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Bound states of envelope solitons
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It has been demonstrated recently that weakly overlapping solitons in the dissipatively perturbed non-

linear Schrodinger (NS) equation may form a set of bound states (BS s). In this work, it is demonstrated

that additional "skew" dissipative terms, which occur in various applications, e.g., a term describing the
stimulated Raman scattering in a nonlinear optical fiber, destroy all the BS's provided the corresponding
coefficient exceeds a certain critical value. Next, taking as an example the dissipationless NS equation
with the higher linear dispersion, it is demonstrated that two solitons or a whole array of them may form

BS s, interacting with each other via emitted radiation. Then, it is shown that the sine-Gordon (SG)
breathers, governed by the standard damped ac-driven equation, may form BS s quite similarly to the NS
solitons. At last, interactions of damped NS or SG solitons supported by a parametric ac drive are ana-

lyzed, and it is inferred that they, unlike the directly supported solitons, cannot form BS s.

PACS number(s): 42.81.Dp

I. INTRODUCTION

the asymptotic form of the pulse far from its core is

u„=4igpexP( —2ilp~x zp ~
)

X exp(4iilpt —ik ~x —zp ~
+i pp), (1.3)

where z0 is the coordinate of the pulse's center, the wave
number

1'90 (1.4)

is solely produced by the perturbing terms in Eq. (1.1),
and Pp is an arbitrary phase constant. The long-wave
spatial oscillations generated by the small wave number k

The recent experimental observation of stable bound
states (BS's) of solitary pulses of the subcritical traveling-
wave convection in a narrow channel [1],as well as a pos-
sibility of precise experiments with interacting solitons in
nonlinear optical fibers [2], make it relevant to analyze
BS's of solitons within the framework of simple models of
nonlinear wave propagation. In a general form, a possi-
bility of existence of BS's of well-separated (slightly over-
lapping) solitons was discussed long ago [3]. Recently,
this issue has been analyzed in detail in Ref. [4] within
the framework of the model based on the nonlinear
Schrodinger (NS) equation perturbed by terms account-
ing for dissipation and input of energy. In its simplest
version, the equation has the form

tu, +u,„+2~u
~

u =typu+ty, u,„,
with positive y0 and y]. This equation admits an exact
solitary-pulse solution [5]. As it follows from expansion
of this exact solution, or from the direct perturbative
analysis of Eq. (1.1) valid when the dimensionless param-
eter y& is small, and the solitary pulse is close to the NS
soliton with the amplitude

90=370~471 (1.2)

give rise to an oscillating tail in the effective potential of
interaction of two far separated solitons (the potential is
determined by the overlapping integral between the tail
of each soliton and its mate's core). The local minima of
the interaction potential, corresponding to the values of
the distance z between the solitons close to

z„=(vr/2k)(l+2n ), n =0, 1,2, . . . , (1.5)

give rise to stable BS's of the two-soliton pair, as well as
to multisoliton BS's. Formally, the number of the two-
solitons BS s determined by Eq. (1.5) is infinite. Howev-
er, their binding energies E„are exponentially small,

E„-e p[x—(1+2n )m.rip/k ] (1.6)

[recall that the quantity i)p/k =3/4y, is large according
to Eq. (1.4)]. So, one may expect that only few of the
weakly stable BS's should be physically meaningful.

Shortly after this, a similar problem was considered in
Ref. [6] within the framework of a system of two NS
equations with no dissipation, coupled by two different
cubic terms (incoherent and coherent ones, i.e., respec-
tively, independent and dependent of the relative phase of
the two complex wave fields). The presence of a small
group-velocity difference between the two coupled modes
was presumed too (it may be produced, e.g. , by the
birefringence eff'ect in a bimodal nonlinear optical fiber).
It has been demonstrated that the latter factor gives rise
to the terms —~x —zp" '

~
in the asymptotic phases of the

polarized solitons, i.e., the ones belonging to the first and
second modes, respectively [cf. Eq. (1.3)]. This, in turn,
implies that the coherent intermode coupling generates
an oscillating potential of the interaction between the po-
larized solitons. It, however, competes with the purely
attractive (nonoscillating) potential produced by the in-
coherent coupling. The analysis presented in Ref. [6]
demonstrates that the competition of the two potentials
may allow for the existence of a finite number of the BS's.
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Many-soliton bound states in the model (1.1) have been
found in numerical experiments reported in the work of
G. P. Agrawal [Phys. Rev. A 44, 7493 (1991)].

