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Spatiotemporal pattern processing in a compartmental-model neuron
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A neural-network model is constructed in which the activation state V(t) of a neuron is of the general
form V(t) =g,.fy, (t,s)w, aj(s)ds, where to, is the weight of the jth input line, a, (s) is the input at time

s, and yj is a response function that incorporates details concerning the passive membrane properties of
dendrites. The response function is determined using a compartmental model of the dendrites. A simple
analytical expression for yj is derived in the special case of an infinite uniform chain of compartments
along similar lines to the analysis of di6'usion on a one-dimensional lattice. This is then used to study the
response of the model neuron to input patterns of specific spatial frequency across the chain. It is also
shown how the inclusion of shunting eFects results in the neuron's activation state being a nonlinear
function of inputs, and that this provides a possible solution to the problem of high firing rates in
neural-network models. Finally, perceptronlike learning in the model neuron is discussed, and the abili-

ty of the neuron to extract temporal features of an input signal is investigated.

PACS number(s). 87 10.+e, 02.50.—r, 05.20.—y

I. INTRODUCTION

Most models of a neuron used in artificial neural net-
works neglect the spatial structure of a neuron's extensive
dendritic tree system. However, from a computational
viewpoint there are a number of reasons for taking into
account such structure: (i) The passive membrane prop-
erties of a neuron's dendritic tree leads to a spread of ac-
tivity through the tree from the point of stimulation at a
synapse. (Such a diffusive process can be described
mathematically in terms of a cable equation [1,2]). Con-
sequently, the time course of the membrane potential
response at the soma induced by a synaptic input depends
on the location of the synapse within the dendritic tree.
For example, the response tends to rise more slowly and
reaches a smaller peak the further away the synapse is
from the soma (measured in terms of efFective electronic
distance). Hence spatial structure influences the tem-
poral processing of synaptic inputs. (ii) The spatial rela-
tionship of synapses relative to each other and the soma
is important. For example, an inhibitory synapse can
effectively oppose the ability of a post-synaptic potential
generated by more distal excitatory synapses to spread to
the soma. On the other hand, an inhibitory synapse has
little effect on more proximal excitatory synapses. One
possible computational role of such a feature is a logical
AND-NOT operation —this has been suggested as provid-
ing a mechanism for directional selectivity in retinal gan-
glion cells [3]. (iii) The geometry of the dendritic tree en-
sures that different branches can function almost in-
dependently of one another. Moreover, there is growing
evidence that the presence of voltage-dependent gates can
confer excitable properties onto local branches such that
the results of local computations can be transmitted
effectively by generation of an action potential within the

branch [4]. This suggests that quite complex computa-
tions are being performed within the dendrites prior to
subsequent processing at the soma [5].

In this paper, we construct a neural-network model
that takes into account the first of the above issues, that
is, the effects of the passive membrane properties of den-
drites on the processing of synaptic inputs. %'e shall con-
sider, in particular, a model neuron whose activation
state (approximating the membrane potential at the
soma) is of the general form V(t)=Q. J y (t, s)to a (s)ds,
where toj is the weight of the jth input line, aj(s) is the
input at time s, and g is a response function that incorp-
orates details concerning the dendrites. %'e derive a gen-
eral expression for y. by analyzing a compartmental
model of the electrical properties of the dendrites [6,7],
and then use this to study the response of the model neu-
ron to spatiotemporal input patterns.

Compartmental models replace the partial differential
equation of cable theory [1,2], which describes the
current Qow in a continuous passive dendritic tree, by a
set of coupled ordinary differential equations. This is
achieved by dividing the continuously distributed system
into sufFiciently small regions or compartments such that
the spatial variations of the membrane potential within a
region are negligible, as are fluctuations in specific electri-
cal properties, cable diameter, etc. Each such isopoten-
tial region is coupled by Ohmic resistors to its immediate
neighbors; the nonuniformity in physical properties and
differences in membrane potential occur between com-
partments. Moreover, the topology of the connections
between compartments may be used to represent the
complex dendritic tree structure. The usefulness of the
compartmental approach is that, in the case of nontrivial
models, it leads to a simpler and less computationally ex-
pensive treatment of dendritic structure than cable
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theory. Indeed, compartmental models form the basis of
most computer simulations of neurons [7]. It should be
stressed, however, that all of the results presented in this
paper concerning the response of our model neuron to
synaptic input patterns can be derived equally well in
terms of either compartmental or cable formulations of
the passive membrane properties of dendrites. We
choose the former for convenience, and because it pro-
vides a platform for the study of more complex models.

The organization of the paper is as follows. Our gen-
eral model of a neuron is constructed in Sec. II. A major
assumption of the model is that active processes associat-
ed with voltage-dependent gates, such as those involved
in the generation of action potentials, are ignored. For
then the compartmental model equations are linear in the
membrane potentials and can be integrated directly to
determine y . The resulting expression for g applies to
arbitrary topologies and to time-varying synaptic inputs
with shunting; in the latter case, g is expressed in terms
of a time-ordered path integral.

The simple case of an infinite one-dimensional chain of
compartments without shunting is studied in Sec. III. An
analytical expression for g. is derived along similar lines
to the study of diffusion on a one-dimensional lattice.
This is used to investigate the response of the model neu-
ron to input patterns of specific spatial frequency across
the chain. We also indicate how the corresponding re-
sults for an infinite cable may be obtained in the continu-
um limit. We then study shunting effects in Sec. IV,
analyzing the time-ordered path integral in a number of
special cases. We show how shunting leads to a nonlinear
relationship between the activation state of the neuron
and its inputs, and use this to provide a solution to the
problem of high firing rates that plagues a number of
neural-network models. (An analogous result has been
obtained by Abbott, who considers solutions to the sta-
tionary cable equations [8].) Finally, in Sec. V we extend
recent work on temporal processing in time-summating
neurons [9] to show how the model neuron is able to ex-
tract temporal features of an input sequence, such as the
ordering of patterns within a sequence. We construct a
perceptronlike learning rule and convergence theorem
and illustrate how the incorporation of dendritic struc-
ture can enhance the performance of the neuron.

