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Long-time semiclassical dynamics of chaos: The stadium billiard

Steven Tomsovic and Eric J. Heller
Department of Physics and Department of Chemistry, BG-10, University of Washington, Seattle, Washington 98195
(Received 6 July 1992)

In a recent Letter [Phys. Rev. Lett. 67, 664 (1991)] we found semiclassical propagation to be
remarkably accurate in the chaotic stadium billiard long after classical fine structure had developed
on a scale much smaller than i. We give a complete account of that work and derive an approximate
time scale for the validity of the semiclassical approximation as a function of A.
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I. INTRODUCTION

Since its inception in the form of the “old quantum the-
ory,” semiclassical mechanics has been an essential com-
ponent in the understanding of a variety of physical sys-
tems, providing a bridge between the quantum and classi-
cal worlds. A rigorous mathematical framework for semi-
classical methods was constructed by Maslov and Fedo-
riuk [1]. The eigenvalue spectrum according to semiclas-
sical approximation was embodied in the trace formula of
Gutzwiller [2] (see also Balian and Bloch [3]). In spite of
these advances, crucial questions were left unanswered.
There is now a renaissance in the development and ap-
plications of semiclassical techniques [4-7]. It is in good
measure driven by some long-standing questions about
the fundamental nature of the correspondence principle
(see Jensen, Ref. [8]). A common thread amongst many
of the most interesting outstanding problems concerns
the difficulties, both theoretical and practical, introduced
by the presence of chaotic motion in the dynamics of a
quantum system’s classical analog.

The major thrust of research into the semiclassical me-
chanics of chaos has been in periodic orbit theory [2,
5]. Gutzwiller’s derivation of the trace formula served
as a catalyst for this growing subject. Periodic orbit
theory generates quantum eigenvalue information simply
from the characteristics of the classical periodic orbits.
Attempts to reproduce detailed spectra in the chaotic
regime have proven difficult, but the introduction of new
summation techniques has given much cause for opti-
mism [5]. Some efforts along these lines to infer eigen-
state properties also exist [9, 10]. Unfortunately, justifi-
cation of the semiclassical trace formula is still an open
problem [11] and it is unclear whether the troublesome
periodic orbit sum converges to the quantum spectrum
in any sensible way.

There is an alternative time domain, dynamical ap-
proach based on the semiclassical Van Vleck—Gutzwiller
(VVG) Green’s-function propagator [12,13]. By pursu-
ing the dynamical approach, we have two goals. The
first is the development of practical semiclassical tech-
niques, workable even if the dynamics are complicated.
They would be of direct interest applied to studies of
time-dependent phenomena in atomic, molecular, wave
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guide, and other systems. Second, we get new insight
into semiclassical aspects of chaos and the correspon-
dence principle issues mentioned above. The fact that
the VVG propagator plays a crucial role in the deriva-
tion of the trace formula also means that its validity has
direct, important consequences in periodic orbit theory.
The successes of periodic orbit theory should ultimately
be linked to the validity of the dynamical approximation.

In the very-short-time regime there is no substantive
difference between integrable and chaotic motion and
semiclassical mechanics works equally well for both kinds
of motion, as it must. Beyond this regime, integrable and
chaotic motion reveal themselves to be distinct at ever
finer scales in phase space. In the integrable case, the
motion is quasiperiodic and the local dynamics increases
complexity linearly in time. In contrast, the chaotic evo-
lution appears to be almost random and it develops fine
phase-space structure exponentially fast. The question
becomes: what kinds of evolving structures (and on what
scale) can semiclassical mechanics reliably use to approx-
imate quantum dynamics accurately?

For these reasons, we have been developing techniques
to study long-time semiclassical dynamics. We found
some rather encouraging results beginning with an in-
tegrable system, the Morse oscillator [14]. Then, in two
parallel studies of chaotic systems, one on the baker’s
map [15] and one on the stadium billiard [4], the long-
time semiclassical dynamics again proved to be extraor-
dinarily accurate. More recently, our work has been ex-
tended to the more “generic” kicked rotor. This work is
helping to clear up some of the mysteries surrounding the
unexpectedly accurate approximations [16].

Surprisingly, very little work along these lines had been
published before, with the notable exceptions mentioned
just ahead. The semiclassical propagator had not previ-
ously been systematically tested for a system far from in-
tegrability. This may have been due to technical barriers
to assembling the necessary semiclassical information, or
perhaps to pessimism about the applicability of semiclas-
sical dynamics to chaotic systems. Loosely, the gloomy
picture was as follows. The nonzero size of Planck’s
constant must be responsible for some kind of smooth-
ing over the intricate complexity that is the essence of
chaotic dynamics (or the intricate coexistence of regu-
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lar and chaotic motion found in mixed systems), so why
bother investigating the effects of classical structures on
a scale far finer than a Planck cell? This is a logical trap.
Although the nonzero size of A implies that quantum me-
chanics cannot be used to retrieve the detailed classical
motion, it does not necessarily follow that the classical
details cannot underlie or be used to predict the quantum
mechanics—that question is our central concern here.

The prior theoretical treatment addressing the time-
interval versus dynamics question is mainly that of Berry
and Balazs [17] and Berry et al. [18,19]. They described
a formidable time-scale barrier which semiclassical me-
chanics seemed unable to penetrate. They argued that
the semiclassical evolution of a state under chaotic dy-
namics remains accurate only over an extremely short
time t* = O(In(A™")), which is dubbed the “log time.”
Roughly speaking, beyond ¢t* the usual stationary-phase
approximation, which is the foundation stone of semiclas-
sical mechanics, should collapse. At issue is whether the
stationary-phase points (classical orbits) are sufficiently
well isolated. In a bounded chaotic system, they appar-
ently begin coalescing in great numbers on the scale of
t*, leading to the expectation that the semiclassical ap-
proximation should be headed for a total collapse by that
time. The logarithmic dependence is an expression of the
exponential instability of neighboring classical trajecto-
ries. In this light, the findings of our recent studies led
to quite unexpected results. The evidence in the baker’s
map indicates a linear breakdown time is possible if the
semiclassical dynamics are developed in a well-adapted
representation [20]. If a poorly adapted representation
is chosen, then breakdown is immediate. The log time
played no real role. The evidence from the stadium,
the kicked rotor, and recent theoretical work also sup-
ports the conclusion that the log-time concept is overly
pessimistic [4, 16]. Furthermore, studies such as that of
Christoffel and Brumer [21], though lacking a semiclas-
sical analysis, are suggestive of a longer-time correspon-
dence.

The purpose of this paper is to address the difficult
questions about long-time semiclassical accuracy. In so
doing we give a complete account of our work on the semi-
classical dynamics of the stadium. This study is made
more timely by recent experimental interest in the sta-
dium. There are groups measuring properties, such as
conductances, of mesoscopic stadium conductors [22] as
well as eigenvalues and eigenfunctions of two-dimensional
(2D) stadia microwave cavities [23]. Recent interesting
connections have been pointed out between the bound
and scattering states of such systems [24].

We begin the main text of this paper with a quick
overview on semiclassical propagation. In the following
section, we give a brief description of properties of chaos
necessary for understanding our technique of evaluating
the semiclassical propagator. The theoretical difficulties
and procedures are described in more detail and finally,
classical, quantum, and semiclassical studies are put to-
gether for the stadium billiard. It is shown that the agree-
ment extends well past the time that the chaos is highly
developed and classical structure far finer than a quan-
tum cell is put into the semiclassical dynamics. We then

derive the i dependence of the validity of the semiclassi-
cal approximation.

II. SEMICLASSICAL DYNAMICS

The overriding theme or universal idea behind semi-
classical mechanics can loosely be described as approx-
imating quantum amplitudes using the square roots of
classical probabilities supplemented by the superposition
principle and classically calculable phases. Although eas-
ily stated, exacting implementation often requires a lot
of care, the existence of a formal mathematical structure
notwithstanding. This is especially true here because
we are specifically interested in the complications intro-
duced by chaos and longer-time dynamics. We therefore
describe in detail the calculational techniques that have
been developed. Since they are deeply connected exten-
sions of existing semiclassical approximations, we begin
with a review of the material needed to make the discus-
sion self-contained.

