last section we speculate on the utility of short-time ex-
pansions for practical calculations at strong coupling.

II. DEFINITIONS AND SHORT-TIME EXPANSION

In this section we review briefly the definitions of the
joint-probability density and its generating function, and
the short-time expansion of Ref. [4]. The system con-
sidered is a one-component plasma (OCP) of N ions with
mass m and charge Ze, in a uniform neutralizing back-
ground. The electric field at a neutral point (chosen to be
the origin) due to the OCP is given by

N
E= 3 elq,), e(r)=(Ze)®/r’)+e,, 2.1
i=1
where N is the number of ions and e(q;) is the electric
field due to the ith particle plus a contribution from the
uniform background (E, =Ne,). The equilibrium proba-
bility density for field values € is

Q(e)=(8(e—E))=2m) " [dhe ™™ . (22)

The second equality defines the associated generating
function G(A),

G(A)=In({e™E)) . 2.3)

The joint distribution for a field value €’ at =0 and a
field value € at time ¢ is given by
O(g,1;e',0)=(8(e—E(¢))8(¢'—E))
:(Zﬂ)_éfdk dA e "IAETINE LGNS
(2.4)
The generating function in this case is given by
G(AA5t)=In({e BN E)) (2.5)

The initial and final values for Q(g,t;€’,0) are
8(e—¢€')Q(e’') and Q(e)Q(¢g’), respectively. The corre-
sponding values for the generating function are

G(AA0)=G(|A+A']),

(2.6)
G(A,A;0)=G(A)+G(N) .
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Now consider the direct expansion of G(A,A’;t) in
powers of ¢, for fixed A,A’, from Eq. (2.5). The leading
two terms are found to be [4]

G(AA)=GA+A )+ (2 /2NN Fy(J A+ )+ -

2.7
Fy(0=nky T/m) [ dr | S0 1247 a)
ij =\nKkp m r arI ar, 8g(r; )
(2.8)
ng(r;A)={(n(r)eE) /(e*E) (2.9)

where n(r) is the local number density of ions near the
impurity. The quantity g(r;A) is closely related to the
correlation function for an ion-impurity pair, restricted
to states distorted by the local field [7]. It is shown else-
where that it may be determined from a functional
derivative of G(A) [7],

8G(A)
S(ire(r)) ’

where e(r) is the magnitude of the single-particle field in
(2.1). Thus all of the terms in (2.7) can be calculated from
a suitable approximation for G(A) alone. As noted in the
introduction, this is a well-studied problem with good ap-
proximations available [1].

It is instructive to consider the limiting case for which
there are no interactions among the plasma particles.
Then G(A) is given by Holtsmark distribution,

G(A)—n [dr(e™e—1),

ng(r;A)= (2.10)

(2.11)

iA-e(r)

g(r;A)—e (2.12)

The short-time expansion for this case can be calculated
analytically, with the result

G(AA;t)=—c |A+A[32
— (A1 =xD) A+ w,)?
+o0(t), (2.13)

with x =A-X', ¢, =e322(2m)'72/5, c,=el*9(27)"/?/8.
Here ey=Ze /r} is the field due to an ion at the ion-
sphere radius. This illustrates some limitations of the
formal expansion in time. The coefficient of ¢? is singular
if A=—A'. Furthermore, derivatives with respect to A
and A’ are singular at A=A'=0, so the expansion is not
uniform with respect to A and A’. Its applicability is lim-
ited to a time scale that depends on the values of A and A’
considered. Thus it is of some interest to determine these
time scales by direct comparison with computer simula-
tion, as considered here.

III. RENORMALIZATION AT STRONG COUPLING

The generating function G(A) can be considered as a
functional of ¢(A,r)=—1+ exp(iA-e(r)), so that
G=G[¢] [8,9]. Truncation of the functional Taylor-
series expansion in ¢ (Baranger-Mozer series [10]) leads
to a sequence of approximations. At first order in ¢ one
obtains the Holtsmark approximation (2.11). Correla-

tions among particles appear at second order in ¢;
beyond second order practical calculation becomes prohi-
bitively difficult. However, the second-order approxima-
tion fails for strong coupling (I’ = 1). To describe condi-
tions of strong coupling a renormalization of the
Baranger-Mozer series is required. First, we define a “re-
normalized” functional, G[¢]=Gg[4*], with ¢* defined
by