II. COMPARTMENTAL MODEL NEURON

A compartmental model [6,7] represents an un-
branched cylindrical region of a passive dendritic mem-
brane in terms of a linked chain of equivalent circuits as
shown in Fig. 1. The equivalent circuit of the ath com-
partment consists of a membrane leakage resistor R in
parallel with a capacitor C, with the ground represent-
ing the extracellular medium (assumed to be an isopoten-
tial). The electrical potential V across the membrane is
measured with respect to the resting potential, i.e., the
potential when there is no current Aowing across the
membrane. (A nonzero resting potential may be incor-
porated by placing a battery in series with the membrane
resistor. ) The compartment is joined to its immediate
neighbors in the chain by the junctional resistors R

Ru, a+i

R

FIG. 1. Equivalent circuit for a compartmental model of a
chain of successive cylindrical segments of passive dendritic
membrane.

and R + &. The time evolution of the membrane poten-
tial is determined by Kirchoff's law: For each compart-
ment, the total current through the membrane is equal to
the difference between the longitudinal currents entering
and leaving that compartment. Thus,

dV'-
dt

V Vp
—V+ g +I

(p;) Rp
(2. 1)

(2.2)

where g and c are, respectively, the membrane conduc-
tance and capacitance per unit area, and r is the longitu-
dinal resistance per unit length of cylinder, i.e.,
r =4p led with p the resistivity. The junctional resis-
tance R p is taken to be the average of the longitudinal
resistances of the neighboring compartments a and P.

In the continuum limit, Eq. (2.1) reduces to the partial
differential equation of cable theory [1]. To show this,
consider a uniform cylindrical region of dendrite that is
partitioned into a chain of infinitesimal compartments,
each labeled by its position x along the cylinder with
c =c, g =g, r =r for all x. Let the incremental length
of each compartment be equal to 5x. Taking the continu-
um limit 5x ~0, we then obtain from (2.1) and (2.2) the
cable equation

Qx 2
(2.3)

for zero external current, where r=c/g, k =rgb, and
A, is the characteristic length of the cable. The cable
equation (2.3) describes current Row in a continuous pas-
sive dendrite. It has straightforward analytical solutions,

where I represents any external currents injected into
the region (via electrodes, for example), and (P;a) indi-
cates that the summation over P is restricted to immedi-
ate neighbors of o..

It is useful to relate the various parameters of the com-
partmental model to the electrical and physical proper-
ties of the underlying cylindrical region of the dendrite.
Suppose that the cylinder has a uniform diameter d and
denote the length of the ath compartment by l . Then

l 7' l + 7"pip
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in the case of constant applied currents, to the steady
states of an idealized class of dendritic trees that are
equivalent to unbranched cylinders [1]. However, the
solutions are considerably more complicated for nonuni-
form dendritic trees with a general branching structure,
and for the spatiotemporal inputs associated with synap-
tic currents. In such cases, it is simpler and less compu-
tationally expensive to use a compartmental model.

The more complex geometry of a dendritic tree may be
incorporated into Eq. (2.1) by an appropriate choice of
the topology of the connections between compartments,
as specified by the graph I, whose vertices are the com-
partmental labels o, . Each branch of the tree is represent-
ed by a chain of compartments, and each branch point by
a compartment with three, rather than two, nearest
neighbors. The compartments of the two daughter
branches will generally have different properties (leakage
capacitance and resistance, etc.) from those of the parent
branch. However, as shown by Rail [1], when certain
conditions are satisfied concerning the relationship be-
tween parent and daughter branches, a dendritic tree is
equivalent to an unbranched cylinder. For simplicity, we
shall represent the geometry of the dendrites by a one-
dimensional chain of 2M+ 1 compartments labeled
+=0,+1, . . . , +M; we shall illustrate in Sec. III how this
simple structure is sufhcient to capture the essential
feature concerning the effects of the passive membrane
properties of dendrites. (Note, however that if one is
concerned with other aspects of dendritic computation as
detailed in the Introduction, then one would need to con-
sider more complex geometries. )

The compartmental model of Eq. (2. 1) may also be
easily modified to take into account synaptic currents.
The arrival of an action potential at a synapse causes a
depolarization of the presynaptic cell membrane resulting
in the release of packets of neurotransmitters. The bind-
ing of these neurotransmitters to receptors on the post-
synaptic cell membrane leads to the opening of channels
allowing ions (Na+, K, Cl ) to move in and out of the
cell under the inhuence of concentration and potential
gradients [5]. The ionic membrane current is governed
by a time-varying conductance Ag, which is in series with
a reversal potential S whose value depends on the partic-
ular set of ions involved. The effective equivalent circuit
for a compartment with a single synaptic input is shown
in Fig. 2. Let bg k and S & denote, respectively, the in-
crease in synaptic conductance and the membrane rever-
sal potential associated with the kth synapse of compart-
ment a. For a compartment with X synaptic inputs, Eq.
(2.1) becomes

FICi. 2. Equivalent circuit for a compartment that receives a
single synaptic input. S is the membrane reversal potential and
Ag describes the change in conductance.

dV
C

dt

V Vp
—V+

(p;) Rp

+g bgt(St, —V ).
k=1

(2.4)

Since Ag & is positive, the effect of each term
bg t, (S I,

—V ) is for V to tend towards S k. Hence
positive and negative S & correspond, respectively, to ex-
citatory and inhibitory synapses. (For convenience, all
compartments are assumed to have the same number of
synapses. )

Our major assumption concerning the synaptic inputs
is that the conductance changes 4g k are Uoltage in-
dependent. That is, we ignore active processes such as
those associated with the generation of an action poten-
tial, so that

bg k(t)=e kx I,(t), (2.5)

where e k is a constant determined by factors such as the
amount of neurotransmitter released on arrival of an
action potential and the efficiency with which these
neurotransmitters bind to receptors [11], and x k(t)
is the arrival frequency of action potentials. Since
Ag k is independent of the membrane potentials
V=( V ~, . . . , VM ), Eq. (2.4) may be written as a linear
matrix equation of the form [10,11]

dV =H(t)V(t)+U(t), H z(t)=Q p+Q z(t),dt

where

&.,P &P,.+1Qp= — '+
0 M+1

(2.6)

+ ' (1 —5 M),
+ao.—1

(2.7)

C~ (pl ) R
1 1

R
1

(2.8)CRp
6 p

Q p(t)= — gag k(t),

U (t)= gag k(t)S
1

(2.9)

FormaHy, Eq. (2.6) may be solved as

V(t)= f dt'T exp f dt"H(t")
0

+T exp f dt"H(t") V(0),
0

U(t')

(2.10)

where T denotes the time-ordered product, T[H(t)H(t')]= H(t)H(t')B(t t') + H(t')H—(t)B(t' t), where H i—s
a time-dependent, noncommuting matrix. The term

r

T exp f dt"H(t")
ap

is the response function y(a, t;P, t') of the system.
In general, Eq. (2.10) is difficult to solve due to the

dependence of g on the synaptic inputs through the term
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Q of Eq. (2.9). However, if the time-dependent part of H
is absent, which corresponds to dropping the shunting
term —V gk hg i, from Eq. (2.1), then

V(t)= f dt'e" ' '&U(t')+e'qV(0), (2.11)
0

and g(a, t;I3, t') reduces to the simpler form (e" ' '~) &.

For the moment, we shall use Eq. (2.11) to model the
effects of passive dendrites, returning to the more general
expression (2.10) when we consider shunting in Sec. IV.

