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Dynamical properties of a ferroelectric nematic liquid crystal
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Molecular-dynamics simulations are used to investigate the dynamical properties of a ferroelectric
nematic liquid crystal. The results are also relevant to electrorheological fIuids and to ferroflu-
ids. Translational and rotational diffusion constants parallel and perpendicular to the director are
reported and discussed. Dipole-dipole reorientational correlation functions are calculated and com-
pared with theoretical models.

PACS number(s): 64.70.Md, 77.80.-e, 82.20.Wt

We have recently shown [1, 2] that fluids of strongly
interacting dipolar soft spheres can undergo spontaneous
polarization to form orientationally ordered phases.
These include ferroelectric nematic liquid crystals and
systems which also exhibt columnar order. The equi-
librium properties of these liquid crystals obtained by
molecular-dynamics (MD) simulations have been re-
ported in earlier articles [1,2]. The purpose of the present
paper is to describe some dynamical results.

In orientationally ordered systems the molecules ex-
perience an anisotropic environment, and for phases of
nematic symmetry the dynamical properties can be re-
solved into components parallel and perpendicular to the
director. Anisotropic difFusion in simple liquid-crystal
models consisting of nonpolar particles has been dis-
cussed in the recent literature [3,4], and here we consider
the translational and rotational diffusion of dipolar par-
ticles in a ferroelectric nematic phase. We also discuss
the dipole-dipole reorientational time correlation func-
tion and construct a simple theory for its behavior in the
ordered system. We note that the present results also
have relevance for electrorheological fluids [5—7] and for
ferrofluids [8] which are of considerable current interest.

The model we consider consists of soft spheres with
point dipoles embedded at the center. The pair potential
u(12) is of the form

temperature, and k is the Boltzmann constant. We also
introduce the reduced time t' = (e'jmo' ) ~ t, where m
is the mass of a particle. The results given here are for a
range of densities with T* = 1.35 and p* = 3 [9].

The details of the simulations are given elsewhere [1,
2] and and the results reported here were obtained with
256 particles, taking averages over at least 100000 time
steps (At* = 0.0025). Periodic boundary conditions with
s' = oo [10] were employed, which means that the orien-
tationally ordered fluids considered are perfect or "single
domain" ferroelectric nematic liquid crystals as discussed
in [2]. The instantaneous second-rank order parameter
P2 was taken to be the largest eigenvalue of the ordering
matrix Q with elements given by

(2)

where p,
' is the 0, component of the unit vector p, The

corresponding eigenvector is the instantaneous director
d and the instantaneous erst-rank order parameter P1 is
defined by

(3)

u(12) = u„(r) + u (12),
where

u„(r) = 4s(o/r)'

(la)

(1b)

The equilibrium order parameters are (Pi) and (P2),
where the angular brackets denote an ensemble average.

The translational motion was studied by calculating
the autocorrelation functions C'v~~ (t) and C'«(t) defined
by

is the soft-sphere potential and

(1c)

is the dipole-dipole interaction. The parameters e and
o. characterize the soft-sphere potential, p, is the dipole
moment of particle i, r = r2 —r1, and r is the magnitude
of r. It is convenient to characterize dipolar soft-sphere
fluids by specifying the reduced density p* = pos, the
reduced temperature T* = kT/s, and the reduced dipole
moment p* = (p2/sos)i~2, where p = N/V, N is the
number of particles, V is the volume, T is the absolute

C„„(t)= (v~~(O)v~~(t))

(t) = ( (o) (t))

(4a)

(4b)

where v~~ (t) and v~(t) are the components of the velocity
v(t), parallel and perpendicular to the director. We note
that the director remains essentially stationary over a
time interval which is much longer than the decay time
of the correlation functions. The translational diffusion
constants parallel and perpendicular to the director, Di~
and D~, are given by
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c.
,
(s)dh, (5a)

4„(f)dt . (5b)

In a similar manner, we resolve the angular velocity io(t)
into components parallel and perpendicular to d and de-
fine the autocorrelation functions C'

~~
(t) and C' (t). In-

tegrating over time as in Eqs. (5) then yields the corre-
sponding rotational diffusion constants Oll and 8~.

