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Quasiclassical approximation for the beamstrahlung process
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The beamstrahlung spectrum for colliding electron (positron) bunches is calculated by a quasiclassical
method. The derived formulas apply to the classical and the quantum domain of parameters. Scaling
laws for the total radiation energy loss and for the photon spectrum are derived. Our numerical results
are in good agreement with those of a previous, purely quantum-mechanical calculation.
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I. INTRODUCTION

Dense pulses of electrons and positrons, consisting of
about 10' particles, are created in the modern colliders.
When these pulses pass through one another a consider-
able portion of their kinetic energy is radiated as pho-
tons. This radiative process was called beamstrahlung
[1,2]. The interest in beamstrahlung is greatly increased
by prospects of building high-energy linear colliders for
electron and positron beams in the TeV region. This pro-
cess must be taken into account in designing such collid-
ers because the energy loss due to beamstrahlung can be
considerable. The quantum-mechanical calculation per-
formed in [1,2] predicts approximately 20%%uo fractional
energy loss for colliders that are envisaged to be con-
structed in the near future. We confirm this result in our
work, using a quasiclassical method.

This quasiclassical method is based on the following as-
sumptions. The electron or positron, colliding with the
dense pulse of the opposite charge, scatters and radiates
in the mean field created by all particles of the pulse.
This collective phenomenon takes place because the
bremsstrahlung coherence length for individual collisions
substantially surpasses the interparticle distances in the
pulse.

The ultrarelativistic particle radiates into a narrow
cone with the opening angle 1/y along the direction of
motion [3], where y is the relativistic Lorentz factor.
The deflection angle Od of the particle crossing the pulse
is much larger than the typical radiation angle Hd &&1/y.
This condition shows that the radiation in a given direc-
tion arises on a small piece of trajectory parallel to this
direction. If the angle between two difterent pieces of tra-
jectory surpasses the radiation angle, then the photons
from these pieces of trajectory do not interfere and the
corresponding contributions to the total radiation spec-
trum and the energy loss have simply to be summed. The
small pieces of the trajectory, where the particle radiates
coherently, can be approximated by a part of a circle.
The radiation of the particle, moving through this circle
trajectory (synchrotron radiation) is very well known (see,
e.g., [3,4]). This radiation is described by the quasiclassi-
cal method, which is valid both in the classical and in the
quantum limits. The quantum behavior appears when
the frequency of the emitted photon is about the energy
of the projectile particle. Using the intensity of synchro-

tron radiation derived by the quasiclassical method at
each moment of time and integrating it over the particle's
trajectory in the pulse, we obtain the total energy loss and
the spectrum of the emitted photons. These characteris-
tics have to be averaged over all possible trajectories.
The results of our calculations are in a good agreement
with those that have been derived in a pure quantum
treatment of beamstrahlung [1,2].

The wave function of the projectile in the quantum
treatment was derived assuming a uniform charge distri-
bution of the pulse [1,2]. The influence of the pulse
geometry on the beamstrahlung process was also investi-
gated [5—7] and various charge distributions have been
considered.

In our treatment, the electric field of the bunch acting
on the projectile particle is considered as being produced
by a uniform and cylindrically symmetrical charge distri-
bution. The inhuence of the pulse field on the particle
motion is too strong to be described perturbatively. We
show that the quasiclassical approximation is appropriate
for description of the beamstrahlung process.

The scaling law for the beamstrahlung fractional ener-
gy loss was proposed in [1]. The function, describing the
deviation from the classical behavior, depends on the
scaling parameter

m ~c3RL

4+e 2y 2

The scaling parameter is a complicated combination of
values characterizing the process. Here c is the velocity
of light; m and e are the mass and the charge of the elec-
tron; X is the number of particles in the pulse, and L and
R are the length and the radius of the pulse. We use in
this paper the atomic system of units in which
m = fe[=A'= l.

The scaling function tends to unity with increasing
scaling parameter. This is the classical region. In the
quantum limit, the parameter Cb is small and the scaling
function tends to zero.

The quasiclassical treatment of beamstrahlung pro-
vides a similar scaling behavior of the beamstrahlung
fractional energy loss as a function of Cb but the analyti-
cal form for the scaling function is diA'erent. This func-
tion fits the results of quantum treatment of beam-
strahlung within several percent accuracy.