In order to construct our model of a neuron, it is neces-
sary to supplement our description of the dendrites with
details concerning the firing mechanism of a neuron. The
latter involves a complex interaction between ionic
currents and voltage-dependent gates at the axon hillock
of the soma [5]. Such active processes may be incor-
porated into a compartmental model that takes into ac-
count the spatial structure of the soma in addition to that
of the dendrites. However, for the purposes of this paper,
we shall simply view the soma as a point processor that is
isopotential with the dendritic compartment nearest to it,
which is chosen to be at the center of the chain (a=O)
rather than at one end of the chain (a=+M) as in Ref.
[8], (see Fig. 3). This particular choice allows us to ig-
nore end effects in the infinite chain limit, which greatly
simplifies the analysis without losing important details
concerning the passive membrane effects of dendrites; see
Sec. III. At the simplest level of modeling, we can take
the soma to be a binary-threshold device along the lines
of the McCulloch-Pitts neuron [12]. That is, the neuron
fires whenever the membrane potential at the soma,
denoted by the activation state V(t), exceeds a threshold
h, and provided that the neuron is outside its absolute re-
fractory period tz. The firing times of the neuron satisfy
the iterative equation

T„=infIt V(t) ~h;t ~ T„,+t~ ], (2.12)

where T„ is the time at which the neuron fires for the nth
occasion since t =0.

There are a number of refinements of this simple mod-
el. For example, one can incorporate the effects of the
relative refractory period by introducing a time-dependent
threshold of the form h (b, t), where At is the time after
emission of the last action potential, such that h (b t) = ~
for 0 (ht ~ tz and h (b.t) is continuous and monotonical-
ly decreasing for b,t) t~ (until the neuron fires again),
e.g. , h (bt) =ho+& iexp( bt lr, ) for bT) tz, —where

ho, and r, are constants. As shown by Amari [13], if
V(t) is slowly varying, then one can approximate the in-

stantaneous firing rate f (t) of the neuron by a sigmoid
function,

al

) + gI' p(g) ~j
f(t)= (2.13)

for some gain g and threshold ~. Equation (2.13) refiects
the fact that the larger V(t), the faster the decreasing
threshold h(b, t) is crossed from below and thus the
greater the firing rate f. The maximum firing rate f,„ is
determined by the absolute refractory period. Another
refinement is to take into account, reset. When a neuron
fires, there is a rapid depolarization of the membrane po-
tential at the axon hillock, followed by a hyperpolariza-
tion due to delayed rectifier potassium currents [5]. This
process is often modeled by assuming that the membrane
potential at the soma is reset to zero, V(t) =0, whenever
the neuron fires —integrate and j7re-models [14]. We
shall consider this further below.

If we now combine Eqs. (2.5), (2.9), and (2.11) we find
that, in the absence of shunting, the activation state V(t)
is given by

M
V(t) = f ds g y (t —s)w x (s),

a= —I
N

w~'x~(s) —g w~kx~k(s)
k=1

(2.14)

where w i, =S ke,k/C and y (t s):y(O, t—;a, s—)
= [exp(t —s)Q]0 . In order to eliminate any reference to
the compartmental membrane potentials V, a&0, we
have omitted the transient term exp(tQ)V(0) from Eq.
(2.11); this is valid provided that we impose the initial
condition V(0) =0 or assume that t is sufficiently large so
that all transients have decayed away. Thus we have ar-
rived at the standard form for a neural-network model of
a neuron [15], with the additional feature that informa-
tion concerning the spatially distributed dendrites is en-
capsulated within the response function or kernel g . In
particular, the neuron can be viewed as a point processor
(Fig. 4) whose mode of operation is to perform a linear
summation of inputs, given by the activation state V(t) of
Eq. (2.14), and then to produce an output y(t)=f( V(t)),
where f is some nonlinear function such as the sigmoid
function of Eq. (2.13). The (2M+1)X weights w k are
arranged into 2M+1 groups, labeled by a, that corre-
spond to the 2M + 1 compartments of the dendritic
chain.

We end this section by discussing how our model neu-
ron is modified when reset is taken into account. First,
note that we must replace Eq. (2.11)by

inputs

(b)
inputs V(t)= f'dt'e" '' U(t')+e " V(T„+),

n

T, &t (T„+, ,
(2.15)

soma

FIG. 3. Idealized dendritic tree with (a) soma located at one
end of tree and (b) soma located at center of tree.

where T„and T„+& are consecutive firing-times of the
neuron and V(T„+) is the value of the membrane poten-
tials immediately after the neuron fires at time T„. Since
we are interested in eliminating the compartmental mem-
brane potentials V, o.&0, we impose the reset condition
V (T„+)=0for all a. That is, we assume that the whole



47 SPATIOTEMPORAL PATTERN PROCESSING IN A. . . 2903

output gV(t))

soma

R =R, C =C, R +i =R for all a, Eqs. (2.7) and (2.8)
give

a, P /3, a+1 f3, a —i6 5 5

7 y

dendritic X M
chain

XM y=RC,
~=RC .

(3.2)

X—M Xp

input pattern

xM

FICx. 4. Compartmental model of a neuron. Dendritic tree is
represented as an idealized chain of 2M + 1 compartments. The
activation state of the neuron is V (t). The input pattern
presented to the neuron is x=(x ~, . . . , xM ), where
x =(x „.. . , x &). The corresponding weights are
w=(w M, . . . , w~). The input x to each compartment is con-
volved with the response function g .

neuron resets its membrane potential after firing. (A
more realistic picture is that the spread of activity in-
duced by a neuron firing is such that the effects of reset
decrease as one proceeds distally from the soma; see also
comments at the end of Sec. V.) Under such an assump-
tion, the analogue of Eq. (2.14) in the presence of rest is

2p

xg ~ t3—.+z, [p a]
)o y' ( P —al+2p)!

(3.3)

where X [p, a] is the number of possible paths that can
be taken by a random walk consisting of q steps of unit
length from point p to point a. Using the result that [16]

[q+ IP —al]/2

For identical compartments, the diagonal part of Q
gives a global factor exp( t/r) —in Eq. (3.1). Moreover,
using the fact that the off-diagonal terms in Q, Eq. (3.2),
link adjacent elements of the chain, we find that in the
limit M —+ ~, the response function satisfies
y(a, t;p, s)=y(a p, t ——s), with

lP —al

y(a —p, t) = — e

M
V(t) = J ds g g (t —s)w .x (s),

n a= —M

with

(2.16)
Eq. (3.3) becomes

lP- al

y(a p, t)=—e
p)o

2p

( I p —a
I +p)/'p '.

V(T++, )=0 if V(T„+)=h, (2.17) =e '~'I! ti!(2t/y), (3.4)

where h is the threshold.