¢*(A,r)=—1+exp[ir-e*(r)] . (3.1

The new single-particle electric field e*(r) is directed
along r but otherwise has a functional form chosen below
to optimize the expansion. The functional transforma-
tion from ¢ to ¢* is seen to be simply

d(A,r)=—1+[1+¢*(A,1)]R" | (3.2)

where R(r)=T-e(r)/f-e*(r). A new functional Taylor
series in ¢* is now truncated to yield a renormalized suc-
cession of approximations. The leading two terms are

Gr(M)=GLM+GP M)+ -, (3.3)
GM=n [dr,R(r)$*(A,1) (3.4)

G;f’(x)sgfdrldrzk(rl)R(rz )¢*(A,1,)d*(A,1,)

X {n[g(lr,—r,H—1]
+R(r)[R(ry)—1]¢*(A,1y)
X ¢*(A,1,)8(|r;—1,1)} . (3.5)

So far this rearrangement is only formal. To optimize
convergence, the arbitrary field e*(r) is chosen such that
the first term alone is exact through order A%. This gives
the constraint

[ driei(r))ef(r))—e;(r)))
=n fdrldrzei(rl)ej(rz)[g(lrl—r2|)—1] . (3.6
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FIG. 1. Generating function density for the time-
independent microfield distribution, A*exp[G(1)], as a function
of A at I’ =10; molecular dynamics (O), two terms of renormal-
ized series ( ), one term (APEX) of renormalized series
(— — —), two terms Baranger-Mozer series (—-—.—- ), and
Holtsmark (- - - -).
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This does not specify e*(r) uniquely. In practice it is use-
ful to choose a Debye-like field with screening parameter
chosen to enforce (3.6). The resulting first approxima-
tion, Gy, is known as the adjustable parameter exponen-
tial (APEX) approximation [8]. Figure 1 shows the com-
parison of results for exp[G(A)] as a function of A (in
units of e;) obtained using Gy (Holtsmark), Gy, (first
two terms of the Baranger-Mozer series), APEX equal to
Gy, and G =G'V+G? at I'=10. Also shown are re-
cent molecular-dynamics-simulation results [5]. The
main conclusion from this is that the renormalization
procedure including fwo terms is required for such strong
coupling.

To obtain the short-time coefficient from these approx-
imations, Eq. (2.10) is used,

&
S(ire(r))

=nexp[iA-e*(r)]+ - -

ng(r;A)= [GPN+GR )+ -+ ]

(3.7

In the numerical results reported below, the contribution
G} has been included in the calculation of G(A) but not
in the calculation of g(r;A). To clarify this point, we first
note that Fig. 1 shows large differences between the
Holtsmark approximation and that obtained using only
Gy (APEX). This suggests the need for G’ for an accu-
rate microfield distribution. Conversely, the comparison
of these two approximations in the determination of
F; (L) shows only a few percent difference and suggests
that contributions from G are not important in this
case. It appears that short-time dynamics at a neutral
point is dominated by ideal gas behavior.

IV. RESULTS

The generating function G(A,A’;t) depends on the four
parameters A, A, 6, and ¢, where 6 is the angle between A
and A’. The comparison between molecular-dynamics
data and the short-time expansion is most compact in
terms of the magnitude, [=[A2+A2+2AL" cos(0)]'/2
The specific values of A, A’, and @ for each [ are given in
Table 1 (where A and A’ are measured in units of eg)
Table II shows the comparison of the molecular dynam-
ics (MD) and short time results for the range of / and
times considered in Ref. [S]. Except for the largest time,
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TABLE 1. Values of dimensionless A, A, 6, and
[=[A?+A"2+2AL" cos(8)]'”? for molecular dynamics results re-
ported in Ref. [5].

l A A 0
0.707 0.5 0.5 /2
1.12 0.5 1.0 /2
1.414 1.0 1.0 /2
1.732 1.0 1.0 m/3
1.732 1.0 2.0 2mw/3
2.0 2.0 2.0 27/3
2.06 0.5 2.0 /2
2.83 2.0 2.0 T/2
4.13 4.0 1.0 /2

w,t=3.46, the differences are typically of the order of a
few percent. This is within the range of accuracy of the
MD data and the numerical calculations of the short-
time coefficients. Although Fig. 1 shows that the accura-
cy of Gg(A) is quite good, the small errors propagate in
time. The quality of the second term of (2.7) can be
determined independently from that of Gz (A) by normal-
izing the short-time expansion to that of the simulation
data at t =0. Typical results are shown in Figs. 2 and 3.
The differences at w,t=3.46 are large, indicating a
breakdown of the short-time expansion. Thus we esti-
mate that the short-time expansion has validity limited to
w,t =2 for the conditions considered. This estimate is
consistent with a short-time analysis of the field auto-
correlation function, (E(z)-E) in Ref. [5], which shows
that the first three terms of an exact short-time expansion
are quite accurate up to ®,f=2 with significant
differences from the simulation results occurring at
®,1=3.46. An analysis of the autocorrelation function
at other values of I' also shows that the domain of the
short-time expansion decreases at weaker coupling.