The translational and rotational diffusion constants
parallel and perpendicular to the director are plotted as
functions of density in Figs. 1(a) and 1(b), respectively.
In previous papers [1,2] it was shown that two phase tran-
sitions occur in this system: an isotropic to ferroelectric
nematic transition at p* = 0.65, and a liquid crystal to
ferroelectric solid transition at p* —0.87. We note that
in the ferroelectric nematic phase the order parameters
are (Pi) = 0.8 and (P2) —0.6. From Fig. 1 it can be
seen that the phase transitions are accompanied by rapid
changes in the diffusion constants.

In the nematic phase D~ is considerably larger than
Dll indrcatcng that translational motion is easier perpen-
Chculcr to the director. This contrasts with the situation
for more usual liquid crystal models such as systems of
hard ellipsoids for which D~~ ) D~ [3]. This observation
is understandable if one realizes that in the present fer-
roelectric liquid crystal there are strong interparticle po-
sitional correlations along the director arising from the
strong head-to-tail dipolar interactions. These correla-
tions act to inhibit parallel motion. From Fig. 1(a) we

also see that as expected both translational diffusion con-
stants vanish in the solid phase.

From Fig. 1(b) we see that e~ decreases very sharply
at the isotropic to nematic transition and vanishes in
the solid. The parallel component appears to vary dis-
continuously at the isotropic to nematic transition but
remains large in all phases. This behavior can also be
easily understood. In the orientationally ordered ne-
matic and solid phases rotation about the director re-
mains relatively easy since such motion does not greatly
alter the dipolar interactions. On the other hand, rota-
tion about a vector perpendicular to the director disturbs
the structure and becomes increasingly more difficult as
the system becomes more ordered. We note that even in
the isotropic phase Oll and 8& are not exactly equal. In
all likelihood this is a manifestation of finite-size effects
which give rise to small but nonzero order parameters in
isotropic fluids [11].

The translational and angular velocity autocorrelation
functions parallel and perpendicular to the director are
shown in Fig. 2. Results are included for isotropic
(p' = 0.6) and nematic (p* = 0.8) systems. It is obvi-
ous from the plots that the molecular motion is severely
influenced by the phase transition. From Fig. 2(a) we
see that in the nematic phase both CI„~~(t) and CI„~(t)
show the characteristic minima normally associated with
"caging" effects in dense Buids. However, the Erst mini-
mum in CI„~~ (t) occurs at a significantly shorter time and
this function also has an oscillatory structure not found
in CI„~(t). This indicates that in the nematic phase the
very strong dipolar interactions give rise to tighter "pack-
ing" along the director such that a particle experiences a
highly anisotropic "cage."
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FIG. 1. The (a) translational and (b) rotational difFusion
constants as functions of the reduced density. In (a) the solid
aud open circles are D~~ and D~ in units of (s/mo ) ~ o
In (b) the solid and open circles are 8~~ and 8~ in units of
(s/mo ) ~ . The estimated standard deviations are —15%.

FIG. 2. The parallel and perpendicular (a) translational
and (b) angular velocity autocorrelation functions in isotropic
(p' = 0.6) and nematic (p' = 0.8) phases. The parallel and
perpendicular components are represented by solid and dotted
curves, respectively. The values of p are given on the plots.
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From Fig. 2(b) it is apparent that C'
~~
(t) and C ~ (t)

also differ dramatically in the nematic phase. Specifi-
cally, C

~~
(t) has a relatively simple decay whereas O ~ (t)

exhibits a~ pronounced oscillatory structure. As discussed
above, this reflects the fact that in the orientationally or-
dered system motion about an axis perpendicular to the
director is much more strongly opposed by the dipolar
forces than is motion about the director itself. In anal-
ogy with translational motion, one might say that dipoles
aligned along the director sit in a very strong "orienta-
tional cage. " Similar orientational caging effects can be
seen in the isotropic system where dipolar motion is op-
posed by the local order.