A. The semiclassical approximation

As a starting point, consider a quantum system gov-
erned by a Hamiltonian H. Our basic goal will be to
determine to what extent the system prepared in an ini-
tial state |o) evolves into some final state of interest |3).
The overlap of |a(t)) and |B) gives the desired correlation
function

Cpalt) = (Bla(t)) = (Ble™Ht/*|a) 1)

and the exponentiated H operator is the quantum
propagator. Working in the customary configuration-
space representation, the propagator becomes the time-
dependent Green’s function

G(a,q';t) = (ale™*Ht/h|q), 2)

whose construction is formally given by Feynman’s path
integral [25, 26]. The propagation of a wave function
T,(q) = {(q|e) can then be written as a configuration-
space integral

o0
Valait) = [ do/Gla,q'st)Tala) 3)
—o00
as can correlation functions

Caal®) = [ i dq W (q; ) T3 (q). (4)

One way to obtain the semiclassical version of Cgq/(t) is
to apply the stationary-phase approximation to the Feyn-
man path-integral formulation of the Green’s-function
and the configuration-space dqdq’ integrals. In so do-
ing, one first expresses the wave functions in the suitable
form

¥(q) =) A;(q)ei D/, (5)
J
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where A;(q) is a slowly varying function of q and any
rapidly oscillating phase is captured in the exponential.
The argument W;(q) is typically a smoothly varying
function whose derivative 89WW/8q gives the local momen-
tum in the wave function p(q). The index j allows for the
possibility of multiple branches contributing at a given q.
This leads to a simple prescription for constructing the
semiclassical approximation. First, an initial manifold of
phase points {q, p(q)}, underlying ¥,(q) is identified.
It is propagated classically a time ¢ and the intersections
with the final manifold {q, p(q)}; identify the classical
trajectories that represent the stationary-phase “points”
of the theory.

This structure is evident in the VVG propagator [12,
13]. Performing the semiclassical approximation directly
to the Green’s function leads to

G(q,qd';t)

~ Gse(q,q';t)

1 d/2
- (27rih) XJ:

1/2

8%S;(q,q';t)
D i\, q’;
et( 9a0q )

X exp (iSj(q, q';t)/h ~ 17%) .
(6)

In this expression, the sum over j is for all trajectories
connecting q’ to q in time ¢ and d is the number of de-
grees of freedom. The determinant plays the role of the
square root of a classical probability, and the phase is de-
termined by the classical action S;(q,q’;t) and an index
based on the properties of the conjugate points (like focal
points), v;. S;(q,q’;t) is specified by the time integral
of the Lagrangian £

Sj(a,q’;t) =/0 dt' L
- /0 dt' {p(t) - a(t') — H(p(t),a(t))} (7)

along the jth classical path. H is the classical Hamil-
tonian which is presumed to be the classical limit of H.
Equation (6) was originally written down by Van Vleck
in 1928 without the summation or index v and was thus
fundamentally limited to extremely short times at best.
It was Gutzwiller who, much later, worked with the final
form above in deriving the trace formula as a sum over
periodic orbits.

B. Wave packets and linearized dynamics

Although Gyc(q,q’;t) is formally written down in
Eq. (6), it suffers from severe mathematical complica-
tions; this is not surprising since a similar statement
could be made of the Feynman path integral from which
it may be derived. With the complete momentum uncer-
tainty in q states, trajectories of all energies and com-
plexity must be incorporated. In addition, it is quite

possible, depending on the system, that Ge:(q, q’;t) has
singularities and divergences everywhere in q and q’ no
matter how small a time investigated. This happens, for
example, for potentials that increase sufficiently rapidly,
so that high-energy trajectories return arbitrarily fre-
quently at short time. On the other hand, many of the
difficulties with Gsc(q,q’;t) are not encountered in the
propagation of smooth, square-integrable wave functions
having finite-energy uncertainties. The wave functions
can be thought of as reorganizing or filtering the infor-
mation in the Green’s function. For convenience, we shall
focus on wave packets ®(q) of the form

2@ = (re?) exp (- LIS L B g gy)),
@

which allow one to zero in on a localized (h%) volume
of choice in phase space. The region of phase space
whose trajectories are relevant to the wave packet can
be roughly visualized by taking the Wigner transform
®w(q,p) of Eq. (8). It is a Gaussian distribution cen-
tered at (qo, po) with variances Ag? = 02/2 and Ap? =
h?/202. If o2 is chosen to be real, then the covariance
Agp = 0, giving

_(@-a0)® (- po)zaz) _

1
‘I)W(q’ p) = — €xXp ( o2 h2

wh
9)

For a Cp,(t), where |a) and |3) are wave packets, the
ideal approximation, outlined above, of applying the full
method of stationary phase would bring us to the gener-
alized Gaussian wave-packet dynamics of Huber, Heller,
and Littlejohn [27]. They established the equivalence of
their method to the semiclassical (WKB) approximation
in the complex domain. The {q, p} manifolds of phase
points underlying |a) and |3) are generally complex. The
use of complex classical trajectories is a serious complica-
tion and is prohibitive for present purposes. So, we shall
back away from the ideal route by holding off on perform-
ing the saddle-point (complex stationary phase) method
directly to the dqdq’ integrals. Instead, the Gaussian
wave packets will be weight factors to the real classical
orbits contributing to the VVG propagator.

The basic ideas (necessary for including nonlinear re-
currences) build upon the well-developed linear wave-
packet dynamics [28,29], so we discuss this first. Suppose
that one is interested in short-time dynamics and % is not
too large. The classical trajectories that are relevant to
the propagation of some ®(q) of Eq. (8) are those whose
initial conditions are near an h¢ volume dV, centered
at (qo, Po) in similarity with the volume “occupied” by
®w(q,p). The essential nature of the propagation of dV
is seen by following the centroid phase point from (qg, po)
to (q:, ps) which is taken as a reference trajectory. The
volume dV is distorted by an approximate local linear
transformation generated by the dynamics. The linear
transformation is specified by the classical stability ma-
trix as
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opt \ _ Opo
(3%) =M <3qo) 10
where (9q;, 0p:) is the deviation from (q¢, p;) at time ¢
of a trajectory started a small displacement (8qg, 8po)
from (qp,po). The determinant of M, is unity by flux
conservation (Liouville’s theorem). For a stable trajec-
tory, M; describes the local shearing or rotation. For an
unstable trajectory, M, will reflect the hyperbolic nature
(exponentially rapid stretching) of the local dynamics.
Its eigenvectors will be tangent to an unstable and a sta-
ble manifold which are, respectively, the local directions
of exponential expansion and contraction. The eigenval-
ues give the magnitude of the expansion and contraction
and give one a good approximate idea of how rapidly dV

becomes wildly distorted.

Linear wave-packet propagation follows by translating
the initial wave-packet centroid along the central orbit
from (qo, po) to (at, pt) and applying the unitary trans-
formation to ®(q) corresponding to the classical linear
transformation M, of that orbit. Use was made of a lo-
cally linearized version of the VVG propagator to take
care of precisely this and ensure the correct phase. The
details of the one degree of freedom calculation and Gaus-
sian integrals are given in Appendix A. A slight gen-
eralization of the Les Houches lecture notes of one of
us [29] is given in which trajectories other than (qo, po)
may be utilized as the reference; this is a preparation for
eventually incorporating the nonlinear dynamics. Note
that to the extent that the local dynamics are linear, lin-
ear wave-packet dynamics is a way of obtaining a single
stationary-phase contribution (without locating the ac-
tual point) and is equivalent. If there is some curvature
in the local deformation of dV (curvature in the way the
branches slice through the disk), it is necessary to pay
some attention to which trajectory is chosen as a refer-
ence. Otherwise, any trajectory from the central branch
inside dV serves equally well as the reference trajectory.

The calculation of a classical correlation function is
schematically illustrated in Fig. 1, which shows succes-
sive snapshots of an evolving group of trajectories. As
the group stretches and evolves, recurrences result from

4

FIG. 1. A schematic illustration of the hyperbolic struc-
ture of phase space. The swarm of trajectories, i.e., the black
disk, exponentially stretches apart as time evolves from upper
left to lower right. The light gray disks indicate the initial
swarm and the medium gray javelin shows the local linear-
dynamical approximation.

branches slicing through the the central region of the un-
propagated group—one branch at first, then more and
more as time increases. The linear-dynamical approxi-
mation of the correlation function accounts only for the
central branch. It uses the stability properties of the cen-
tral orbit as a reference, and gets the weight of the central
branch right, but nothing else. Sooner or later, the recur-
rences of the side branches will dominate the correlation
function; their relationship to the central branch is highly
nonlinear. By this time, the linearized dynamics fails to
properly describe the classical correlation function and
therefore the linear wave-packet dynamics description of
the recurrences must also fail.

C. Spectra

Often it is important to seek stationary-state quantum
solutions. By using the time-energy Fourier transform,
one can “filter” out intensity-weighted spectra from au-
tocorrelation functions, and eigenstates from propagated
states. The exact intensity spectrum of an initial state
®,(q) is projected by

1 [
S(B) = 5= / dt PR C 0 (1)
—oo

= |ca[*6(E - Ey),
n

(11)
Ba(@) =) c¥a(q),

where ¥, (q) is the eigenstate at the eigenvalue E,. In
the usual case where one does not have access to an
infinite-time argument in Cy,4(t), the energy resolution
is degraded to 6E = 27hi/ty,, where t,, is the maximum
time attainable.