V. DISCUSSION

For many applications, e.g., spectral line broadening,
the relevant time scales are of the order of a few w,?.
Thus it would be very useful to conclude from the above
that short-time expansions of G(A,A’;t) are sufficient to
study complex nonlinear dependencies on electric-field

TABLE II. Values of the generating function exp[G(A,A’;#)] from molecular dynamics (MD) and

from the short-time expansion (ST); ¢ in units of 0,

t=0.0 t=0.693 t=1.39 t=1.73 t=3.46
l MD ST MD ST MD ST MD ST MD ST
0.707 0.739 0.741 0.729 0.731 0.712 0.708 0.702 0.691 0.680 0.565
1.12 0.585 0.592 0.578 0.586 0.561 0.566 0.551 0.554 0.518 0.457
1.414 0.489 0.495 0.479 0.487 0.456 0.461 0.443 0.444 0.394 0.323
1.732 0.403 0.402 0.401 0.401 0.401 0.401 0.403 0.399 0.404 0.391
1.732 0.403 0.402 0.380 0.388 0.324 0.347 0.296 0.320 0.204 0.160
2.0 0.335 0.335 0.300 0.308 0.231 0.238 0.200 0.197 0.107 0.040
2.06 0.325 0.321 0.324 0.319 0.315 0.316 0.309 0.312 0.278 0.284
2.83 0.191 0.181 0.180 0.175 0.159 0.162 0.153 0.151 0.107 0.380
4.13 0.071 0.062 0.069 0.061 0.063 0.060 0.061 0.057 0.043 0.050
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FIG. 2. Comparison of exp(G(A,A’;t)) as a function of time
at '=10, A=A"=2; molecular dynarlxi,c\s (O), and short-time
expansion ( ). Top curve is for A-A'= cos(27/3), bottom
curve is for cos(7/2). Theoretical results are normalized to
those of molecular dynamics at t =0.

dynamics. However, the exact Holtsmark result (2.13)
shows that the short-time expansion has some important
limitations. To illustrate, consider three exact derived
quantities, the electric-field autocorrelation function,

aZ
———G(A,A58) =—(E;(1)E;) , (5.1
OA;0R; A=r=0 !
the conditional average of the electric field,
Q(e){E(t);e)
=(E(t)8(e—E))
:(277,)~3fd}\e;ix~a+cm
X | —i G(A',A;t) , (5.2)

’
i

A'=0

and the time-independent distribution of electric-field
derivatives [5],

P(n)=(8(n—E))=2m) > [dre *m/™)

A —A ]
=, =5t .
t t

(5.3)
J(A)=1m G

t—0
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FIG. 3. Same as Fig. 1, except all curves have

X-X’=cos(7r/2) and A=0.5; top curve (A’=0.5), middle curve
(A'=1), bottom curve (A'=2).

If the short-time expansion of G(A,A’;t) is used to calcu-
late the conditional field from Eq. (5.2), the correct result
to order t? is obtained. However, divergent results are
obtained for the field autocorrelation function (5.1) and
for the distribution of field derivatives (5.3). This is due
to the fact that moments of the joint-probability density
are nonanalytic functions of ¢ near t=0 for fields at a
neutral point. Thus the short-time expansion for the gen-
erating function cannot be used to describe directly the
short-time behavior of all derived properties of interest,
and some care is required. It is likely that the domain
w,t =2 can be described by short-time representations for
the conditions considered here, but not necessarily by the
single expansion (2.7). For example, as noted above, a
short-time expansion of the autocorrelation function is
accurate over the same range as that of G(A,A’;t). How-
ever, the latter is analytic in ¢ while the former is not, and
the two representations are unrelated. The case of
electric-field dynamics at a charged point is expected to
be simpler in this respect since the corresponding mo-
ments are analytic in time and the short-time expansion
of the generating function is expected to be uniform in A
and A’. Unfortunately, there are no corresponding de-
tailed computer-simulation results available for this case
at present.
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