III. INFINITE ONE-DIMENSIONAL
DENDRITIC CHAIN

y(a, t;p, s)=(e" '~) ti= g e 'C'ti . (3.1)

However, a more explicit expression for exp(tQ) can be
derived in the special case of a uniform chain of dendritic
compartments in the limit M~ ~, since familiar results
from the study of classical diffusion on a one-dimensional
lattice may then be used. (In the case of an infinite den-
dritic chain, we no longer have to worry about edge
effects arising from the compartments at +M. ) Setting

In this section, we shall determine exp(tQ) in the spe-
cial case of a uniform, infinite dendritic chain, and then
analyze the output response of the model neuron satisfy-
ing (2.14) or (2.16). First note that the matrix Q has real,
negative, nondegenerate eigenvalues —A., (for any topolo-
gy), i.e., A, ; )0 and I,;PA, for i' This refiec. ts the fact
that Q determines the time evolution of membrane poten-
tials in a passive RC circuit, which is a dissipative system.
It follows from standard linear analysis that [10]

where I, is the modified Bessel function of integer order.
The function y(L, t), L )0 describes the response at

time t of a compartment in an infinite dendritic chain to
an impulse at t =0 impinging on another compartment
separated from the first by a distance L along the chain.
In Fig. 5, y(L, t) is plotted as a function of t/y for a
range of L values with ~=5.0y. For compartments near
the point of stimulation p, there is a sharp rise to a larger
peak followed by a rapid early decay, while compart-
ments far from p exhibit a slower rise to a later and more
rounded peak. Suppose that we neglect all but the first
term of the sum on the right-hand side of (3.4). Then y
reduces to the response function recently used in the so-
called gamma model of a neuron [17],

L

y(L, t) = L! y
(3.&)

In this particular case, the maximum response occurs at
td =L~, i.e., the response time td increases linearly with
the distance L between the point of stimulation P and the
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0.2
XL

0.15

of the form

2

w x (t)= g u (m)5(t —2m) . (3.8)

0.1

0.05

8 10 12 14

compartment a. Moreover,
L —Le+max I.~

L
y

(3.6)

i.e., the maximum efFect is reduced exponentially with the
distance along the chain from the point of stimulation.
Returning to Fig. 5, we note that the response curves are
similar to those found in more realistic models of neurons
[6,7]. In other words, the eff'ects of passive membrane
properties of dendrites on the behavior of a neuron can
be captured using the simple response function of a uni-
form, infinite dendritic chain.

Having obtained the response function of a uniform
chain, we can now determine the output response of our
model neuron satisfying (2.14). Setting y (t) =y(a, t) and
using Eq. (3.4), we have

V(t)= I ds g e " ' 'I) (2(t —s)ly)w x (s) .
Q'.= oo

(3.7)

As an example, suppose that the neuron receives an input
stimulation consisting of a sequence of impulse patterns

FICx. 5. Response function gL of an infinite dendritic chain
plotted against time t (in units of y) for diFerent values of the
distance L along the chain between the soma and the point of
stimulation.

p t) ik(a —P) —tE(k)dk
—~ 2'

e(k) =—+—(1—cosk) .
1 2

y

(3.9)

(3.10)

Equation (3.9) implies that the Fourier transform of the
response function g is given by exp[ —tE(k)]; N.B., y is
translation invariant for a uniform, infinite, one-
dimensional chain. [Such a result could have been de-
rived directly by noting that (3.1) is the solution to Eq.
(2.1) with I =0 and V (0)=5 &, and Fourier transform-
ing (2.1).] It follows from Eqs. (3.7) and (3.9) that

(Each impulse corresponds to an idealized action poten-
tial spike; see Sec. IV.) Consider, in particular, the two
sequences A-B-C and C-B-A shown in Fig. 6. The form-
er sequence consists of a local stimulation of the dendritic
chain that proceeds from a proximal to a distal location
along the positive half of the chain relative to the soma at
P=O. That is, u&(0)=I(5&, +5&2), u&(1)=I(5@3+5@4)
and u&(2) =l(5& s+5& 6), respectively, where I is the am-

plitude of each impulse. In the latter sequence, the simu-
lation proceeds in the opposite direction.

The activation state of the neuron induced by each of
these sequences is illustrated in Fig. 7. It can be seen that
the sequence C-B-A produces a delayed rise to a larger
peak amplitude. (Such behavior is very similar to that
found in detailed computer simulations of neurons (cf.
Fig. 7 of Ref. [6]).) In this simple case, the neuron can
distinguish between the two sequences by adjusting its
threshold h so that it only fires in response to C-B-A. In
fact, such a system is a crude form of motion detector.
This simple example illustrates how the response of the
neuron is sensitive to the ordering of the patterns within
a sequence. We shall return to this issue in Sec. V.

To study Eq. (3.7) in more detail, it is useful to express
the modified Bessel function I„ in an equivalent integral
form so that Eq. (3.4) becomes

/=2 /=4 /=6
I I

t=o 0»» OOO GOO A

t=2 OO 0 ~ » 0 OOO
t=4 OO OOO» ~ OO

(a)

P=o /=2 /=i /=6
I I

t=o OOOOON»OO
t=2 OO O»» O OOO
t=4 O»»OOO OOO

(b)

FIG. 6. Sequences of input
patterns presented to the model
neuron of Sec. III. The time be-
tween successive patterns of a se-
quence is At =2. Compartments
stimulated by an input at a par-
ticular time are represented by
shaded circles. (a) shows a se-
quence A-8-C in which stimula-
tion proceeds from proximal to
distal locations along the posi-
tive half of the chain with
respect to the soma at P=O. (b)
shows the reverse input sequence
C-8- 2, with distal compart-
ments stimulated first.
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C-8-A V(t+)=0 if V(t)=h . (3.14)0.5,
I

I
I

I

I

03
I02'

That is, V(t) is reset to zero whenever the neuron reaches
threshold h and fires. [Recall from the derivation of Eqs.
(2.16) and (2.17) that we are implicitly assuming that the
whole neuron resets its membrane potential on firing. ]
Solving Eqs. (3.13) and (3.14), the firing times T„of the
neuron satisfy the iterative equation

0.1 '

I
(

p N+I N

E(p)
(3.15)

4 6 8 10 12 14
Assuming that hE(p) &I (for all p), then the firing fre-
quency of the neuron is i) =(At) ', where

b, t = t~+, —tz =——E(p) 'in[1 —h E(p)/I) (3.16)

FIG. 7. Response of model neuron to the sequences A-B-C
and C-B-A of Fig. 6. The activation state V is measured in
units of I, where I is the effective amplitude of each input pat-
tern.

oo

V(t)= j ds J dk e " "'"' g e'" w x (s)
0

(3.1 1)

dV = —E(p}V(t)+u(t) .
dt

(3.13)

Therefore, in response to an input pattern of a given spa-
tial frequency across the chain, the model neuron is
equivalent to a leaky-integrator neuron with decay rate
e(p ) that is frequency dependent. Assuming that r and y
are of comparable size then there will be a significant
contribution to the effective decay rate from the p-
dependent term 2(1 —cosp)/y. (Recall from Eqs. (2.2)
and (3.2) that the particular value of y will depend upon
the diameter d and length / of a compartment. On the
other hand, ~ is a more universal quantity in the sense
that it is independent of particular geometry. Typically,
r lies in the range 10—100 ms [7].)