It is worthwhile recalling how much information about
S(F) can be obtained from the linear wave-packet anal-
ysis. An interesting case is to consider placing |a) some-
where along a short, unstable periodic orbit. Figure 2

gourier Transforyy,

spacing 2m/t

idth A
exp[-t%/252] ey

exp[-At /2]

Ic(t)l exp[~u)282/2]

/\/\
0 T 2t 3t [

correlation funCtion ——ete—————— spectrum

S(w)

decays e Wi th S
[ECUIMTENCES i Structure

FIG. 2. The linear dynamics of an autocorrelation func-
tion on an unstable periodic orbit and its spectrum. The
relationships between the spectral features and the time-
domain decay and recurrence scales are indicated. Taken from

Ref. [29].
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summarizes the overall situation. There is an average
rate of the oscillating phase (not pictured) determining
the centroid of the spectrum. The decay time of the ini-
tial falloff sets the breadth of the envelope. The classical
frequency of motion for one cycle of the orbit gives rise
to the spacing between peaks. And finally, the broad-
ening of the peaks is determined by the classical orbit’s
Lyapunov exponent. This level of understanding is suf-
ficient, incidentally, to prove the existence of eigenstate
scarring [30]. More details can be found in [29].

There may be many more structures one would like
to understand in a spectrum. They will necessarily re-
quire learning to include nonlinear dynamics. The spec-
tral structures linked to the linearized dynamics are not
destroyed by including the full dynamics. They remain
intact. The role of the longer-time dynamics is simply to
increase the resolution.

III. CHAOS

The intricate nature of chaotic dynamics in a bounded
dynamical system arises from the interplay of just a few
key ingredients. Any subregion in phase space must pre-
serve its volume under evolution while becoming progres-
sively more distorted. The distortion proceeds so rapidly
that the majority of the available phase space has been
explored in a coarse-grained sense on an extremely short-
time scale, logarithmic in the coarse-graining size. This
explains the appearance of the schematic dynamics of
Fig. 1. The initial volume dV rapidly transforms into a
filamentary object with many branches cutting through
the original dV or any other dV elsewhere. Due to the
exponential spreading and h?® volume of dV, the simple
linearized correlation function approximations fail on the
logarithmically short-time scale t*. However, since the
failure of the linearized wave-packet dynamics is due to
getting the classical dynamics wrong and not by some
intrinsic problem with the semiclassical approximation,
one can hope to do much better.

We must first understand the rudiments of classical
correlation functions. Ignoring the question of whether or
not semiclassical mechanics should work, the basic prob-
lem which must be solved in order to evaluate the semi-
classical approximation to Cgq(t) begins with the purely
classical one of organizing and computing the necessary
dynamical information. The key classical ideas necessary
for making the semiclassical analysis (ahead) feasible can
be envisioned by imagining the forward propagation of
the initial volume dV; a time t/2 and the backward prop-
agation of the final volume dVy, t/2. The two filamentary
volumes thus produced, if they intersect, will do so in tiny
neighborhoods. Each one gives a contribution to the cor-
relation function and is typically well approximated by a
local linearization of the dynamics. They are located on
“heteroclinic” orbits found at the intersections of certain
stable and unstable manifolds of orbits. This is described
more generally and in further detail below.

A. Nonlinear classical reccurences

Consider an initially localized density of phase points
p(q,p). The classical correlation function I'gu(t)

formed with a second localized density pg(q, p) is defined
as

Fﬁa (t) = (pﬁv pa(t))
- / dq dp ps(a, P)pala P 1), (12)

where po(q,p;t) is determined from the density
pa(d’,p’) by associating (q’,p’) to the point that will
evolve into (q,p) in a time ¢. Because our interest in
Tsa(t) is motivated by wave-packet correlations, we as-
sume that p, and pg are localized, Gaussian densities
that occupy relatively small fractions of the available
phase space, even though this is unnecessary for much
of the following picture of the dynamics.

We start with the simple observation that almost ev-
ery orbit has at finite times a neighborhood of orbits that
behaves very similarly. The properties of these nearby
orbits, such as their actions, will be approximated fairly
well by a low-order expansion about the original orbit.
This suggests imagining the phase space as divided into
partitions each containing subsets of similarly behaving
orbits. In many of the systems used as paradigms of
chaos, for example, certain billiards, the partitioning for
t not too large is easy to construct. There are also a few
chaos paradigms for which the partitioning may be per-
formed analytically for all time. This leads us directly
into the subjects of symbolic dynamics and Markov par-
titions [31]. However, we will refrain from entering these
topics and will keep the discussion on an intuitive level.

All the transport properties reflect the partitioning.
Each partition of orbits potentially contributes to a corre-
lation function depending upon the initial and final den-
sities, po and pg, respectively. Calculating correlation
functions reduces first to finding which partitions have
an intersection initially with p, and after propagation
intersect pg. It is thus natural to decompose correlation
functions into a sum over separate contributions v as

Ta(t) =D (s, palt))., (13)

where « runs over the partitions at time t. This is just
an organization of the recurring trajectories and does not
yet involve approximation. The second step is to evaluate
each partition’s weight. The goal is not to perform this
exactly, but rather find an approximation scheme that is
far simpler to carry out and is motivated by our desire
to extend it into the semiclassical realm. For p, and pg,
taken anywhere from most regions of phase space, the
propagated trajectories will slice through pg in slender,
nearly parallel branches as pictured in Fig. 1; a similar
inverted image exists for going backward in time. Viewed
within pg, each branch contains the subset of orbits con-
tributing from a particular partition . A great simpli-
fication often arises from the linear way in which each
branch slices through the final distribution pg. Nearly
all individual (pg, pa(t)), can be approximated exactly
as the single contribution in the “old” linear-dynamical
picture. To an excellent approximation
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(b5, Pa(®), =~ [ dadp po(a,p), Trpal (@pit), (14

where T, linearly transforms p,. The anchoring point
of the transformation may be chosen as any trajectory
within v, however, it is best to select a trajectory which
both starts as closely as possible to the center of p, and
finishes as closely as possible to the center of pg. The
stability parameters of this reference orbit are used to
determine T, thus approximately including the contri-
bution of the full branch to I'ge(t). The more unstable
the reference orbit, the “thinner” or “lighter” the branch.

All of the nonlinearities accounted for are in the sum-
mation and the full dynamical problem is reduced to one
of multiple local linearizations. With p, and pg chosen
to be Gaussian densities, the integrals in Eq. (14) can be
done analytically. The sources of error in the approxima-
tion will be due either to local “curvature” or “end-point”
corrections. As p, and pg shrink both sources of error
will disappear for almost all regions of phase space at
fixed time.

We now need a method of locating a single reference
trajectory from each branch satisfying the above crite-
rion. Of the many possible search techniques for repre-
sentative trajectories, we developed a method motivated
by an interest in Gaussian densities which share their
(q,p) uncertainties, i.e., are not too close to either a q
state nor p state. A natural way to locate the neces-
sary set of reference orbits is to consider the direction
of exponential expansion of p, and the direction of con-
traction of pg. Many years ago, Birkhoff introduced a
normal coordinate form for analytic mappings applicable
to the dynamics in the neighborhood of a hyperbolic in-
variant point [32]. The convergence was later discussed
by Moser [33]. The rough idea applied here is that given a
domain of convergence in the neighborhood of the hyper-
bolic point, all (forward and backward) iterations of the
domain, are convergent as well [10]. If p, lies entirely
within the initial domain of convergence of its central
orbit, the whole density can be thought of as contin-
ually collapsing onto an ever increasing portion of the
central orbit’s unstable manifold U,. Likewise, the den-
sity ps propagated backward in time is collapsing onto an
ever increasing portion of its central orbit’s stable man-
ifold Sg. The recurrences are thus necessarily linked to
the intersections of U, and Sg and tiny neighborhoods
about them. At the intersections are heteroclinic orbits.
The number of relevant heteroclinic contributions will in-
crease exponentially with increasing time just as the indi-
vidual neighborhoods shrink exponentially. If p, and pg
have the same central orbit, the intersections are on ho-
moclinic orbits. The selection of the relevant portion of
U, and Sp is illustrated in Fig. 3. The ellipse encircling
the outer edges, say 30 or 40, of the Gaussian density are
projected down onto the manifold as indicated. Hetero-
clinic intersections further out on the manifolds could be
included but they are damped out by a Gaussian weight-
ing rendering their contributions completely negligible.
There will be one and only one heteroclinic orbit per
contributing v if the conditions for having the domain
of convergence apply (this does not strictly apply to the

Q

FIG. 3. The relevant portions of the stable and unstable
manifolds. The wave-packet’s ellipse of uncertainty is pro-
jected down onto each manifold along the direction of the
other. The relevant manifold sections are indicated in solid
black. The ellipse contour corresponding to about 4¢ should
suffice in most cases.

stadium, but we can still proceed in Sec. IV as though it
does). Because the organization into partitions and the
collective contribution of each one’s trajectories can be
accounted for by a set of heteroclinic orbits along with
their stability analysis, we shall usually refer to Eq. (13)
(especially in Sec. IV) as a heteroclinic orbit sum even
though the partition organization is the more fundamen-
tal and correct viewpoint.