We have calculated the total energy loss in the quan-
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TABLE I. Sets of parameters characterizing pulses which are available in different colliders.

Parameter SLC Super JLC

Z (A)
L (cm)
y
l =Ly ' (cm)

sx1O"
1O4

104
1O'

10-'

3X10
5

3 x10'
10

3 x10-'

1.1 X 10'
2X 10

1.6x10'
1O'

1.6x10-'

1.8 X 10'
1.6x10'
1.2X 10
2X 10

1.2X10 '

2.3 X 10'
1.9 X 10
2.9X 10
2.9X 10

10

turn and classical limits and investigated the limiting be-
havior of the general formulas in both cases. We calcu-
lated the photon spectrum and the fractional energy loss
for the parameters of the Stanford Linear Collider (SLC)
and for the envisaged machines with TeV energies (super
case). The parameters characterizing SLC and super
cases are taken from [1,2] and presented in Table I. We
also considered the set of parameters proposed for the
Japan Linear Collider Project (JLC) [8]. This project en-
visages three different sets of pulse parameters. The pulse
in JLC is not cylindrical. Therefore we introduce the
effective radius R of the pulse according to

' 1/1

where o.„and o are the sizes of the pulse in the trans-
verse plane, being given in [8].

e SLC

=2.2X10 ',
L,

super

=2.4X 10

Le JLC

=6.8X10 '

in cases presented in Table I. These estimates show that
the inequality D «L, is fulfilled in all cases under con-
sideration. This condition proves that the radiation in
the process considered is not a result of successive col-
lisions with single particles, but is generated during
motion of the particle in the average electric field. We
use the first set of parameters of the JLC.

The transverse extent R of the pulse is substantially
smaller than its length L, see Table I. Therefore, neglect-
ing edge effects, one can approximate the electric field of
the pulse in its rest frame by the field of the infinitely long
and uniformly charged cylinder, which inside the pulse is

II. QUASICLASSICAL APPROACH 2Ne r,
LR

(3)

Let us consider a collision of an electron with a posi-
tron pulse in the laboratory frame of reference. The elec-
tron of energy c,, having the same absolute value of veloc-
ity as the positron pulse, moves in the opposite direction.
We assume an idealized positron pulse of cylindrical
shape having a uniform distribution of charge. This as-
sumption is based on a comparison of the bremsstrahlung
coherence length L, and the average interparticle dis-
tance in the pulse. The longitudinal coherence length L,
characterizes the distances which are important for the
bremsstrahlung process. It may be estimated as [3]

(mc)

where the minimum longitudinal transferred momentum
1S

q~~
=p —p' —k=(E /c —m c )'

—(E' /c —m c )' —co/c .

Here (E,p) and (E';p') are the energy and momentum of
the electron in the initial and in the final state; (co;k) is
the frequency and momentum of the emitted photon. We
suppose that m —c' —c.. The average interparticle dis-
tance in the pulse is equal to

1/3

D- "
N

(2)

where r is the radius vector in the transverse plane of the
pulse.

Performing the Lorentz transformations, one derives
from (3) the electric field E and the magnetic field H
created in the laboratory frame:

E=E'y,
1H= —vXE.
c

(4)

Here v is the velocity of the pulse and the velocity of
light is equal to c = 137.036 in the system of units used.

Now let us evaluate the deflection angle Od of the parti-
cle in the external field (4) during the collision time
T=y 'L /2c:

Od
=—J E~dt,

P 0

where p is the initial momentum of the projectile particle.
The transverse field acting on the particle is equal to

1E =E+—vXH=2yeE' .
c

Substituting here the electric field E' from (3) we derive
the result

Ne ) Ne2 2

d=
2 y

mc R mc2R

The ratio D /L, is equal to The factor Ne /Rmc is equal to 1.4X10 for the SLC
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and 1.7X10 in the case of the supercollider. For the
JLC this factor is 2.2X 10 . These estimates demonstrate
that the deflection angle of the projectile particle in the
pulse field surpasses substantially the radiation angle
0„=1/y in all cases under consideration. This result
means that radiation in a certain direction is emitted only
from a small piece of the particle trajectory, which can be
approximated by a part of a circle. The external field of
the pulse is nearly perpendicular to the direction of the
particle's velocity. These conditions make the beam-
strahlung problem similar to the problem of synchrotron
radiation, which is treated for ultrarelativistic particles
quasiclassically [3,4].