It follows from the above that the output firing rate of
a neuron will be p dependent. To illustrate this, we con-
sider a simple integrate and Pre mo-del -neuron in which
the activation state V(t) satisfies Eq. (3.13) with u (t) =I,
a constant input, together with the reset condition

Hence, we may analyze the response of the neuron to a
general input by Fourier transforming w x (r).

Consider, for simplicity, an input of the form
w x (t)=u(t}cospa, —~ p m. , for all a. When p =0,
every compartment receives the same excitatory
[u(t))0] or inhibitory [u(t)&0] input. On the other
hand, when p =~ and u (t) )0, the input to a compart-
ment along the chain alternates between an excitatory
one (a even) and an inhibitory one (a odd). For such a
choice of inputs, Eq. (3.11) reduces to

V(t) = J ds e " "'~'u (s) (3.12)
0

which has the equivalent differential form

Here At is a monotonica1ly increasing function of c such
that At = h /I for s « I /h and ht ~ co as EI /h
Therefore, the output firing rate of the neuron decreases
monotonically as the spatial frequency of the input pat-
tern across the dendritic chain increases from p =0 to
P =&.

Another consequence of Eq. (3.16) is that the firing fre-
quency i) would increase to f,„=1/t~, where t'ai is the
absolute refractory period, as the input I increases.
Indeed for large I, g is approximately linear in I. This
can lead to unrealistically high firing rates in recurrent
neural networks; see Sec. IV. Finally, note that one can
also analyze the behavior of the neuron for more general
choices of u(t). For example, the results of Keener,
Hoppenstead, and Rinzel [14] carry over straightforward-
ly to the case of an oscillatory input of the form
u (t) =I(1+Bcost), where the firing frequency exhibits a
more complicated dependence on E(p). Extensions to the
case of inputs consisting of a mixture of spatial frequen-
cies, however, is nontrivial.

So far in this section we have assumed that the dendri-
tic chain is uniform. An interesting modification of this
simple picture is the introduction of nonuniformities
representing, for example, the fact that the diameter of
dendrites of real neurons tends to decrease distally from
the soma. (Indeed, the thinnest branches of the tree, the
dendritic spines, are thought to play a central role in den-
dritic processing [5].) We shall briefiy indicate how such
a feature may be incorporated into our model in the case
of an infinite chain. Using Eqs. (2.2) and (2.8), we set

1 2d(a) 1 y+
~ r~~+i=

d
=~ +i (3.17)

where d(a) is a monotonically decreasing function of a~.
(Recall that the soma is assumed to be isopotential with
the compartment at a=0.) We can analyze the effects of
this nonuniformity using Fourier methods. The result is
that Eq. (3.1) becomes

(3.18)

where
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n n

[e'~] .= g, Qf dk Q Q„„Qnt

(3.19)

Qkk'
2' 5(k —k')— Ik

(2 Ik ik')
'V

—2t ( i —coslk)/yXe (3.20)

Taking the limit I~O and performing the integration
over k gives

1/2
D

4nt
—t/7 —D(x —y) /4te e (3.21)

where D =limt oy/1 =rlk . One can then define a
neuron model along similar lines to Eq. (3.11). For a
discrete set of synapses,

V(t)=f dsf dke " "'ge u (s),
O —oo

(3.22)

where s(k) =7 '+k /D and u is the net input to the
ath synapse located at position x along the cable.
[Note, however, that the compartmental model response
function, Eq. (2.11), is easier to compute than its corre-
sponding continuum version when one considers nonuni-
form dendritic branching structures rather than a uni-
form one-dimensional cable. Therefore, to allow for a
direct comparison with such computations, it is useful to
follow a compartmental approach in the simpler one-
dimensional case analyzed in this paper. ]

and dk is the Fourier transform of the diameter d(a).
For a uniform chain, dk =5(k) and (3.18) reduces to (3.9).
On the other hand, Eqs. (2.14) and (3.18) imply that in
the case of a decreasing diameter, the resulting nonuni-
formity leads to a "scattering" of input pattern modes, as
expressed by the nonzero off-diagonal contributions to
the matrix exp(tg). The possible effects of tapering den-
drites will be investigated elsewhere.

One final point is in order. All the analysis of this sec-
tion carries over quite straightforwardly in the continu-
um limit to the case of an infinite dendritic cable. For ex-
ample, if we introduce a length scale into Eq. (3.9) by
specifying the length of each compartment to be I, then in
the continuum limit, 1~0, we obtain the response func-
tion of an infinite cable satisfying Eq. (2.3). To show this,
set x =Pl and rewrite (3.9) as

~(x y t) l e 'k(x P)e tldk
—~/I 2W

g bg k(t) =E +I1

k

1 gS keg k(t)=S"E +S"I
C

(4.1)

where E and I are the constant rates of excitatory and
inhibitory stimulation of the ath compartment, and S"'
are the associated membrane reversal potentials withS")0 and S"&0. Substituting Eq. (4.1) into (2.4), it
can be seen that constant synaptic activity in the presence
of shunting leads to a time-independent modification of
the leakage resistance R given by 1/R —+ 1/
R +(E +I ) such that the matrix H of (2.6) becomes

H ts=Q ts+(E +I )5 ts . (4.2)

Equation (2.4) can then be solved without introducing a
time-ordering operator to give the following result for the
activation state V(t), corresponding to the membrane po-
tential at the soma [cf. Eq. (2.14)],

M
V(t)= g (S"E +S"I ) f ds[e " ' ]

e= —M
(4.3)

output

ry input E

Hence, in the presence of shunting, the activation state is
a nonlinear function of the constant excitatory and inhi-
bitory inputs E and I, which is manifested as an
input-dependent modification of the time constants ~ of
Eq. (2.7).