The objective of the present paper is to develop the
analysis of the BS's of the envelope (NS-like) solitons,
taking into account some additional physically important
factors. This work is stimulated by the experimental
discovery of the stable BS's formed by left- and right-
traveling pulses in the subcritical traveling-wave convec-
tion [1],as well as by the necessity to analyze the possibil-
ity of existence of the BS s of optical solitons in the non-
linear fibers, which might be important for applications.

The most significant effect missing in the model of the
nonlinear optical fiber based on Eq. (1.1) is the stimulated
Raman scattering (SRS) which, in the simplest approxi-
mation, can be accounted for by adding the nonlinear dis-
sipative term to Eq. (1.1) [7,8]:

iu, +u„„+2~u~'u =iy,u+iy, u,„+e( u ~'), u (1.7)

with real e [9]. Generally speaking, the additional term
in Eq. (1.7) represent but one of the possible "skew"
terms (odd with respect to the refiection x ~—x). It has
been demonstrated in Ref. [4] that the simplest conserva-
tive skew term, accounting for the higher dispersion, does
not affect the existence and stability of the BS's in Eq.
(1.1). However, the dissipative skew terms may be very
important. Note that similar skew dissipative terms
occur in model equations governing dynamics of pulses in
convection and like nonequilibrium systems [10].

The BS's of solitons in Eq. (1.7) are considered in Sec.
II. As the skew terms exerts an effective force upon the
soliton [7,8], the analysis is developed in a moving refer-
ence frame in which this force is balanced by the friction,
so that the solitons are quiescent. The diffusion term in
Eq. (1.7) (the one -y, ), when transformed into the mov-

ing reference frame, gives rise to an additional dissipative
skew term -y&u . This linear term alters the form of
the soliton's asymptotic tail. Analysis of the effective po-
tential of the interaction between two solitons with the
modified tails reveals that, even formally, the number of
the BS's becomes finite, and they all disappear if the pa-
rameter e in Eq. (17) exceeds a certain critical value. It is
relevant to mention that the influence of the SRS term on
the two-soliton BS's in the form of the so-called breathers
(unlike the BS's considered in Ref. [4], the breathers exist
in the unperturbed NS equation, and their binding energy
is exactly equal to zero, so that they are commonly re-
garded as unphysical states) was earlier considered in
Refs. [8] and [11]. In these works, it was assumed that
the solitons forming the breather had different ampli-
tudes g, so that the forces produced by the SRS term, be-
ing proportional to eq, gave rise to a difference force
separating the solitons. However, in the present case the
amplitudes go of the solitons which constitute the BS are
automatically equal, both being uniquely selected by the
balance between the input and dissipation of energy [see,
e.g. , Eq. (2)].

Another interesting issue is a possibility to bind soli-
tons via a radiative interaction. In particular, anoma-
lously long-range radiative forces acting between the soli-
tons have been detected experimentally in the nonlinear

optical fiber [2]. An analytical approach to this problem
was developed by Kaup in Ref. [12]. In the present work,
two-soliton states bound via their radiation field are con-
sidered in Sec. III for the NS equation incorporating the
higher dispersion,

iu, +u +2~u
~

u = ie—u„ (1.8)

where e is real. As was mentioned above, the term on the
right-hand side (rhs) of Eq. (1.8), added to Eq. (1.1), did
not affect the BS's produced by the dissipative perturba-
tions. However, if one deals with the purely conservative
model .(1.8), it is known [13] that the perturbation gives
rise to emission of radiation at the large wave number ko
at which the radiation frequency co„d=k —ek coincides
with the soliton's frequency co„,= —4g [see Eq. (1.3)],

ko = 1/e+4eg (1.9)