Let us prove that the quasiclassical condition is
fulfilled in the problem considered. The quasiclassical ap-
proach is applicable if the de Broglie wavelength of a par-
ticle is substantially less than the length scale of a poten-
tial [9]. The length scale of the transverse potential of the
pulse is of the order of R. The transverse de Broglie
wavelength may be estimated as

III. QUASICLASSICAL DESCRIPTION
OF THE BKAMSTRAHLUNG SPECTRUM

+ —+—y(' Ai'(x), (9)

Ns=E'+co,
~X

2/3
COO

X
mc

3

The parameter coo is defined as

cue/H
0

The spectrum of radiated frequencies of the electron
moving along the circle trajectory in the uniform magnet-
ic field is very well known. The quasiclassical considera-
tion of this problem (see, e.g. , [3,4]) gives the following
expression for the radiation intensity:

2 2 3dI ™ ~c A' d
dc' ~2

2' 2m 1—(&R
p& (2mo Uo)

(7) where H is the strength of the uniform magnetic field act-
ing on the electron. The Airy function Ai(x) is intro-
duced according to the definition

where the perpendicular transferred momentum p~ is tak-
en from the relation

p ~ /2m —U.

The potential depth U and the electron mass m in the
laboratory frame are

U= Uoy m =moy .

Here Uo and m =mo are the depth of the transverse po-
tential and the mass of the electron in the pulse rest
frame. The inequality (7) is fulfilled for ultrarelativistic
particles (y ))1) in all cases under consideration.

The totally classical treatment of the bearnstrahlung
process fails to describe correctly the particle energy loss
in collision with the pulse. The classical theory considers
the radiation of photons with frequencies much less than
the particle energy. The fractional energy loss of the par-
ticle has to be small. It is described by the following ex-
pression [1]:

8~2 6 y2
5O=

3m c LR

The classical approximation is therefore applicable for
the SLC when 50-1.49 X 10 ' «1. For the supercollid-
er 60 is -7.15X10 ))1 and for JLC 50-1.13X10 ))1.
The large fractional energy loss appears due to predomi-
nance of the high-energy photons in the emitted spec-
trum. The quantum behavior of the radiation process
manifests itself if the photon energy is comparable with
the projectile energy. The performed estimate of 5o
shows that the quantum corrections are very important
and have to be considered in the beamstrahlung treat-
ment.

dE J&d dI
( )

d6) 0 dco
(10)

where T=y 'L/2c is the time of the collision. The ra-
diation intensity (9) depends on time because we take it at
the position of the particle at any moment of time. In-
stead of the uniform magnetic field H appearing in (9) we
substitute the transverse electric field E~ [(see (5)] acting
on the particle during the collision. The spectra distribu-
tion (10) depends on the chosen particle trajectory. In
real experiments one cannot measure the radiation com-
ing from a single particular trajectory, therefore the spec-
trum (10) has to be averaged over all possible trajectories
of the electron. Considering only head-on collisions and
using the axial symmetry of the pulse we obtain the fol-
lowing averaged photon distribution:

oo

Ai(x) = —f cos(ux+ u /3)du .
&7r

The expression (9) takes into account the main quan-
tum corrections to the result of the classical theory [10]
which follows from (9) in the limit of low frequencies
co/s~0. The physical origins of these corrections are
the electron recoil during the emission of photons and the
quantum motion of electron. The result (9) is applicable
in the region of high photon frequencies co-c but not too
close to the spectrum edge. The electron in the final state
should still have an ultrarelativistic energy c'))mc .

The analysis made in the preceding section shows that
the electron radiates at any moment as in the synchro-
tron radiation process. Therefore, using the result (9), we
obtain the spectral distribution of the total energy loss for
an electron crossing the pulse as
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Introducing the ratio y=p/R as a new variable and
substituting (9) and (10) in (11),we derive the expression

2e m coc
2

X f 'dyy f dt f Ai(g)dg

+ —+—yx '~ Ai'(x) .
x c,

(12)

E,
x =

In the new variables the spectrum (15) reads

=60(2x)CbR (x; Cb ) .
(

dE,
(16)

R (x;Cb)= —3U ~ f dyy f Ai(z)dz
0

Here 6p is the classical fractional energy loss intro-
duced in (8). The function R (x; Ci, ) is equal to

where the parameters are defined as follows:

x =(i)/y), i)=co/(E —co), E=mc y,
eE~y

Ei=2yEi .
m c

+ —+—yg' Ai'(g)

2/3

The relations for the parameters here are

(17)

The electric field Ei is taken from (3); Ei is the trans-
verse field acting on the particle in the laboratory frame.