We note that an analogous procedure is easily gen-
erated for integrable dynamics. Instead of stable and
unstable manifolds, one must consider manifolds of tra-
jectories motivated by the structure of the local shearing
or rotation of the dynamics; this is straightforward. Less
obvious is how to generate the analogous procedure for
mixed dynamical regions where there is a complicated
coexistence of regular and chaotic motion.

B. Semiclassical incorporation of nonlinear dynamics

An approximate technique of propagating quantum
wave packets can be built on precisely the same con-
cepts as the classical correlation functions. Each parti-
tion in a semiclassical evaluation of the correlation func-
tion will give a square root of a classical probability and a
phase. Since the classical recurrences partition into sep-
arate contributions, so too must the semiclassical. The
contributing orbits of the partition work together to form
a local component wavelet. We can write analogously,
therefore,

Cpa(t) = Y _(Blo(t))y- (15)

Each contribution is determined by evaluating the
Gaussian-weighted, configuration-space integrals over
the locally approximated VVG propagator; see Eq. (6)
and Appendix A. A linearization of the dynamics is used
about each of the reference heteroclinic orbits and the
basic results of the old linear wave-packet dynamics can
be borrowed for each term; the calculation boils down to
the computation of the heteroclinic orbits, their actions,
stabilities, and phase indices. In this view of the wave-
packet dynamics, the previous linear version is recovered
for times short enough that only the central partition
is significantly contributing and its breakdown occurs as
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soon as multiple terms become necessary.

We have in a sense sacrificed the purity of the true
stationary-phase approximation, but found an immensely
simpler evaluation which closely respects the stationary
phase. To the extent that for each heteroclinic branch
there exists a complex stationary-phase trajectory, the
linearization about the real heteroclinic orbits and en-
suing Gaussian integral effectively “locates” these com-
plex trajectories and gives their stationary-phase contri-
bution. As long as the heteroclinic orbit is in the imme-
diate neighborhood of a complex stationary-phase trajec-
tory, there should be only a tiny “curvature” correction
between the linearized dynamics of the two points. The
difficulty of complex stationary-phase points which do
not correspond to branches of real orbits is more subtle
and will be treated in another work [34].

C. The area-h rule

We now have a practical technique for including nonlin-
ear dynamics into semiclassical propagation. In our letter
it was shown to be very effective, but little was said as to
why it worked. An early, extensive theoretical treatment
of how chaos affects the stationary-phase approximation
was given in Ref. [18], where it was argued that the semi-
classical evolution of a state under chaotic dynamics re-
mains accurate only over an extremely short-time scale,
t* = O(In(h™')), which is dubbed the log time (see also
Ref. [35]). The reasoning was that by this time or soon
thereafter, the problems with caustics become quite se-
vere. The argument goes like this. The propagation of a
quantum state is connected via semiclassical mechanics
to the propagation of a manifold of trajectories. Assum-
ing the dynamics are chaotic and bounded, the manifold
will stretch out exponentially fast, depending on the Lya-
punov exponent, and then begin folding back upon itself.
The time when pieces of the manifold are found “every-
where” on the scale of /i cannot be delayed beyond the
log time.

In the vicinity of a fold, the projection of the state
into configuration space generally will have two nearby
stationary-phase points. Consider an isolated case of
two coalescing stationary-phase points as illustrated in
Fig. 4(a). In this example, a uniformization of the sim-
ple stationary-phase approximation leads to an accurate
Airy-function form whose argument depends on the black
shaded region in the figure. If this area is large compared
with A, the leading asymptotic form of the Airy func-
tion is good and it approaches the nonuniformized sum
of two isolated stationary-phase points. If this area is of
the order of % or smaller, the uniformization is essential.
Without the uniformization, the standard result blows
up as the two stationary-phase points coalesce. This is
the “area-h rule” and it gives a rough idea of the domain
over which a nonuniformized caustic leads to inaccura-
cies in the semiclassical approximation. Once folds de-
velop, they proliferate exponentially rapidly, giving rise
to a large number of spurious infinities in the wave func-
tion. Although one might consider uniformizing a pair
of isolated, coalescing stationary-phase points, soon af-
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FIG. 4. The area-k rule. (a) The area contained between
intersections of the time evolved manifold of a state and a
position state (vertical line) is shown as black. If this area
falls below A, the semiclassical amplitude is in doubt. (b) A
coherent state of the type shown is subject to nearly the same
area rule. (c) If it is squeezed more like a momentum state,
no caustic problems arise.

ter the log time one would be overwhelmed by multiple
coalescing points everywhere. The semiclassical approx-
imation appears to be headed for a total collapse in this
view.

There are some modifications needed to the area-
h logic if the wave function is projected onto local-
ized Gaussian wave packets instead of into configuration
space. It is easy to check that if the relationship between
the wave packet and the propagated manifold of trajec-
tories is as pictured in Fig. 4(b), the area-h rule remains
true, although the divergence will be smoothed out by the
Gaussian. The inaccuracies project into the same domain
of the wave function as before, but with errors more like
a factor of 2 or 3; less if the Gaussian is “momentumlike”
for this example. This opens the door, if there are many
contributions in a certain region, for the good ones to
dominate the inaccurate ones. The breakdown is more
tied to the relative fraction of good versus poor contribu-
tions than just the existence locally of a single divergent
caustic. This can drastically alter one’s expectations of
the time scale of breakdown; see Sec. IVE. A second
point is that the subject of caustics is highly representa-
tion dependent. If the wave-packet—manifold relationship
is more as pictured in Fig. 4(c), there is no longer an area-
h rule to worry about. Both of these considerations tend
to chip away at the log-time barrier without violating
the fundamental point of the area-% rule. In short, judi-
cious handling of the phase-space dynamics can greatly
enhance a semiclassical approximation.

In the baker’s map the manifolds are “chopped,” leav-
ing no areas to identify for the area-# rule. There semi-
classical validity was found to extend to a linear time
scale [20]. The stadium also has a kind of discontinu-
ity (see below) even though there is no trouble identify-
ing areas. However, recent work by Septlveda and the
present authors [16] suggests that the excellent accuracy
is a general phenomenon. They show that given the area-
h rule t* still does not spell the demise of semiclassical
propagation. We leave the theory aside here and return
to the specifics for the stadium later in Sec. IV where a
derivation of the breakdown time scale is given.



IV. THE STADIUM BILLIARD EXAMPLE

The stadium billiard has been an extremely useful tool
for studies of chaotic systems from both a classical and
quantum-mechanical viewpoint. Bunimovich [36] first
proved that it is classically chaotic. A few years later,
work on the quantized version began in earnest with Mec-
Donald’s thesis [37]. They developed a Green’s-function
technique for obtaining the eigenvalues and eigenvec-
tors, and gave a tremendous impetus to the study of the
eigenvectors of classically chaotic systems. Shortly there-
after, the quantized version played a role in the Bohigas-
Giannoni-Schmit conjecture of the connection between
random matrix theories and spectral fluctuations [38] as
well as the prediction and discovery of eigenstate scarring
by the least unstable periodic orbits [30]. The stadium’s
status as a paradigm of chaos was cemented.

Just as in Sec. III, where nearly all of the effort to
generate a semiclassical approximation was expended on
organizing the classical dynamics, we begin here with a
classical study of the the stadium which will complete the
majority of the work needed for its semiclassical treat-
ment.

A. The classical dynamics

The classical stadium consists of a free particle specu-
larly reflecting off hard walls whose shape is pictured in
Fig. 5. There is a one-parameter family of stadia speci-
fied by u, the ratio of the length of the straight edge to
the semicircular diameter. For y = 0, the stadium re-
duces to the integrable circular billiard. For all x4 > 0,
the stadium is fully chaotic [36]. In our calculations, the
diameter equals two, the mass equals one, and u = 1.

A convenient property of the stadium is that the classi-
cal dynamics at any two energies are connected by simple
scaling relations. It suffices to study the orbits at a fixed
energy (||p]| = 1) in order to understand the dynamics.
Each of these individual orbits is a “geometric parent”
of a continuous family of orbits (“geometric family”) re-
lated by just changing the momentum with which one
moves along the parent. The result is a large simplifica-
tion in the classical and semiclassical calculations. The
~ summation of Eq. (13) [and Eq. (15)] was over the ap-
propriate heteroclinic orbits at a time ¢. In principle,
for any other t a different set of orbits is relevant which

FIG. 5. The map coordinates. The position coordinate
Q@ measures distance along the perimeter moving clockwise
from an arbitrary origin, here chosen in the middle of the
right semicircle. The momentum coordinate P is the cosf
setting the energy equals § (||p|| = 1). With the choice of the
radius, r = 1, the length of the straight edge is 2u.
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would have to be recalculated. With the scaling property,
the sum may be interpreted as being over all geometric
parents where fixing the time just specifies a particular
geometric family member whose action and stability is
easily related to the parent.