g being the amplitude of the quiescent emitting soliton.
This effect is quite similar to that known in the
Korteweg —de Vries (KdV) equation with the higher
dispersion accounted for by the fifth spatial derivative
[14—16]. If one deals with an initial soliton pulse, it will
very slowly decay into the radiation. However, it has as
well been demonstrated for the KdV model [15,16] that a
stable soliton may exist on the background of an extend-
ed radiation wave. This can be interpreted as an equilib-
rium between the emission and absorption of radiation by
the soliton [16]. Although a similar equilibrium solution
has not, as yet, been accurately analyzed in the frame-
work of Eq. (1.8), it seems very plausible that it must ex-
ist as well. Then two solitons riding on top of their com-
mon radiation "substrate" will feel an effective pinning
potential and may thus form a BS when the pinning is
stronger than the direct mutual attraction of the solitons.
Actually, the separation between the bound (pinned) soli-
tons may take an arbitrary value larger than a critical
one, at which the pinning and attraction forces are equal.
As a matter of fact, this effect does not crucially depend
on the existence of the above-mentioned equilibrium solu-
tion coupling a stable soliton to the radiation substrate.
In the nonstationary problem, essentially the same effect
must take place when the radiation wave emitted by the
trailing soliton reaches the leading one having the same
frequency. This radiation force could be amenable in
part for long-range interaction between the optical soli-
tons detected in Ref. [2], or, at least, can be detectable in
precise experiments with the optical solitons in a spectral
region near the zero point of the usual dispersion, where
the higher dispersion may become important [17]. At
last, it is worthy to mention that quite a similar mecha-
nism gives rise to the mutual pinning of KdV solitons in
the model including the higher dispersion [18] (in the un-
perturbed KdV equation, the solitons simply repeal each
other).

In Sec. IV I consider a more general model that admits
envelope solitons, viz. , the sine-Gordon (SG) equation
with small damping and driving terms. The envelope sol-
itons of the SCs equation are the so-called breathers, i.e.,
its spatially localized time-periodic solutions. An impor-
tant example is the model of a damped ac-driven long
Josephson junction [19]
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II. BOUND STATES OF NS SOLITONS
IN THE PRESENCE OF THE SKEW

DISSIPATIVE TERMS

The unperturbed soliton solution of the NS equation is
taken in its standard form:

u„i =2i rt sech j 2il[x —zo(t)]] exp[ ,'i Vx+—ip(t) ],
where

dzp d ~(r
y 4 2 I y2

dt ' dt

(2 1)

(2.2)

q and V being the amplitude and velocity of the soliton.
It is straightforward to derive evolution equations for
these parameters, taking into account the small perturb-
ing terms in Eq. (1.7) in the lowest (adiabatic) approxima-
tion of the perturbation theory [22,7,8]:

+sing = —aP, +PP, +e cos(cot ), (1.10)

a and P being coefficients of the shunt and surface losses.
The ac drive in Eq. (1.10) can support a breather at the
frequency co & 1, provided e exceeds a threshold value
which is a linear combination of the dissipative constants
a and P. The model (1.10) finds a number of other appli-
cations in dynamical problems of condensed matter phys-
ics, e.g. , when one considers an ac-driven weakly damped
charge-density-wave conductor in the commensurability
regime [20]. The main point of the analysis developed in
Sec. IV is that, in the presence of the dissipative terms,
the asymptotic wave form of the SG breather becomes
spatially oscillating, thus giving way to formation of BS's
of the breathers.

A soliton in the damped NS system, or a breather in
the SG one, may be supported not only by the direct
drive, as in Eq. (1.10), but also by a parametric drive [21].
In Sec. V it is demonstrated that the parametrically
driven envelope solitons, unlike the directly driven ones,
cannot form BS's. The fundamental cause for this is that
when the parametric drive's amplitude is sufficiently large
to compensate dissipation, the solitons' tails cannot be os-
cillating.

iu, +u„, +2~u
~

u =i(yo —,' —Voy,)u —y, Vou,

+y, u„„+e( u ), u . (2.5)

It is now straightforward to find the asymptotic form of
the soliton far from its center, which is located at x =zp.
The linearized equation (2.5) yields [cf. Eq. (1.3)]

u„=4ii)oexp[ —2rto~x —zo o+A(x —zo)]