The trajectory of the particle in the field of the pulse
may be written as

r(t) =p[1+v(t)], (13)

where parameter p is the initial impact parameter and
v(t) characterizes deviation of the particle from p in the
pulse field at time t. The maximum deviation is

y, U=C2z3U 1 —x
y

' C ' xb

The expression for the function R (x; Ci, ) can be
simplified. Changing the integration order in the double
integral in (17) and doing integration over y analytically
(see Appendix A), we come to the final result, which we
present in the form of the fractional energy loss

(18)

+max (14) Then the relation (16) reads

Here Od is the deflection angle of the electron estimated
in (6).

Substituting in (14) the figures of Table I, we find that
vm»=0. 25 for SLC and vm»=2X10 for the supercol-
lider. These estimates show that one can neglect this pa-
rameter in (13). The accuracy of this approximation is
different for different cases.

Neglecting v in (13) and substituting p instead of r(t)
in (12), one can perform easily the integration over time.
The result reads

dE, e p coL

1 d6 =R (x;Cb) .
Cb p dx

Here the function R (x; Cb ) is equal to

R (x; Cb ) =R, ( U)+ T(x)R i( U),

with

U3
R, (U)= —

—,'U f dz Ai(z) 1—
Z'

R 2( U) = —9f Ai'(z),

(19)

(20)

(21)

X f 'dyy f "Ai(z)dz
p

+ —+—yz' Ai'(z) . .
Z E

To compare this result with the spectrum obtained in
[1] we introduce another variable: the scaling parameter,
which is a complicated combination of quantities charac-
terizing the process,

m ~c 3+I.
4&e y

and the ratio x, being convenient for the description of
the spectral distribution of photons,

=R (U)T(x),1 d6
Cb6P dx

(22)

where the function T(x) is the same as in (21) but the
scaling function R ( U) differs from R i ( U) and R 2 ( U).
Figure 1 presents the comparison of the functions R i ( U)
and R2( U) and R ( U).

Figure 2 shows the beamstrahlung spectra in different

x +1
2x

The parameter U in these expressions is the same as in
(17). The formulas (19)—(21) describe the scaling behav-
ior of the beamstrahlung spectrum. This result differs
from that derived in the purely quantum-mechanical
treatment of the beamstrahlung process [1]. The result of
paper [1]has the structure.
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FIG. 1. Comparison of the scaling functions R&(U) and
Rz( U) with the function R ( U) of Ref. [1].
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cases. These spectra are normalized to the total radiation
energy loss 6 which we calculate in the next section. The
maximum of the frequency distribution lies in the low-
frequency region for SLC, while for the supercollider a
sharp maximum exists near the spectrum edge. These
two diA'erent kinds of behavior correspond to the classical
and to the quantum limit of the beamstrahlung process.
We also present the photon spectrum for an intermediate
case. The classical limit corresponds to the large values
of the scaling parameter Cb. On the contrary, this pa-
rameter is small in the quantum limit.

Figure 2 demonstrates the good agreement between the
quantum [1] and the quasiclassical methods. That proves
that the nature of the beamstrahlung process is described
correctly as quasiclassical.

The peculiar behavior of the spectrum near the edge in
the supercollider case is plotted in Fig. 3. This is the re-
gion where the discrepancy between the quasiclassical
and the quantum methods is especially large. Indeed, the
parameter x is small in this region (x ((1). Therefore the
function T(x) is large [T(x)))1] and the corresponding
term dominates in the R (x; C& ). The spectrum (19), can
be approximately expressed in the form (22) with the
function R2(U) instead of R (U). The difference between
R2(U) and R (U) is clear from Fig. 1. This discrepancy
manifests itself in the corresponding spectral distribu-

FIG. 3. The behavior of the beamstrahlung spectrum near
the edge in the case of the supercollider.

tions of photons as plotted in Fig. 3. In the frequency re-
gion far from the spectrum edge the agreement between
the results of the two methods is very good because of
T(x)=1 and R (U)=Rt(U)+R2(U)

Figure 4 shows the beamstrahlung spectra which are
relevant to the three options of the JLC project (see Table
I). The maximum in the frequency distribution appears
here also near the edge, but it is not so sharp as in the
case of the supercollider.