To illustrate an important consequence of the non-
linear effects of shunting, we shall determine the steady-
state value V" of the activation state V(t) in the case of
the infinite uniform dendritic chain considered in Sec. III.
Suppose that the Lth compartment receives an excitatory
input at a constant rate of stimulation E while every oth-
er compartment receives inhibitory inputs at a constant
rate I (Fig. 8). In other words, E =E5 L,
I =I(1—5 I ). Assume that the chain is uniform so that
Eq. (3.2) holds and S"'=S"for all a. In order that
the modifications to the matrix H of Eq. (4.2) are also
uniform, we shall impose the additional condition E =I

IV. SHUNTING EFFECTS

When shunting effects are taken into account, the re-
sulting solution (2.10) to the compartmental model equa-
tions involves a time-ordered path integral, which is
difficult to analyze further without making additional as-
sumptions concerning the synaptic inputs. A major
simplification occurs if we take the synaptic inputs to be
constant. Suppose, for example, that each compartment
consists of two groups of identical synapses, one excitato-
ry and the other inhibitory, such that

)I JI II )I Ji )I

inhibitory input I

FIG. 8. Pattern of inhibitory and excitatory inputs used to
study the effects of shunting on the steady-state behavior of a
compartmental model neuron. The I.th compartment receives
an excitation at a rate E while all other compartments receive
shunting inhibition at a rate I with I =E.
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so that H &=Q &+E5 t3, i.e., there is an input-
dependent modification of the membrane potential time
constant w of the form 1/~~1/~+E. We shall also as-
sume that the inhibition is in the form of a shunting inhi-
bition [5] by setting S"=0. In this case the inhibition
does not contribute directly to the activation state V(t)
but effects its behavior indirectly through the nonlinear
dependence on inputs. Under the above simplifications,
taking the limit M~ ao in Eq. (4.3) gives

0.25

V
S(e) o.2o

0.15

0.10

0.05

V(t)=S 'Ej ds e " ' y(L, t —s),
0

(4.4) 0

12 16 20

where so=1/~. The denominator in the integrand has
two roots,

y(E + e())A~=1+ +
2

2 1/2
y(E +eo)

1+ —1 (4.7)

with k lying within the unit circle. Hence

V- =yS"E
k+ Ar

(4.8)

For small 1evels of excitation E, V is approximately a
linear function of E. However, as E increases, the contri-
bution of shunting inhibition to the effective decay rate
becomes more and more significant so that V eventually
begins to decrease. Indeed, for large E, A, + —A, =yE
and V"=S"(A, ), with A, —+0 as E~ oo. This is illus-
trated in Fig. 9, where V /S ' is plotted as a function of
rE for y =0.5& and L = 1 in Eq. (4.8). (Note that the lev-
el of excitation E has units of frequency. )

A cable version of the above analysis may be obtained
by taking the continuum limit along similar lines to the
derivation of Eq. (3.21). For example, suppose that we
have a pattern of excitation E(x)=E for x C [LO,L i]
and a pattern of shunting inhibition I(x)=I for x
[LO,L, ], where x is the position from the soma (at x =0)
along an infinite uniform cable. Setting E =I, the contin-
uum limit version of Eq. (4.5) is

where g(L, t) is the response function of an infinite, uni-
form dendritic chain, which was evaluated in Sec. III.
Substituting the expression for y(L, t), Eq. (3.9), into Eq.
(4.4) and performing the resulting time integral,

ikL

V( t) S(e)E ( 1
—t [E(k)+E]

)—~2' [E(k)+E)]
In the limit t~ tx), the transient term exp[ —tE(k)] in

Eq. (4.5) vanishes. The resulting expression for the
steady-state value of the activation state, V, may be
rewritten as a contour integral on the unit circle C in the
complex plane. That is, introducing the change of vari-
ables z =e' and substituting for E(k) using Eq. (3.10),

Z
L

S(e)E dz
C 2~i E+eo+2y-1z —y-1z2+1

(4.6)

FIG. 9. Stationary activation state V (in units of membrane
reversal potential S") as a function of the excitatory rate of
stimulation E (with E ' in units of membrane time constant i)
for the input pattern shown in Fig. 8 with L = 1.

LI tkx

V(t) =S"E dx
Lo —~ 2~ [E(k)+E]

~ ( 1
—t[E(k)+E]

)

k'
s(k) =—+

D

(4.9)

The general behavior of Eq. (4.10) for fixed Lo and L, is
similar to that shown in Fig. 9 for the corresponding
compartmental model expression, Eq. (4.8). At low levels
of stimulation E, V is a linear function of E, whereas
for large E, V" =S"&DEexp( La&DE ), so—that
V —+0 as E—+ ~. It is also interesting to note that the
effective characteristic length of the cable is
X+eo/QE+eo, which follows from equation (4.10) and
the identity D =~/A=i /cot[, . ,(Modifications in the
membrane potential time constant and characteristic
length of a real neuron have recently been observed in a
number of experiments [18].)

An analogous result to Eq. (4.10) has been derived by
Abbott [8], who considers solutions to the stationary
cable equations for a model neuron with the structure of
Fig. 3(a). Following Ref. [8], we shall show how the in-
clusion of shunting inhibition along the above lines can
remove the problem of high firing rates that plague re-
current network models based on neurons whose activa-
tion states vary linearly with inputs. When such net-
works are in a state of self-sustained firing, the neurons
tend to fire at their maximum rates, whereas real cortical
neurons fire well below their maximum rates. Such a
problem has received considerable attention within the
context of associative memory networks [19]. If we take
f( V(t)) to be the firing rate of the neuron at time t, with

where D is the diffusion constant defined below Eq. (3.21).
Evaluating Eq. (4.9) in the limit t ~~ gives, for Lo )0,

S(e)~D E
(

— 0[ ' +'o']'"
QE +e()

1.
) [D(E+eo)]-

e 4.10
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X(~ t.p n) —[( e(t
—[t])Qe —G([t])

Xe Qe
—G( [t]—1) e Q —G(n)

) ] (4.16)

Equation (4.15) may be rewritten as

V (t)= g(e" 'Q) pX)s(m), m &t &m+1,
P

where X& satisfies

(4.17)

X (m)= g g X(a, m;)33, n)w& a&(n) .
P n=0

(4.18)

Since (expQ) & is a smooth function of t such that
(expQ) &~5~& in the limit t~0, we can approximate
V (t) in the interval m &r &m +1 by X (m) provided
that tD is su%ciently small. Thus we e6'ectively have a
discrete-time compartmental model neuron in which the
output at the mth time step is f( V(m)), where [cf. Eq.
(2.14)]

V(m)= g X (m, n)w a (n),
n=0

X (m, n)=(e ' eQe G' 'e . . .e e G "')o

(4.19)

(4.20)

In this example, shunting leads to the insertion of the fac-
tors exp[ —G(p)] so that the response function X~ is no
longer time-translation invariant, i.e., it is not simply a
function of m-n, and it is input dependent. Since the
weights J are positive valued, the factors exp[ —G(p)]
tend to reduce the response of the neuron relative to the
case without shunting. In the special case of a single
compartment (M =0),

V(m)= g exp( —m/r)exp[ J N(m, n)]w—a(.n),
n=0

(4.21)

where %„(m,n)= a( m) +a ()m —1)+. . . +a), (n), which
is the number of action potentials received by the kth of
the neuron in the interval [m, n].