X exp(4i slot ik ~x ——zo ~+i $0), (2.6)

where i)0 is the equilibrium amplitude (2.4a), and [cf. Eq.
(1.4)]

k =(4no) '(yo .' V—oy—i+4iloyi»

~= —
~Xi ~Q

(2.7)

Vo being the equilibrium velocity (2.4b). The presence of
the term A, (x —zo) in the argument of the first multiplier
in Eq. (2.6) is the crucial difFerence from the expression
(1.3) valid in the absence of the skew term in Eq. (1.7).
The subsequent analysis closely follows that developed in
Ref. [4]. Considering the interaction between two far
separated solitons, one approximates the full wave field
by their linear superposition

u(x, t)=u,",i(x, t)+u,'„'(x, t) . (2.8)

Next, one inserts Eq. (2.8) into the interaction Hamiltoni-
an

(2.9)

of the NS system. As the interaction between the solitons
is dominated by the overlapping of the core of each soli-
ton with the weak tail of another one, it is sufficient to
linearize the expression (2.9) with respect to ui in the re-
gion where the core of the first soliton is located, and vice
versa. This procedure leads to the effective interaction
potential in the form [4]

U(z, g)= 4J —dx iu,",,'(x)i

X Re[u,",,'(x)u,',i*(x)]+( 1+~2),

=2ypq ——,'y )g ——'y )g V (2.3a) (2.10)

dV „~ (16' )
1 I (2.3b)

The dynamical system (2.3) has the single stationary
point

z and P being, respectively, the distance between the
centers of the two solitons and their phase difference; it is
assumed that both solitons have the equilibrium ampli-
tude iso, and that zih)) 1 (which means that the solitons
are far separated). Inserting Eqs. (2.1) for u'„'i and (2.6)
for u,' i' into Eq. (2.10), one finds

iso= —,'(8e/5) [[yi+—,'(8e/5) yoyi]' —yiI,
Vo = ( 16e/5y i )iso,

(2.4a)

(2.4b)
U(z, p) = —128710e [e ' ' cos(p+kz)

—(1/2)y& Voz+e ' cos(P —kz)] .
which is always stable.

It is convenient to consider BS's of the solitons in the
reference frame in which they are quiescent. To do this,
one should make the Galilean transformation

x ~x —Vot, u ~u exp[i( ,' Vox —,' Vot)—], —

to cast Eq. (1.7) into the form

(2.11)

The two terms in the square brackets come from the re-
gions where the cores of the two solitons are located.
The contributions from these two regions are asymmetric
due to the presence of the term -I, in the argument of
the first exponential in Eq. (2.6).
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The BS s exist if the interaction potential (2.11) has lo-
cal minima, which are determined by the equations

It is straightforward to see that Eq. (2.1la) amounts to
the following one:

aU
a

(2.11a) tang = —tanh( —,
' y, Vpz )tan(kz) . (2.12)

aU
az

(2.11b) Making use of Eq. (2.12), one can cast Eq. (2.11b) into the
form

[1+tan ( —,'y, Vpz)tan (kz)] —(y, Vp/411p)tanh( —,'y, Vpz)[1+tan (kz ))+(k/22)p)sech ( —,'y, Vpz )tan(kz) =0 . (2.13)

The applicability of the perturbation theory assumes that
the coefficients y, Vp/411p and k/2&p in Eq. (2.13) are
small; this, in turn, implies that Eq. (2.13) may have real
solutions only if

piVpz «1 . (2.14)

With regard to the inequality (2.14), Eq. (2. 13) can be
transformed once again into

( —,'y, Vpz) tan (kz)+(k/2gp)tan(kz)+1=0 . (2.15)

Because of Eq. (2.14), real roots of Eq. (2.15) must be lo-
cated near the points where tan(kz) diverges, i.e., the
roots are looked for in the form [cf. Eq. (1.5))

z =z„=(m./2k )(1+2n )+k '5„, (2.16)

n =0, 1,2, . . . , with ~5„((n./2. At last, insertion of Eq.
(2.16) into Eq. (2.15) gives rise to the following equation
for 6„:
(&„/y 1