The free-particle motion in the stadium is not a great
difficulty and can be set aside temporarily. The real
story of the dynamics is reduced to the mapping of the
sequence of bounces off of the hard walls. The canoni-
cally conjugate coordinates of position along the bound-
ary and tangential momentum (Birkhoff coordinates) are
pictured in Fig. 5. All the v orbits can be located work-
ing strictly from this surface of section. The phase space
is a finite height section of a cylinder. Figure 6 shows a
typical (ergodic) orbit and its representation in the sur-
face of section. It appears to be randomly filling the map
except for small excluded regions near the vertical bounc-
ing motion. The excluded region will shrink away with
time eventually.

In Sec. III A we loosely described a partitioning of
phase space based on existing subdomains containing
similar orbits. In the stadium, any two geometric par-
ents are in the same partition and have similar properties,
such as actions and stabilities, as long as they bounce off
the same succession of sides, i.e., endcap, straight, end-
cap, ..., etc. (with the correct rotation sense). Those
orbits which divide partitions must strike (with arbitrary
momentum) one of the four points where the straight
edges meet the semicircles. The delineation of the par-
titions for a fixed number of bounces m is just a matter
of locating all the orbits which after m,m —1,m —2,...
bounces hit these joints. A simple way of doing this is
to follow the manifold of trajectories starting from the
joints backward in time 0,1,2,...,m bounces. Inverting
the momenta gives the initial domain of the partition.
The relation of the initial and final domains is obtained

0 2m +4u

Q

FIG. 6. A typical trajectory. On top is a drawing of an
80 bounce portion of a trajectory started in the neighbor-
hood of the horizontal bounce periodic orbit. Below, the first
4000 bounces of the same trajectory are shown in the surface
of section. It appears to fill the surface randomly with the
exception of the region of vertical bouncing motion which is
sometimes referred to as being “sticky.” Eventually the map
will be covered uniformly.
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Q

FIG. 7. The single-iteration partition map. Each of the
delineated regions in the upper figure map into one of the
regions in the bottom one. The numbered regions go into
their primed counterparts.

by reflecting the initial one with respect to the p = 0 line.
The one-bounce partition and its mapping are shown in
Fig. 7. Even with this global symmetry, there is a com-
plicated reordering of the domains by the mapping. In
Fig. 8 the m = 2 and 4 initial domains are shown. The
exponential growth of partitioning is striking and is a
consequence of the highly chaotic nature of the stadium.
By m = 5 it is impossible to show the full drawing.

The structure of the partitioning is reflected in propa-
gating a density of trajectories. After two iterations, the
dashed disk of Fig. 9 distorts into the elongated object

FIG. 8. The initial domains for the two and four iteration
maps, respectively. The final domains are just the mirror
reflections across the middle horizontal line.

FIG. 9. Propagation of trajectory swarms. Pictured are
the two and four iteration mappings of the dashed ellipse
showing its rapid delocalization. The dotted lines mark the
semicircle-straight-edge joints.

shown in the upper box. The kinks or folds arise where
the initial disk crosses partition boundaries. After just
four iterations in this example (lower box), almost every
correlation function would have multiple contributions.
The initial branches of phase points propagating into the
final branches in p, are shown magnified in Fig. 10. Typ-
ical trajectories from one of the branches are superposed
underneath the expanded disk to illustrate how a single
branch is capable of supporting a local wave front and
that it is related to a single heteroclinic orbit. All the
recurring dynamics of this disk (at just four iterations)
is organized by the seven distinct homoclinic geometric
parents shown in Fig. 11. It is important to realize that
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FIG. 10. Expanded view of the four-times-iterated ellipse
of Fig. 9. The initial conditions of the recurring trajectories
are in the right leaning branches which return as the left lean-
ing branches. The initial conditions darkened and labeled i
return as the darkened branch labeled f. Sample trajectories
of branch i — f are shown underneath. The homoclinic orbit
intersects the black dots on the branches.
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FIG. 11. All the distinct homoclinic trajectories needed
to organize the recurring dynamics of the four-times-iterated
ellipse. The fourth orbit was the one labeled by i and f in
Fig. 10.

all the branches pictured are well within their respec-
tive partitions. The boundary of each branch is wholly
determined by the cutoffs inherent in p, and pg. The
abrupt boundaries of the partitions are not involved. If
one tried to show the same figures for m = 11, there
would be more than 30000 filamentary branches slicing
through the original circle.

To construct I'g,(t) requires connecting the dynam-
ics of the map and its structure to the full dynamics of
the stadium, including the free-particle dynamics. The
analogous considerations will also be needed later for the
semiclassical dynamics. A first point is that the p, and
pp are taken to lie in the stadium whereas the trajecto-
ries found via the mapping dynamics have their initial
and final end points on the stadium boundary. The end
points need to be extended to the trajectories’ closest ap-
proach to the p, and pg centroids. This occurs where a
ray aligned along the coordinate gz (perpendicular to the
orbit) passes through the appropriate p centroid. Next,
the geometric parents are contributing at all times, ¢t > 0.
At fixed t, only one family member orbit is relevant and
it is the one whose momentum along the orbit equals the
orbit length divided by the time, p = I/t. In ' (t), the
geometric family thus has a peak contribution time when
its family member’s momentum best matches that of p,.
There is a falloff away from this peak depending upon
the momentum uncertainties involved.

For each geometric parent, the local stability analysis is
most conveniently performed in the coordinate system of
the trajectory. The motion along the orbit is free-particle
dynamics and is decoupled from the stability analysis in
the coordinate perpendicular to the orbit. This simplifies
the Gaussian integrations into two separate ones provid-
ing that 0 = 02, = 02,. The overall contribution of a
geometric family to the autocorrelation function is just
the product of the two.

The parallel direction stability matrix is the free-

particle result of

_(m11 mi2)_ (1 0
M"(t) = (m21 m22) = (t 1) . (16)
For the perpendicular direction, the geometric parent
picks up successive multiplicative factors for traveling
freely distances [; across the stadium which alternate

with factors from colliding with the walls. One has (i = 1
is the rightmost in the multiplication order)

(1 o\vr/-1 2/Rsin6;\ (1 0
=l DI 75 (1)

(17)

The 6; are the incidence angles of the ith bounces defined
in Fig. 5 and the radius of curvature R is 1 for the endcaps
and oo for the straight edges. M (t) for a given family
member is obtained from its parent M by dividing the
mo1 element by p (= 3, 1;/t) and multiplying the m
element by p.

Figure 12(a) shows the heteroclinic orbit summation
evaluation of I',4(t) where p, is aimed directly into one
of the endcaps. Although the orbits display an array of
complex behaviors, only a few features remain in I'qq(2).
There is an initial decay and horizontal bouncing peri-
odic orbit recurrences that rather quickly give way to a
fairly flat asymptotic value (a power-law decay correction
due to vertical bouncing motion slightly modifies this pic-
ture). An interesting result of the heteroclinic analysis
is that each geometric family gives an extremely simi-
lar shape contribution with time; see Fig. 12(b). Only
the overall amplitude and time scales enter. The dashed
curve in Fig. 12(a) is the absolute value of the corre-
sponding quantum correlation function, Cyq(t). Their
correspondence and large differences are discussed below.

0.3 ———
o
>
=~ 0.2 }
N
=~ 0.1 ¢}
0.0
0
0.2 .
o
N
= (b)
50.1 |
—~
0.0 R
1 2 3

t

FIG. 12. The classical autocorrelation function. The
square root of the classical function is pictured in (a) as a
solid line. The absolute value of the corresponding quantum
amplitude is superposed as the dashed line. A single homo-
clinic family contribution is shown in (b). The initial state is
the same as in Figs. 14, 17, and 18. Note that ¢t = 1 (through-
out the figures) is the time to cross the stadium horizontally
at the mean momentum; also m = 1, h = 1, and we use the
“2x4” stadium.
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Of the two possible sources of error in the heteroclinic
sum, curvature of the branches is clearly negligible as is
visible from Figs. 8 and 9. The remaining source, that
of branches folding abruptly within the boundary of p,,
is also negligible at short times, but may become more
important at longer times. Ahead in the semiclassical
heteroclinic sum for Cyq(t), this folding is a more se-
vere problem because it is connected to diffraction in the
quantum system. It is eventually responsible for breaking
down the approximation. See Sec. IVE.

B. The quantum dynamics

The motion of a quantum particle in a stadium en-
closure is governed by the time-dependent Schrédinger
equation. Most often Dirichlet boundary conditions are
chosen so that wave functions vanish at the walls. How-
ever, we find it interesting and necessary for numerical
reasons to introduce “soft walls” that allow the quan-
tum particle to penetrate the walls a short distance; this
may be the physically relevant situation as with elec-
trons injected into mesoscopic devices. Instead of having
an infinitely high potential barrier, the potential is taken
to step up from 0 to Vp at the boundary. The classi-
cal trajectories below V; are unaffected by this change.
The Dirichlet conditions are recovered in the limit of
Vo/(p?) — oo. There are separate reflection symmetries
with respect to the central vertical and horizontal axes.
A very accurate, fast-Fourier-transform (FFT) technique
described in Appendix B is used to propagate states.
Special attention was paid to the accuracy in large part
because the semiclassical approximation is proving to be
so good.