Equations (4.20) and (4.21) can be considered as
single-compartmental and multicompartmental versions
of the standard discrete-time model of a neuron [15] in
which shunting effects are included. It would be of in-
terest to determine how the dynamical, statistical
mechanical and information processing properties of
discrete-time networks are modified when shunting

where [t] denotes the largest integer m & t,
G )s(p) =5 ))J (p) a (p). The time-ordered product in
(4.14) may be evaluated by splitting the interval [n, [t]]
into L T equal partitions [ t;, t; + (], where
T=[t] n—, to=n, tL=n+1, . . . , tlT=[t], such that
6( t —s)~6, I, /L. In the limit L ~ ~, we obtain

I~]
V (t)= g QX(a, t;p, n)w(i a&(n), (4.15)

n=0 P

where y is the response function

V. TEMPORAL SEQUENCE PROCESSING

Recall from the example of Sec. III, Figs. 6 and 7, that
the model neuron constructed in Sec. II can extract tem-
poral features of an input sequence such as the ordering
of patterns within that sequence. In this section, we con-
sider this issue in more detail by extending recent work
on temporal processing in time-summating neurons [9].
First, note that an important property of the compart-
mental model neuron from the viewpoint of temporal
processing is that the activation state V(t) of Eq. (2.14)
develops an internal representation of input history that
allows the neuron to operate directly in the time domain.
Such a representation is determined by the response func-
tions X and may be treated in two different ways [17,21].
The first approach is to consider the g as basis functions
for a set of time-dependent weights. In particular, sup-
pose that the same input is presented to all compart-
ments, x k =xk for all a. Then Eq. (2.14) may be rewrit-
ten as

N
V(t)= g f ds w (t —s)x (s),

j=l
w (t)= gX (r)w J,

(5.1)

so that the neuron consists of N time-dependent weights
w (t), which are expanded in terms of the basis functions

The alternative approach, which is more in keeping
with the neuron model illustrated in Fig. 4, is to consider
the X as filters that transform the inputs x k(t) into a
new set z k(t) with the weights w k fixed. In other
words, Eq. (2.14) is rewritten in the form

V(t)= g g w z (t),
j=1 a

z , (t) = f X (t —s)x , (s) .
0

(5.2)

(If X satisfies Eq. (3.5), then Eq. (5.2) reduces to the gam-
ma model of Ref. [17].) The usefulness of the latter for-
mulation is that one can interpret the operation of the
model neuron in terms of a perceptron and apply well-
known results on perceptron learning [22].

Consider, for sake of illustration, a discrete-time ver-

and/or compartmental structure is taken into account
along the above lines. For example, one of the conse-
quences of shunting is the existence of two related sets of
weights J k and w k, both of which are proportional to
the synaptic efficacies e', k of Eq. (2.5). Since learning in-
volves a modification of e k, rather than S k, this implies
that both sets of weights are altered during learning.
Another issue concerns the possibility of the weights J k
taking negative values; this corresponds to an input in-
ducing a decrease rather than an increase in the conduc-
tance b,g k of Eq. (2.4). (Such a process can occur in real
neurons [5].) Under such circumstances, the nonlinear
input-dependent factors in Eqs. (4.20) and (4.21) may lead
to chaotic dynamics as signaled by the presence of posi-
tive Liapunov exponents [20]. We hope to consider these
various issues in more detail elsewhere.
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sion of Eq. (5.2) given by

V(m)= g w z (m),

z k(m)= g g (m n)a—k(n),
n=1

(5.3)

V(m)= g wkzk(m), zk(m)= g d "a&(n), (5.4)

where y (m ) = [e ~]0,Q satisfies Eq. (2.7), and
a&=(a&„,k =1, . . . , N), with a t, =0, 1. [Equation (5.3)
is equivalent to Eq. (4.19) in the absence of shunting, with
a I, ( m ) determining whether or not an action potential
arrives at the kth synapse of the uth compartment at
time m. ] The output of the neuron is taken to be binary
valued, f( V(m))=H( V(m) —h ), where e(x)=1 if x )0
and 0 otherwise. In the case M =0, Eq. (5.3) describes a
time-summating neuron 1

Z'(1) = 0, Z'(2) = d

rive at a solution of (5.6) in a finite number of time
steps —independent of X.

The above result implies that a time-summating neuron
can learn the set of mappings I

A"( m );
m =1, . . . , T] ~[a "(m), t =1, . . . , T],p= l, . . . ,p pro-
vided that the associated classes F+ and F are linearly
separable. We shall illustrate this with a simple example
for N=2 [9]. Define the vectors A=(1,0)', B=(0,1)'
and consider the input-output sequences A-B~1-0 and
B- A~O-0. This is essentially an ordering problem, since
the pattern A produces the output 1 or 0 depending, re-
spectively, on whether it precedes or proceeds the pattern
B. (Thus it could not be solved by a standard percept-
ron. ) We introduce the four vectors

k=1 n =1

m

zg(m) = g d "ag(n) .
n =1

(5.5)

Divide the p T inputs Z"( m ) into two sets F and F
where Z"(m)EF if a "(t)=1 and Z"(m)EF other-
wise. Learning then reduces to the problem of finding a
set of weights I wk, k = 1, . . . , N ] such that the sets F+
and F are separated by a single hyperplane in the space
of inputs Z"(m)-linear separability. In other words, the
weights must satisfy the pT conditions

where d =e ' . The activation state is given by a de-
caying activity trace of previous inputs to the neuron.

Following Ref. [9], we shall first construct versions of
the perceptron learning rule and convergence theorem
[22] for a time-summating neuron and use geometrical
methods to study how such neurons can resolve ordering
and coarticulation eA'ects arising in temporal sequences.
In particular, suppose that a time-summating neuron
is required to learn p input-output mappings

I A"(m);m =1, . . . , T]~ ta "(m), m =1, . . . , T],p
=1, . . . ,p. Define a new set of inputs of the form
Z"( m)=(z", ( m), . . . ,zg( m)), @=1, . . . ,p, m =1, . . . , T
where each z" satisfies

0 1
Z'(1) = 1, Z'(2) =

It is clear that the sets F+=IZ'(I)]= [Z'(2), Z (1),Z (2)] are linearly separable [Fig.
11(a)] and, hence, that the network can learn the above
mappings. (On the other hand, the mappings A-B~ 1-1
and B-A—+0-0 cannot be linearly separated by a single
line [Fig. 11(b)], and a multilayer network of time-
summating neurons is required [9].)