)'+ ( k /271py 1 )(&„/y 1 )

+[(m Vp/4k)(1+2n )] =0 . (2.17)

This square equation has real roots provided

1+2n ~ k /m Vp2)pyi
—(5/16m)(k /eg()), (2.18)

e& e,h, —=(5/16m. )(k /2)p2) . (2.19)

It was mentioned above that different dissipative skew
terms might appear as well in model equations governing
dynamics of nonequilibrium systems [10]. Within the
framework of the perturbation theory, the effect of those
terms on BS's of solitons can be analyzed as was done
above for Eq. (1.7). The general inference following from
this analysis is that the skew terms are apt to destroy the
BS's.

It is relevant to give some estimates for a real optical
fiber to see if the effect considered takes place indeed.
For the femtosecond solitons, typical values of the pa-
rameters in Eq. (1.7) are [23) yp=0. 05, y(=0.01, e=0. 1;
in this notation, a typical soliton has the width (211)

' = 1

where Eq. (2.4b) was taken into account.
Thus, Eq. (2.18) tells that the potential (2.13), biased by

the skew term in the underlying equation (1.7), admits
only a finite number of the local minima. With the
growth of the parameter e, the last bound state, corre-
sponding to n =0 in Eq. (2.18), disappears when its rhs
becomes smaller than one, i.e., at

I

[in physical units, this is 100 fsec; note that if one regards
Eqs. (1.1) and (1.7) as models of the optical fiber, the vari-
ables t and x have, respectively, the meaning of the prop-
agation distance and of the so-called reduced time]. In-
sertion of these values into Eqs. (2.4) and (2.7) yields

Vp =2, k = —,', , and, finally, Eq. (2.19) yields

e,&,-10 . The above-mentioned physical value @=0.1
is much larger than e,h, and this may lend an explanation
to the fact that the BS's of the optical solitons have not
been thus far detected in the optical fibers. Let us, how-
ever, emphasize once again that the BS's have been ob-
served in the experiments with the subcritical traveling-
wave convection [1], so that in this physical system the
skew dissipative terms are not strong enough to destroy
the BS's.

III. SOLITONS BOUND BY A RADIATION FIELD

In this section, the possibility of getting a BS of soli-
tons interacting via emission and absorption of radiation
will be considered within the framework of Eq. (1.8), al-
though, as will be seen, the same can be done in a rather
general context (e.g. , for the KdV equation with the fifth
derivative [18]). Since the radiative effects in this and
similar models are exponentially weak [13—16], the
analysis will be developed without regard to preexponen-
tial factors that do not give rise to any significant effects.

As was said in Sec. I, the solitons governed by Eq. (1.8)
slowly emit radiation at the wave number kp given by Eq.
(1.9). I assume the presence of two (or of a chain of) soli-
tons in a configuration where the wave emitted by a soli-
ton with the coordinate zp" is absorbed by another one
with the coordinate zp '. The phases of the two solitons
are assumed to be

q(1,2) —4 2r + ~(1,2)
9'Q (3.1)

[see Eq. (2.2), where, to simplify the analysis, it is set
V=O]. The phase of the radiation wave between the soli-
tons is

p„d=kpx+4g t . (3.2)

The underlying Eq. (1.8) is invariant with respect to the
transformation

Thus the relatiue phases P between the radiation and the
solitons are

y(1 2)(t)=y (z(1 2) r) —q(1 2)(r)=k z(1 2) —y(( 2) (3 3)
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u~u, x~ —x, (3.4)

As the transformation (3.4) reverses the direction of time,
it turns the emission of radiation into absorption. The
emitted wave has a certain phase shift 5 relative to the
emitting soliton [13]. The time-reversing transformation
(3.4) tells us that for the absorbing soliton the phase shift
must be —5. In our case, P"':—5, and P '—= —5. Thus it
follows from Eq. (3.3) that

koz'"+go"= —(koz' '+P' ')+2vrn, (3.5)

n being an arbitrary integer.
It is well known [3,4] that the energy of the direct in-

teraction between the separated NS solitons has a
minimum (and the attraction force takes its maximum
value) when their phases are equal. Therefore, in what
follows I set Po'" =go ' =—Po, and then Eq. (3.5) yields

go= —
—,'ko(zo'"+zo"')+en. . (3.6)

where 3 is the amplitude of the radiation wave and use
of Eqs. (2.1), (3.1), and (3.2) has been made. It immedi-
ately follows from Eq. (3.7}that