IV. TOTAL ENERGY LOSS

To calculate the total beamstrahlung energy loss in the
collision of an electron with a positron pulse we need to
integrate the spectral distribution (15) over all photon fre-
quencies. It is convenient to characterize the radiation
process by the fractional energy loss which is defined as

(23)

This quantity is equal to 5o—(8) in the classical limit.
The function describing the deviation of the fractional
energy loss from the classical result is called the form fac-
tor of the beamstrahlung process. Substituting (15) in

Cb=46
Cb=1-5
C =10
Ret. 1

Super

s
XO

B

SLC/10

Interrnedia
& \.j]:I

0.2 04 06
ra/@=1-x

08 10
0.2 0.4 0.6

u/@=1-x
08

FIG. 2. The beamstrahlung spectra for different colliders. FIG. 4. The beamstrahlung spectra for the JLC project.
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(23), we come to the following expression for the form
factor:

F(Cb)= — f dyy f dcoco f Ai(z)dz
me 50

2 + ~ ~pi/z

XAi'(g) ' . (24)

Changing the order of integration for co and z and us-
ing g instead of co as a new variable, we derive the result
(see Appendix B)

F(Cb)= —3f dyy f dx x Ai'(x)
0 0

4+5C 'yx + y x
(1+C„-'yx'")'

(25)

The expression (25) can be further simplified by changing
the order of integration and integrating analytically over
y. The result of the calculation is

F(Cb ) = —3f dx x Ai'(x)

X ~ ln( 1+yo )
24

'yp

2y p 5y 0 44y 0 60yp 24

3(1+ )3

(26)
I

The parameter yo in (26) is defined as

3/21

Cb

Using (26) we can easily investigate the behavior of the
form factor both in the classical and in the quantum lim-
its. The expansion of (26) in the region of large scaling
parameters Cb )) 1 results in

(27)
4Cb 3C,' Cb ))1

The expansion of (26) in the region of small parameters
Cb shows the following behavior:

F(Cb)=aoCb [1+aiC +a C

C, «1 . (28)

The expressions for the coefficients a; in (28) are

a0= 2 X 3 I ( —', ) =0.833,

X3 ~1 (2)= —2a ——24,1 0

a2=2 X3 ' (55)I ( —,')I '( —,')=9.4,
where I"(—,

'
) =2.6789 and I ( —', ) = l. 3541.

The numerical fit of the coefficients o.p, o.
&

in the limit-
ing formulas for F(Ci, ), being made in [1], is in a good
agreement with our results. According to [1], a0=0. 83
and a& = —2.0.

The result of integration over x in (25) can be expressed
as a power series in the region of small and large parame-
ters Cb. Then, the integration over y becomes trivial.
The analysis of the similar integral is given in [4] and
therefore we present here only the fina1 resu1t of this cal-
culation,

F(C, )= g (
—1)" (k'+2k+8)I —+ —I —+-

k+4 2 3 2 3
3 Cb»1,

Cb
(29)

' 2k+4/3
4(6k+1)(9k +3k+16)

27k!(4—3k)1 (k + —,
'

) 3

2k +8/3

+ 4(6k+5)(9k +15k+22)
27k!(2—3k)I (k +—,') 3

k(k +7)
[2—

(
—1)"](3—k)I (k/2+ —,

' )I (k/2+ —,
'

)

k+1
Cb

3
Cb «1 (30)

The series (29) and (30) has the asymptotical conver-
gence. Therefore these formulas can be used only if the
corresponding conditions on Cb are well fulfilled.

The result of numerical calculation of the beam-
strahlung form factor (25) and (26) is shown in Fig. 5.
The form factor tends to unity in the classical limit,
where the parameter Cb is large. In the quantum limit
the form factor goes to zero. This limit corresponds to
the region of small parameters Cb. Figure 5 shows as

(31)5=5OF(C„) .