The highly chaotic nature of the stadium is revealed in
the propagation of initially localized states. Almost any
®(q) will rapidly delocalize and appear to fill the sta-
dium with random-looking waves somewhat akin to the
surface of a swimming pool in use (weak-localization ef-
fects would normally not be that visible to the naked eye
here); see Blumel et al. [39] who, in fact, set up stadium
water wave experiments. The most significant exception
to the random-looking wave scenario is for a ®(q) under-
going the marginally stable vertical bouncing motion.

Shown in Fig. 13 are the contours of the real part of a
wave packet initially located at the center of the stadium
moving toward the right. Scaling the time for the wave-
packet’s horizontal traversal of the stadium to be t =1,
the propagated wave function is shown for ¢t = 0, %, 1,2,6.
By t = 2, the time of the shortest unstable periodic or-
bit, the wave function has already passed the “Ehrenfest
time,” i.e., it is no longer recognizable as having orig-
inated from a localized state. The obvious quantum-
classical correspondence time has already passed. The
challenge posed by having underlying unstable motion is
readily apparent.

The gross behavior of the autocorrelation function
Caa(t) is easily understood. Its magnitude will begin
at one and drop to nearly zero as the propagated wave
packet begins to move away. It will remain nearly zero
until ¢ &~ 2 when parts of the wave packet will have had

FIG. 13. The quantum propagation of an initial coherent
state. Four equally spaced contour lines of the real part of
the wave function are plotted in successive time snapshots at
t=0,%,1,2,6 (moving from upper left to lower right).

the time to travel back and forth across the stadium and
generate partial recurrences. Soon thereafter the quan-
tum propagated state seems to be everywhere and Cpq (t)
will settle into some fluctuating pattern. This is borne
out in Fig. 12(a) by the dashed (exact quantum) curve.
It is instructive to compare it to the classical equiva-
lent, I'q(t). The interference oscillations inherent in
Caa(t) lead to some large differences between the two.
In addition, Caq(t) recurrences look overall significantly
stronger than their classical counterparts. This can be
accounted for because of coherences related to the dis-
crete reflection symmetries of the stadium.

The counterpart in the energy domain of the compli-
cated interference fluctuations is a spectrum with a great
deal of fine structure as is seen in Fig. 14; it is found

Intensity

100 200 300 400 500

FIG. 14. The quantum intensity spectrum compared to
the linear-dynamical prediction. The spectrum roughly spans
the 100th to 500th levels (including all symmetry sequences);
only the {+, —} levels contribute here. The black is the quan-
tum curve and the gray is from the linear dynamics. The
widths in the quantum-curve result from our stopping the
propagation after a certain length time.
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by Fourier transform of the Caq(t). It corresponds to
an initial state similar to the one of Fig. 13 except its
wavelength is double [as in Fig. 12(a)] and it is anti-
symmetrized with respect to reflection about the vertical
symmetry line (the state is already symmetric with re-
spect to the horizontal symmetry line). Superimposed on
the figure is the linear-dynamical prediction. It roughly
locates the regions of maximum and minimum overlap
(where the scarred and antiscarred states, respectively,
to the horizontal periodic orbit must be located), but it
is unable to resolve any further structure.

C. Conjugate point and soft-wall phase shifts

The great majority of the work involved in producing a
semiclassical prediction for stadium correlation functions
is already completed by just understanding the classical
dynamics as discussed in Sec. IV A and performing the in-
tegrals required by Eq. (15). Using the coordinate system
described in that section and wave packets of the form
Eq. (8), the semiclassical treatment decomposes into free
motion parallel and unstable motion perpendicular as did
the classical version. The < terms can be thought of as
arising from a method of images, one per heteroclinic or-
bit. The integral of Appendix A is easily adapted to each
component by plugging in the heteroclinic orbit and the
matrix elements of M (), and M (), respectively.

The only task remaining in completing the semiclassi-
cal approximation is to calculate v; by keeping track of
the —m/2 phase shifts that arise from passing through
conjugate points and by treating the phase shifts of re-
flecting off soft walls. The conjugate points due to the
free-particle dynamics are easily counted by comparing
the sign of the m5 stability matrix element for the trans-
verse motion. If it changes sign somewhere between re-
flections off the walls, the unstable manifold has passed
through the vertical in phase space. A —m/2 phase shift
is counted; note that no more than one conjugate point
may be encountered in traversing the interior. A sign
change is possible only after hitting one of the semicircu-
lar endcaps.

The soft-wall phase shifts are more complicated. They
generate both real and imaginary contributions to the
phase in correlation functions. These phases originate in
the penetration depth of the local wave which is deter-
mined by the wave momentum perpendicular to the wall;
momentum parallel to the wall plays no role. The various
orbits within one partition do impact the walls slightly
differently, but we will ignore this and consider only the
reference heteroclinic orbits.

To derive the phase shift it is convenient to begin with
a one-dimensional (1D) system of a particle reflecting off
a step barrier. The semiclassical eigenstates are exact,
assuming the complex trajectory under the barrier is ac-
counted for. Let V denote the energy to climb the step,
m the particle mass, and p; the momentum (L indicates
perpendicular impact for use later in two dimensions).
The eigenstates in the classically allowed region are (the
step is placed at ¢ = 0)

T(q) = ePLa/h 4 o—ipia/h+i6(pL)
efPr) = _1 442 —in/2-72, 42 <2 (18)

where 72 = p? /mV and E = p% /2m. The incoming
initial and outgoing final states are taken to be localized
away from the step. They thus have Gaussian amplitude
overlaps with the eigenstates equal to their respective
Fourier transforms into the momentum representation.
In this representation the propagator only introduces a
time-varying phase exp (—ip? t/2mh) in the overlap inte-
gral. Without the phase shift, performing the Gaussian
integration exactly equals the stationary-phase approx-
imation and gives the free-particle propagation result.
It is good enough for our purposes to treat 1) as a
slowly varying function compared with the rest of the
integrand so long as the energies of the contributing tra-
jectories do not approach the barrier height too closely.
The phase shift is then time dependent and obtained by
inserting the stationary-phase condition

PR el OV (19)
7 1+ ith/2mo?

into the relation for v; p (= pg = pa) is taken to be equal
for the initial (c) state and final (3) state. p; becomes
real at the time that an orbit’s contribution peaks out
in the correlation function. For the stadium, the total
phase shift is the product of the individual ones coming
from each bounce. A multiplication with the cosine of
the incidence angle is included to project out only the
perpendicular component of the momentum.

Equation (18) tells us that the soft-wall phase shifts
only slowly approach the Dirichlet or hard-wall result of
—m as the ratio of the barrier height to the trajectory
energy approaches infinity. With the multiple bounces of
the longer orbits, the differences between hard and soft
walls are sufficient to change markedly the details of the
interference patterns, even in cases where the penetra-
tion depth of the exponentially weak wave-function tails
outside the walls are a small fraction of a wavelength.

D. The semiclassical results and validity

The initial surprise reported in [4, 15] is that every de-
tail of the fluctuating quantum behavior is captured by
the semiclassical prediction well past the log time. Super-
posed in Fig. 15(a) is a solid curve representing the semi-
classical Cqq(t) and a dashed curve representing the ex-
act quantum solution, showing the excellent agreement.
The centroid energy of ¢(q), shown in Fig. 13, was cho-
sen so that 30 wavelengths (A) span the stadium horizon-
tally. In Fig. 15(b) just the real part of Cas(t) is shown
on an expanded scale to display the quality of agreement
better. In performing the homoclinic (for autocorrelation
functions) summation to obtain the semiclassical predic-
tion, about a dozen geometric parents were contributing
at any given time near t ~ 2 to 3. By t = 4 to 5, sev-
eral hundred were contributing, and by t ~ 5 to 6, more
than 30000 geometric parents were needed. To picture
the dynamical complexity, recall the bottom right image
of Fig. 1 which shows seven branches slicing through the
gray disk. To attain ¢t = 5 or 6, one would have to draw
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FIG. 15. Comparison of the quantum and semiclassical
autocorrelation functions. The solid line is the exact quan-
tum found by a FFT, and the dashed line is the semiclassical
approximation. In (a) the absolute magnitude is depicted,
and in (b) a view of an expanded piece of the real part is
shown.

more than 30000 isolated branches fitting in the gray
disk. Other than for the beginning of the first recurrence,
no individual orbit comes anywhere close to generating
the magnitudes of the recurrences seen; all of the terms
are necessary. Figure 16 shows an important geomet-
ric parent and its family’s contribution, (®,(0)|®s(t)).
Also shown is a superposition of a number of the neigh-
boring orbits belonging to the same partition whose con-
tributions are included collectively with this parent. The
focal points and the local “wavelets” they support are
quite visible. The overall shape of (®,(0)|®s(t)), has
been found to be quite independent of the particular

Y
0.010 ' M ]
r——';\
= 0.005 } ]
\—/5
S 0.000
e
Y ]
= —0.005 |
-0.010} E
3 4 5 6
t
FIG. 16. An important primary homoclinic orbit is drawn

above its family’s contribution to the correlation function of
Fig. 14.