U„;„—Ak Oexp
~ko

cos(go+ kozo );
4g

to obtain the estimate (3.8), it has been taken into ac-
count that ko ))g [Eq. (1.9)]. At last, assuming the pres-
ence of two separated solitons, one should insert Eq. (3.6)
into Eq. (3.8) taken for either soliton, to transform U;„
into the effective interaction potential:

The energy of the pinning of solitons by the radiation
"substrate" is determined by the term (2.9) in the Hamil-
tonian of the system considered. Similar to Eq. (2.10),
this term must be linearized with respect to the small-
amplitude radiation field, and the resulting pinning po-
tential U;„can be estimated as

i/0 + oo IkoXU;„—Aq Re e sech 2q x —zo e ' dx

(3.7)

proximation (when only the exponential factors are com-
pared), the pinning dominates over the attraction provid-
ed the distance z = ~z&

—zz ~
between the solitons exceeds

the minimum value z

z)z;„=m/4g e . (3.12)

Thus, the pair or a whole array of solitons can be stably
pinned by their common radiation field if the distances
between them are not less than given by Eq. (3.12). Since
the pinning potential (3.9) is spatially periodic, these dis-
tances, strictly speaking, may only take discrete values,
multiple of 4rr/ko. However, in the situation analyzed
here this limitation is not essential, as this spacing is
much smaller than the proper size of the soliton —g

IV. BOUND STATES OF BREATHERS
IN THE DAMPED ac-DRIVEN SINE-GORDON

MODEL

X sech[(1 —co )
'~ x ] ] . (4.1)

The frequency co and the phase shift 6 are determined by
the ac drive if one regards Eq. (4.1) as an approximation
solution to the perturbed equation (1.10) [19].

The asymptotic solution of the linearized equation
(1.10},which goes over into that given by Eq. (4.1) when
the perturbations are absent, can be found in the form [cf.
Eqs. (1.3) and (2.6)]

P„=cexp[ —(1—ro )' x]cos(cot —k ~x
~ }, (4.2)

where c =8' '(1 —co )', and a constant phase shift is
neglected. The wave number k is determined by the dis-
sipative parameter a, provided P=0:

k =ace/2(1 —co )'~ (4.3)

If p&0, the parameter a in Eq. (4.3) and in what follows
below should be replaced by

The analysis of BS's of breathers in the model based on
Eq. (1.10) can be developed in a straightforward way.
The exact breather solution to the unperturbed SG equa-
tion is commonly known:

fb, =4 tan '[co '(1 co )' co—s(rot+5)

U„;„—Akz 'exp (1) (2)cos[—ko(zo zo )] .
4g

(3.9) a,~=a+P(1 —co ) . (4.4)

U„„-g exp( —2g ~z o" —zo '
~

) . (3.10)

The amplitude A of the radiation wave emitted by the
soliton under the action of the perturbation term in Eq.
(1.8) can be estimated, with the exponential accuracy, as
[13]

mko3 -eg exp
4q

(3.11)

Comparing the expressions (3.9) and (3.10) and making
use of Eq. (3.11), one concludes that, in the lowest ap-

The potential U,«, of the direct attraction between the
solitons with equal phases may be estimated as follows
[3,4]:

Proceeding from the asymptotic solution (4.2), it is easy
to arrive at the following estimate for the effective poten-
tial of the breather-breather interaction [cf. Eq. (2.11)]:

—( &
—~')'/'zU-e " " ' 'cosP cos(kz), (4.5)

where z and P are, respectively, the distance and phase
shift between the breathers. This potential has a set of lo-
cal minima at the distances [cf. Eqs. (1.5) and (2.16)]

7T vr(1 —co )'z„= (1+2n ):= (1+2n ), (4.6)
2k CIA

where n =0, 1,2, . . . , and the corresponding values of
cosP alternate as ( —1)".