We note that networks of time-summating neurons,
which are also referred to as context units or neurons
with local positive feedback, have been applied success-
fully to problems such as the classification of speech sig-
nals [23], motion detection [24], and the storage and re-
call of temporal sequences [9,25]. However, a major limi-
tation of such networks is that the representation of the
temporal structure of previous inputs, Eq. (5.4), is re-
stricted to a decaying sum in which most recent inputs
are weighted more heavily than previous ones. This sug-
gests that one advantage of using a compartmental model
neuron, as given by Eq. (5.3) for M )0, is that the
response functions g, a&0 are described by response

N

w~zg(m) ) h +5 if Z~( )EmF+,
j=1

N

w~z~" (m) (h —5 if Z."(m)EF-
j=1

(5.6)

d d

1 o ~ ~

0

for some 5) 0. The perceptron convergence theorem [22]
for a time-summating neuron may be stated as follows
[9]: Suppose that the weights are updated according to
the perceptron learning rule

(a) (b)

d 1

w~~w, + a "(m) —e g wkzg(m) —h zI'(m)
k

(5.7)

If there exists a set of weights that satisfy Eq. (5.6) for
some 5 )0, then the perceptron learning rule (5.7) will ar-

FIG. 11. Example of (a) separable and {b) nonseparable sets
F+ and F associated with the sequences of input-output map-
pings defined in the text. Points in F+ and F are denoted, re-
spectively, by and o.
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curves of the form shown in Fig. 5, thus allowing for a
more fIexible representation of input history. To illustrate
this, we shall assume for simplicity that each compart-
ment has a single synapse. We may then view the com-
partmental model neuron as a perceptron with 2M + 1 in-
put lines with corresponding weights
P= —M, . . . , M. In an analogous fashion to the single
compartmental neuron, we define a new set of inputs
Z"(m) of the form

zI(m)= g (e' "'~)0@p~(r) . (5.8)

(5.9)

As a simple example, suppose that the neuron is re-
quired to learn the mapping A- A- A~1-0-1, where A is
defined according to a&=6»+6&2. Thus, we need only
worry about the input lines a=1,2. Using Eq. (5.8), we
introduce the inputs Z(m), m =1—3, where z&(l)=a&,
z&(2) =a&[1+g&(1)], zp(3) =a&[1+g~(1)+y&(2)]. As
shown in Fig. 12. the equivalent perceptron can separate
the two classes F due to th—e fact that y, (n) and y2(n)
are linearly independent functions of n (refer to Fig. 5).

Temporal sequence processing in a compartmental
model neuron will be developed further elsewhere [21], in
particular, by extending the analysis of the gamma model
in Ref. [17]. We conclude this section with a number of
comments. First, note that the response function g, in
either the discrete-time or continuous-time versions of
our model neuron, Eqs. (5.2) and (5.3), is determined by
the matrix Q of Eq. (2.7). It follows from our analysis in
Sec. IV that constant background shunting inhibition can
modulate the response functions g by changing the
effective membrane time constants r that parametrize Q.
In other words, shunting inhibition could provide a
mechanism for altering the effective memory time span,
etc. of the temporal representation of input history.
Second, recall that in our treatment of reset at the end of
Sec. II we assumed that the membrane potentials of all

z2(3)

Z2(2)
Z2(1)

0
~ yO

zi(1) zi(2) zi(3)

FDIC&. 12. The sets F+ and F associated with the mapping
3-3-3 ~1-0-1,Where 3 iS giVen by a~ =5@1+6@2

Defining the sets F as b—efore, Eqs. (5.6) and (5.7) then
hold with the k summation replaced by a P summation.
For example, the learning rule (5.7) becomes

w&~w&+ a "(I)—6 g w z"(m) —h z~&(m) .
a

compartments are reset to zero whenever the neuron
fires. This would imply that all information concerning
previous inputs is then wiped out. However, a more real-
istic scenario is that the effects of reset decrease consider-
ably as one proceeds distally from the soma so that at
least distal dendrites maintain activity traces over extend-
ed periods. This feature can be handled by keeping the
transient term [exp(t —T„)Q]V(T„+) in Eq. (2.15), al-

though one can no longer characterize the behavior of
the neuron solely in terms of the activation state V(t), as
in Eqs. (2.16) and (2.17); one must also explicitly include
details concerning the membrane potentials of the indivi-
dual compartments, V, aAO.

VI. nISCUSSIOX

In this paper, we have constructed a neural-network
model that includes details concerning the passive mem-
brane properties of a neuron's dendrites, and have ana-
lyzed the output response of the model to synaptic input
patterns. The main results of our analysis are the follow-
ing:

(i) A compartmental model of passive dendritic pro-
cessing can be reformulated as a neural-network model in
which the activation state of the neuron is of the general
form V(t)=g~ J y (t, s)w~a~(s)ds, where w is the weight

of the jth input line, a (s) is the input at time s, and y is
a response function that incorporates details concerning
the dendrites.

(ii) In the case of an infinite, one-dimensional dendritic
chain one can derive a simple analytical expression for
the response function of the neuron. In particular, one
finds that for an input pattern of specific spatial frequen-
cy k.across the chain, the model neuron is equivalent to a
leaky-integrator neuron with effective decay rate
E(k) =a +b (1 —cosk), a and b positive constants.

(iii) The activation state of the neuron forms an inter-
nal representation of an input sequence, thus allowing the
neuron to extract temporal features such as the ordering
of patterns within the sequence. One of the advantages of
taking into account dendritic structure is that it allows
for a more flexible representation of input history than
given by the decaying activity traces of time-summating
neurons, for example. A version of the perceptron learn-
ing rule and convergence theorem can be constructed
and, at least in simple cases, geometrical methods used to
study the ability of the neuron to resolve temporal
features of an input sequence.

(iv) The activation state of the model neuron is a non-
linear function of the inputs when shunting effects are
taken into account. At the network level shunting inhibi-
tion can lead to states of self-sustained firing in which the
individual neurons have low firing rates. Shunting inhibi-
tion could also provide a mechanism for modulating the
internal representation of temporal input history dis-
cussed in (iii).

In conclusion, the model neuron constructed in this pa-
per should be of interest both to artificial neural-network
modelers and to those involved with real neurons. For
the first group, the model neuron is in a form suitable for
inclusion as a processing element in a neural network;
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the addition of compartmental structure can lead to
enhanced temporal discrimination features. In the case
of the latter group, our analytical expressions for corn-
partmental neurons contain sufhcient detail concerning
the properties of real neurons to allow comparison with
experimental results and to provide insight into principle
features of neuronal information processing; some of
these features have been specified in (i)—(iv) above. One

example where our analysis might be usefully employed is
the microcircuitry of Ref. [26].

Note added in proof. The construction of the Green's
function for a uniform one-dimensional chain of com-
partments can be extended to the case of an arbitrary
dendritic topology by considering random walks on trees.
The resulting expressions reduce to the path integrals of
cable theory [27] in the continuum limit.
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