Calculating the form factor which is appropriate to the

well the comparison of our result with the form factor
obtained in [1]. It is clear from Fig. 5 that the discrepan-
cy between the predictions of the two methods is less
than a few percent.

Having the form factor F (Cb ) one can easily derive the
fractional energy loss in the following manner:
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p.s—

I I I I lllll I lllil I I I I IIII cesses are very similar in nature and the quasiclassical ap-
proach offers a very e%cient and reliable way to describe
them.

0.6—

04—

0.2—

I I lllllP Q

10-' 10-' 10-'

IIIII I I I I IIII

10O 10' 102 10

FIG. 5. The form factor of the beamstrahlung process.
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APPENDIX A

Let us perform the transformation of the function
R (x; Cb ), (17), which was used in (19)—(21). Using
g=y ~ U instead of y as the new integration variable,
we derive

SLC and supercollider, we come to the following energy
losses:

6sLc =0.0 14& Cg =46

6,„„=0.17, C~ = 10
(32)

V. CONCLUSION

The quasiclassical treatment provides the fractional en-
ergy loss, which is substantially suppressed in comparison
with the classical result in cases pertaining to the quan-
tum scenario of the process.

R (x; Cb ) = ', U——f f ™Ai(z)dz
b

1+x Ai'(g)

This function can be represented as

R ( xC )b=Ri(U)+T( )xR (2U),

where the functions R
&

( U) and R2( U) are defined as

R, (U)= ', U ——f f dz Ai(z),
g4

We have described the beamstrahlung process by the
quasiclassical method. We have calculated the frequency
distribution of the emitted photons and the radiation en-
ergy loss. The quantum behavior of the electron in the
beamstrahlung process results in considerable suppres-
sion of the radiation intensity in comparison with the
predictions of the classical theory. Another specific
feature of the beamstrahlung process in the quantum
scenario is the appearance of a sharp maximum in the
photon frequency distribution near the edge of the spec-
trum. This kind of behavior differs from a dependence
characterizing the classical case. In the classical limit a
broad maximum appears in the low-frequency region.

We have compared the results of our numerical calcu-
lations with the predictions of a quantum-mechanical
treatment of the beamstrahlung and found a good agree-
ment of the two different approaches. However, the form
of the scaling law is different. This discrepancy manifests
itself especially strongly in the region of large frequencies
near the spectrum edge but inAuences the total energy
loss only weakly.

We confirmed a relatively large fractional energy loss
for envisaged TeV colliders.

The accuracy of the method may be improved by a
more precise description of the particle trajectory in the
pulse. It might be important for denser pulses when the
deflection of the electron is considerable.

Let us note that our method is also appropriate for the
description of the channeling radiation as well as for the
description of pair creation process by photons in the
field of a pulse or an oriented monocrystal. All these pro-

R (U)= —9U f 'Ai'(g) .

Changing the order of integration in R &( U) and doing
afterwards the integration over g we come to the result

UR, (U)= ——', U f dgAi(g) 1—

APPENDIX B

Here we present the transformation of the double in-
tegral, which appeared in (24),

I=f deuce f Ai(g)dg+ —+ —yx' Ai'(x) . .
0 Z X E,

Introducing the new integration variable x instead of ~
and using the relation

1co=8 1
1+Cb 'yx ~

we derive the result

I=Il, +I2,
where the contributions I, and I2 are

3 Ey XI )
=— dx

C2 0 (1+C 1 3/2)4

X(2+2Cb 'yx ~ +Cb y x )Ai'(x),
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3 8 y X 1I =— 8x 1—
(1+C 'yx ) 1+C„'yx

X I dx'Ai(x') .
X

Changing the integration order in the double integral I2
and integrating over x, we obtain

2 2 3

I2= dx Ai(x)
2Cb ( 1+C

—1 3/2)2

Using the relation

Ai(x) =—Ai"(x)
x

and integrating I2 by parts, we come to the result

I2= — dx x(2 —Cb yx )
py oo Al'(x )

2C2 o (1+Cb 'yx' )

X(l+Cb 'yx ) .

Substituting I, and I2 in I, we derive the final result

4+ C 'y + „yI= dx x Ai'(x)
2C (I+C& 'yx )
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tute of the Academy of Sciences of Russia, 194021 St.
Petersburg, Russia.
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