It is well known [20] that, in the limit 1 —co ~0, the
damped ac-driven SG model (1.10) goes over into the
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damped NS model driven at the complementary frequen-
cy 1 —co. In this limit, the small-amplitude SG breather
(4.1) becomes a NS soliton. The BS's of the solitons in
this version of the perturbed NS equation have been con-
sidered earlier in Ref. [4].

V. ABSENCE OF BOUND STATES
OF PARAMETRICALLY DRIVEN SOLITONS

p«
—p„+sing = —ap, +pp„, +e sin(2cot )sin(tI)/2),

(5.6)

which governs, e.g. , dynamics of some magnetic systems
[21). In this model, the ac drive may support breathers at
the frequency co. The asymptotic tail of the breather is
looked for in the form [cf. Eq. (5.2)]

In damped NS and SG systems, dissipation may be
compensated not only by the "direct" drive as in Eq.
(1.10), but also by the parametric drive [21]. As the sim-
plest example, one can take the perturbed NS equation
similar to that analyzed in Ref. [21]:

P„=exp[ —(1 —co )' x~][ct sin(cot —k~x~)

+b sin(cot+k ~x~)] .

Straightforward calculations yield [cf. Eq. (5.3)]

4(1 —co )k =[a—(1—co )P] co —(e/4) (5.7)

lQf +0 +2 9 0 — l QOQ +kg)Q +l Ee (5.1)

where the asterisk stands for the complex conjugation, yo
and y &

are positive dissipative constants, and the driving
frequency co is assumed positive too. To start the analysis
of the BS problem, one should, as above, linearize Eq.
(5.1) and look for its asymptotic solutions in the form of
the oscillating tails. However, this time the standard
form (1.3) used above is no longer relevant, and the solu-
tion must be looked for as follows:

Although an analytical calculation of e,h, for Eq. (5.6) is
not possible, using numerical data presented in Ref. [21]
demonstrates that the inequality

(e/4) ([a—(1—co )P] co

[cf. Eq. (5.4)], following from Eq. (5.7), is likely to contra-
dict the condition e ) e,h, . Thus, the parametrically
driven breathers should not be capable either to form
BS's.

u„=exp( —&co~x~+icot)(ae '""+be'"' ') (5.2) VI. CONCLUSION

with some constants ct and b. Insertion of Eq. (5.2) into
the linearized equation (5.1) leads to a system of linear
equations for the amplitudes a and b, whose resolvability
condition yields

(2&cok ) =(yo —coy, )
—e (5.3)

e +(yo coy&) (5.4)

On the other hand, it is well known that the soliton can
be supported by the ac drive, provided the drive's ampli-
tude e exceeds a certain threshold value e,h, . Following
the lines of Ref. [21],where e,„,has been found for y, =0,
it is easy to find

Thus, the oscillatory tails, corresponding to a real k in
Eq. (5.3), exist provided

In this paper, I have extended the analysis of bound
states (BS's) of envelope solitons initiated in Refs. [4] and
[6]. It has been demonstrated that (i) the skew dissipative
terms are apt to destroy the BS's; (ii) in the absence of
dissipation, solitons may form a BS via emitted radiation;
(iii) SG breathers in the standard damped ac-driven mod-
el may form BS's quite similarly to the NS solitons; and
(iv) in parametrically driven models, the envelope solitons
are not capable of forming BS*s. It might be interesting
to extend the analysis developed in this work to bimodal
systems governed by coupled NS (or SG) equations. As it
has been demonstrated (for a simplest situation) in Ref.
[6], in the bimodal systems, unlike the single-mode ones,
solitons belonging to different modes may form BS's due
to their purely Hamiltonian interaction in the absence of
dissipative and radiative effects.

~ 1
~thr XO '

3 V I (5.5)

Obviously, the necessary condition e & e,h, following
from Eq. (5.5) is in contradiction with the inequality (5.4).
Thus, the BS's of the parametrically driven NS solitons
are not possible.

The NS model based on Eq. (5.1) may be regarded as
the small-amplitude limit of the analogous SG model,
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