FIG. 17. The quantum and semiclassical autocorrelation
functions for a wave packet centered at half the momentum
(or double the wavelength).

heteroclinic guiding orbit . Note that the scale of its
magnitude is much smaller than found in the full sum
pictured in Fig. 15.

An important question is whether or how the funda-
mental approximation fails if 7 is not sufficiently small.
Figure 17 compares a second example where the stadium
measured in wavelengths is only 7%)\ high by 15\ long
[as in Fig. 12(a)]. We could not increase % much more
than this and still handily satisfy the “Birkhoff conver-
gence condition” in the neighborhood of the central tra-
jectory that was mentioned in Sec. IIT A [32, 10]. We
would then need a more sophisticated technique of lo-
cating trajectories, perhaps involving complex dynamics.
The agreement has degraded somewhat but is still quite
good. Evidently, semiclassical behavior does not require
exceedingly small A.

The overlap intensity of ®, with the eigenstates may
be obtained by Fourier transforming the dynamics; see
Eq. (11). Figure 18 shows the comparison of the semi-
classically derived spectrum with the exact quantum in-
tensity spectrum. The maximum peak occurs near the
300th eigenvalue. Remarkably, the semiclassical theory
is reproducing the quantum fine structure to about the
scale of a mean spacing. The limit of resolution results
from the present practical limit of performing the classi-
cal dynamics and not by any failure of the semiclassical
dynamics. By t =~ 8, ~ 108 heteroclinic orbits are needed.
We have hit the “exponential wall” of orbit prolifera-
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FIG. 18. The middle half of the {+,—} spectrum com-
pared with the full semiclassical theory.
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tion. It is clear that details are being washed away classi-
cally (recall the simplicity of Fig. 12) and semiclassically
in summing heteroclinic trajectories and their neighbor-
hoods to obtain a simple correlation function. Work is
in progress to identify that information which remains
or how to summarize the classical detail well enough to
break through the wall.

E. The time scale of breakdown

The dynamics of free propagation and reflection is
clearly handled extremely well semiclassically even for
very long times. A homoclinic orbit like the one pic-
tured in Fig. 16 is a good example. All the related or-
bits and their contributions found by extending this same
basic orbit to longer and longer lengths will also be ac-
curately reproduced. Errors arise though when a wave
(or classical orbit) approaches too closely one of the four
straight-edge—endcap joints. Wave amplitude impinging
there generates diffraction, which is not a part of the het-
eroclinic summation scheme we have introduced. This
occurence is related to a discontinuous fold appearing in
the manifold of trajectories. The classical approximation
also suffers from folding, but only locally (only if the
fold is inside po). In contrast, the effect of folding in the
quantum mechanics is more severe because it is nonlocal.
Folds well away from p, may still give rise to corrections
to Chu(t) in addition to the local foldings.

We now examine the errors due to diffraction more
closely. Consider the elementary process of reflecting an
initial wave packet off the straight edge near the joint
once. The geometry is pictured in Fig. 19. Depend-
ing upon whether ¢, and ¢g are placed such that the
central trajectory just strikes either the straight edge or
the endcap, the linearized-dynamics prediction discontin-
uously changes, yet the quantum-mechanical amplitudes
are continuous. Figure 20 shows this difference, which
mainly affects the magnitude in this example. The quan-
tum result is found to lie about halfway between these
extremes. It is seen, however, that the respective semi-
classical approximations rapidly become accurate as ¢q
and ¢g are shifted to move the central trajectory away
from the joint. An interesting effect is that the leading
edge of the overlap, which involves the higher momentum
trajectories (shorter \), recovers more quickly than the
tail (as should be expected).

It is possible to arrive at a semiquantitative theoreti-
cal explanation of the correlation function’s behavior in a

FIG. 19. A propagated wave packet starting off in the
direction of the arrow is overlapped with another located at f
pointing in the direction of its arrow. g measures the distance
by which the classical orbit of the center (dashed line) misses
the joint.
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FIG. 20. Accuracy of the semiclassical prediction. In (a)
the discontinuous difference in the semiclassical prediction is
shown. The solid line results in bouncing from the straight
edge and the dashed line from the endcap. The quantum
result roughly lies halfway between the two (not pictured).
In (b) the semiclassical prediction (solid) is compared to the
quantum solution (dashed) when g is 2 of a wavelength (to

the straight-edge side).

straightforward manner. Let us start by freely propagat-
ing an initial wave packet ¢, toward a hard wall. Along
the wall at any time 7, the wave function must vanish. A
simple approximation is to use the wave magnitude and
phase to “light up” time Green’s-function sources giv-
ing a Huygen’s-like principle for the construction of the
reflected wave; a wall phase shift may also be included.
Similarly, let a final wave packet ¢ be back propagated
to the wall a time —(t — 7), generating a different wall
source illumination. The correlation function is reduced
to a time convolution and line integral along the bound-
ary. Diffraction is introduced in the stadium because the
straight-edge line integral stops at the joint and continues
along the curve whose stability parameters are different.
Let ®; be the straight contribution having an appropri-
ate endpoint. Relative to the result of the infinite plane
wall ® [which would reflect the content of Eq. (15) eval-
uated within the local linearization approximation], we

find
29,
- =1 f
3 + erf(2), (20)
g sinf

(02 + ith/2)Y?’

L Ly
p (o2 +ith/2)'/?

where p, is the transverse momentum at the wall and ¢
is the positive distance between the joint and the clas-
sical orbit connecting the initial and final states. For
Re(z) > 1, the relative semiclassical errors are quite
small, < 10% and by scaling 02 as h, z can be made to
scale as h~1/2. This is consistent with the rapid switch
over with increasing ¢ illustrated in Fig. 20 and provides
additional information as to how the angle of incidence
of the incoming wave enters the problem.
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We ignored the wavelet that is emanating from the end-
cap. In this case, it would typically reduce the estimate of
the error in this example. However, it can be shown that
the i dependence of the error is left unchanged. Since we
are interested in the case where the radius of curvature
does not significantly exceed all the other length scales in
the problem, the endcap wavelet is justifiably and safely
ignored for our purposes.

We can make a closer connection between this simple
single bounce example and multibounce orbits with a few
simplifying assumptions. If the initial state is not aimed
directly at a joint, by the time a wave makes it there, it
is locally behaving much like a plane wave. The errors
introduced are largely independent of the complexity of
the path leading up to that point. The analogous result
to Eq. (20) for the incoming plane wave is just to modify
its error function argument z to

y = g siné (21)

(02 —ig h/pL)?

q1 is the perpendicular component of the wave-packet
final-state’s centroid. A similar kind of argument could
be made in the time-reversed direction. Since it hardly
matters whether the close approach to the joint occurs
on the fourth bounce or 15th bounce, it suffices to search
for a long orbit’s minimum value of ¢sinf to know how
trustworthy its semiclassical contribution will be. There
is some difference between bouncing off the straight edge
and the endcap in this regard, but for our purposes it
can be ignored.

A simple probabilistic argument then gives a time scale
for the semiclassical breakdown. The accuracy will de-
pend upon the relative fraction of the heteroclinic or-
bits that remain out of the “troublesome zones” in phase
space relative to their total number. We ignore initial
transient effects and assume that the orbits of interest are
long enough that they “randomly” explore phase space.
The small relative phase-space volume that the trajec-
tories must avoid is in the neighborhood of those points
which satisfy gsiné < c(t)hl/ 2, ¢(t) is a “constant” that
may weakly depend upon time due to the trapping of tra-
jectories near the vertical bouncing ball motion. We find
the small volume to be proportional to kY/2In{c(t)/h};
the natural logarithm comes from the whispering gallery
motion. In a Markovian picture, the fraction of trajecto-
ries avoiding this volume is

f = exp[—axth*2In{c(t)/R}], (22)

where « is a system-dependent constant and A the Lya-
punov stability. Thus the time scale of breakdown is
roughly £~*2 and not In(1/h). The general picture is
roughly confirmed with the correlation function of Fig. 17
for which we calculate both the contributing intensity-
weighted mean minimum ¢siné (adjusted slightly to ac-
comodate the changing momentum of a geometric fam-
ily’s contribution with time) and the intensity-weighted
relative fraction avoiding a g siné of less than half a wave-
length; see Fig. 21. Once the statistical relaxation time
is reached, the weighted average of gsinf uniformly de-
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FIG. 21. The proximity of guiding orbits to the joints. In
(a) the mean intensity weighted ¢ sin6 has some structure
as the initial state relaxes. At long times (longer than we
could show), it is expected to decrease slowly. The dashed
line indicates the scale of half a characteristic wavelength,
A/2. In (b) is the mean intensity weighted fraction f(¢) of the
orbits “avoiding” the joints by at least the wavelength scale
A/2. It also has a similar relaxation time with some structure,
but must tend asymptotically to zero.

creases toward zero inversely with ¢t. The tendency of
the longer and longer orbits to approach the joints is
fairly slow. Letting % decrease does not strongly affect
the curves. Instead, the A/2 line lowers, sending its inter-
section with the mean-weighted ¢ siné curve out to much
longer times. Thus, the semiclassical time regime grows
far faster than t*.