It is also interesting to consider dipole-dipole reorien-
tational correlation functions defined by

(6a)

Ki(~) by the expression [12—15]

Ci(~) =
i~—+ Ki((u)

Following general memory function methods [12] and us-
ing the moment expansion of St. Pierre and Steele [14,
15], we obtain

2kT I
Ki(~) = (8)in+—(2kT/I)[1+ (L )/4(kT)2]M (w)

'

where (L2) is the mean-square torque and I is the mo-
ment of inertia. This expression is valid for linear
molecules and gives the correct fourth moment for Ci(t)
independent of the functional form of Mi(t) provided
that Mi (t = 0) = 1. We now consider two models defined
by difFerent choices of Mi(t).

Model I is defined by assuming that Mi(t) has a single
exponential form

1 "--
iii( ) = —) (Pii,.(o)Pii, '( )) (6b)

Mi(t) = e '~ '

such that

(6c)

where p~~, (t) and p~, ,(t) are the components of p, (t)
parallel and perpendicular to the director. The MD re-
sults together with curves given by the theory discussed
below are shown in Fig. 3. We note that Ci~~(t) decays
extremely slowly, which is expected since its long-time
behavior must essentially be determined by the reorien-
tational correlation time of the director. Ci~(t) shows
a rapid initial decrease, passes through a minimum, and
then decays to zero. Since Ci~~(t) is nearly constant over
the time interval shown in Fig. 3, it is clear that the
structural features of Ci(t) come from the behavior of
C (t)

It is possible to derive theoretical expressions for Ci (t)
in the following manner. The Laplace transform of Ci(t),
Ci(a), is related to a corresponding memory function

In the limit w ~ 0, we further assume that Ci(u) obeys
the Debye diffusion equation such that

l
Ci(~) = (11a)

where 6I is the rotational diffusion constant defined by

10=- (11b)(~(0) cu(t))dt .

(13)

Then, ~1 is given by

1

28[1+ (L,')/4(kT)'] ' (12)

and, since both 0 and the mean-square torque are ob-
tained in the simulations, this model contains no un-
known parameters.

Model II is defined by taking Mi(t) as the sum of two
exponentials to obtain

M(t)=( '"+~ '")/(1+~)
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FIG. 3. Dipole-dipole reorientational correlation func-
tions in the nematic phase at p' = 0.8. The solid, long-
dashed, and dash-dotted lines are MD results for Ci (t),
Ci~~(t), and Ci~(t). The dotted and short-dashed curves are
theoretical results given by models I and II, respectively.

FIG. 4. The memory function Ki(t) in the nematic phase
at p* = 0.8. The solid curve is the MD result. The dotted
and dashed curves are theoretical results given by models I
and II, respectively.
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or, equivalently,

1+7
2g [I + (1,2) /4(kZ') 2]

(15)

Thus, given that the denominator on the left-hand side
of Eq. (15) is obtained in the simulations, this model has
two unknown independent parameters.

The theoretical and MD results for Cq(t) are compared
in Fig. 3. We see that model I agrees with the simula-
tions at short times (as it must), but has nonphysical
oscillations in the long-time decay. Model II is more suc-
cessful in that the parameters can be adjusted to give

1
Mg(~) = (1+&) .—XCd + I/O-y —ill + I/Tg )

(14)
Again assuming Eq. (lla) we see that rj, 72, and p are
related by

a reasonable "fit" to the MD results. The theoretical
curve shown is for r&* ——1.314, r2 = 0.035, and p = 2.4,
although, as noted above, only two of these parameters
are independent.

It is also interesting to compare the memory functions
directly and we have used the method of Berne and Harp
[13] to obtain Kq(t) from the MD time correlation func-
tion. The result is compared with the theoretical models
in Fig. 4. It can be seen that model I predicts spuri-
ous oscillations, but that model II gives a relatively good
description of the memory function. We also note that
the Gaussian form for Kq(t) suggested by previous theo-
ries [14, 15] would be a very poor approximation for the
present system.
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