The key lesson is that a standard analysis of semiclas-
sical errors does not necessarily lead to a log-time break-
down for a chaotic system and may extend to a much
longer time scale. Although some of the details are not
the same due to differences in the phase-space structures
(e.g., discontinuous derivatives in the manifolds versus
continuous ones generically and in the kicked rotor), it is
consistent with the findings of Sepilveda, Tomsovic, and
Heller [16]. Since the classical fine structure in phase-
space dynamics develops exponentially fast, extraordi-
narily detailed classical information can often be trusted
to generate excellent approximations to quantum prob-
lems without invoking a “magical” explanation (such as
“the many errors being made just happen to cancel”).
On the other hand, the news is not all optimistic. The
derived time scale is not long enough to resolve individ-
ual eigenstates and eigenvalues in the semiclassical limit;
this has been a major goal since efforts began on under-
standing the semiclassical dynamics of chaos (and is the
goal of periodic orbit theory).

V. DISCUSSION AND CONCLUSIONS

We have shown that the venerable VVG Green’s func-
tion, which is the fundamental semiclassical object in
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the time domain, is remarkably computable and remark-
ably accurate, even using detailed classical dynamics
with structures on scales far sharper than a Planck cell.
Because our method approximates Gsc(q,q’;t), the al-
ready quantitative results could only improve if a better
evaluation of the semiclassical dynamics were available.
Nearly all the thousands of branches of trajectories are
individually generating accurate contributions to Cys(t);
nearby branches do not compromise the accuracy of a
given branch. Furthermore, it is not necessary to invoke
exotic explanations to understand this accuracy. Stan-
dard arguments suffice if carefully applied to the chaotic
phase-space structure.

The correspondence principle for chaotic systems ex-
tends far beyond the evident initial pre- “Ehrenfest time”
regime. The breakdown time-scale arguments, though,
do suggest that individual eigenvalues and eigenstates
are semiclassically out of reach in the i — 0 limit (unlike
their counterparts in integrable systems). Because the
density of states for the two-dimensional billiard goes as
772, the time needed to resolve eigenstates scales as /2.
Since the derived time scale of accuracy is roughly R/2,
we should not be getting enough information to resolve
them individually. In higher dimensions, the situation
gets worse. Nevertheless, we saw in Fig. 14 that the semi-
classical dynamics could resolve the spectrum to about
a mean spacing or so in the energy regime of the 200th
to 500th levels. Furthermore, the resolution was limited
by hitting the exponential wall of having too many orbits
to calculate and not because the approximation began to
fail. Where it completely falters has not yet really been
found. Our derivation of the time scale for breakdown is
apparently still too pessimistic.

It seems that the lack of attention devoted to the semi-
classical time Green’s function resulted from an overly
bleak prognosis of its utility and accuracy. To this one
must add the ever present bias against the time domain
where pure state quantum mechanics is concerned, a bias
which is now rapidly dissipating.

There are many physical phenomena which are best
calculated in the time domain. Whenever the “essential
physics” is short time or now medium time, it may be
best to do calculations in the time domain. This holds
true even if the formalism is normally cast in the energy
domain. Examples include many types of particle scat-
tering, absorption and Raman spectroscopy, and pulsed-
laser experiments. For this reason alone a good semiclas-
sical propagator is needed. Even if one is interested in the
energy domain explicitly, it is available from the time do-
main by explicit (or stationary-phase) Fourier transform.

We are excited by these results because the realm of

J

as as
/. — . — — !/ _ —
Sy(g,4'5t) = S(at, q0;t) + <_3<1>q, (@—qt) + (3‘1’)qo (¢ —qo) + (3q2

826‘) (¢' — q0)® ( 828 ) ,
+ (— + (- a)(d — o),
Bql2 qo 2 aqaq, qt,90

potential applicability is so large (after all, we are talking
about the fundamental quantum propagator), and be-
cause there is so much to do to understand these new as-
pects of semiclassical approximation. We need no longer
be concerned that classical chaos puts semiclassical meth-
ods out of business.

The doors have been opened on a number of new and
old questions which we are pursuing. Summarizing the
surviving classical dynamical information so the incred-
ible classical detail is appropriately preprocessed seems
possible. The morphology of scarred eigenfunctions can
now presumably be much better treated than before,
since both our and Bogomolny’s theories for the scars
were based solely on the linearized dynamics in the vicin-
ity of a periodic orbit. We can now include the nonlinear
effects. Diffraction looms as a generic problem in the
longtime dynamics. Our methods ignore diffraction, and
some reasonable means of incorporating it while main-
taining simplicity needs to be invented.
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APPENDIX A: LINEAR WAVE-PACKET
GAUSSIAN INTEGRALS

Let the one degree of freedom Gaussian wave packets
be denoted

Ba(a) = (r0) Vtexp (- ULl 4 Py g,)

202
(A1)
and
g(q) = (n0?) ™ exp ( - % + z'—1';:12(41 - Qﬂ))-
(A2)

Let the reference trajectory, labeled 7y, connect gy to g
in a time t. There is a very slight generalization here
relative to the exposition in [29] where the initial con-
ditions of the reference trajectory are taken at (gu,Pa)-
The quadratically expanded action about v, S,(g,¢;t)
is

325) (a—a)?
2
qt

(A3)

where the first derivatives are, to within a sign, the final and initial momenta,
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95\ _ (2~‘1 -
aq !It_pt, aq/ qo_ bor

The linearized equations of motion are expressed with the stability matrix M. Initial deviations around a reference
trajectory  are expressed as

298

(A4)

Opy 32’0) mi Mz
=M , M, = . A5
(3Qt) K (3970 ma1 Moz (A5)
The second derivatives can be expressed as combinations of the stability matrix elements giving
(625) _ mi1 (825> _ ma2 ( 625 ) _ -1 (AG)
9% ), ~ma’ 99" ) o mar’ 990q' ) 4, 40 Ma1
Then
e = (7 szwdd’as*()qs(') xp ( i85 'w)/h—”—”) (A7)
Ba(t) = Sihman] - qdq’ ¢5(q)Pa(q’) exp | 154(q,q'; 3
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The final result is
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APPENDIX B: A FFT FOR THE SOFT WALLED
QUANTUM STADIUM

We were interested in a direct time-dependent method
of generating extremely accurate quantum propagation
since the semiclassical results were so good. Preliminary
attempts at a finite-difference method did not look ex-
tremely promising, although Christoffel and Brumer [21]
have reported good results with a method of this kind.
We turned to developing a standard fast Fourier trans-
form, split-operator method (FFT) on a rectilinear grid.

The FFT successively applies the kinetic and potential
propagation operators, respectively, for differential time
steps. It is important that the potential unitary operator
not skip (not vary) factors of 2w between neighboring grid
points. Otherwise, the propagation is no longer faithful.

Therefore, the FFT cannot handle infinite walls. How-
ever, an extremely good soft-wall version can be easily
written. Our first attempt at a stadium FFT incorpo-
rated a finite well depth, yet the potential still rose dis-
continuously. It was found not to converge well enough
for our taste. A second attempt was to soften the wall
with a Woods-Saxon cross-sectional shape. The stadium
is then more accurately imagined as a bathtub-shaped
well with very steep walls and a flat bottom. Using the
potential (for the direction perpendicular to the wall)

V= Vo
" 1+ aexp[b(l —g?)]’

(B1)

the FFT was found to converge properly and extremely
accurately if (i) the wall was very steep but required at
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least one grid spacing distance to rise from, say, the 10%
to 90% level (this fixes the scale of b), (ii) the grid spacing
was not more than about jsth of a wavelength, (iii) the
time step was taken so that the wave moved no more
than about one grid spacing in one step, and (iv) the
wall was not too high, yet high enough to be well above
the maximum energy component of the initial state (thus

fixing Vp and a).

The convergence was demonstrated to be excellent by
checks such as (i) calculating the energy expectation as
a function of time, (ii) comparing differing grid sizes and
steepness of walls, (iii) creating real-time movies to watch
the waves propagate, and (iv) having the superb agree-
ment with the semiclassical theory.
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FIG. 1. A schematic illustration of the hyperbolic struc-
ture of phase space. The swarm of trajectories, i.e., the black
disk, exponentially stretches apart as time evolves from upper
left to lower right. The light gray disks indicate the initial
swarm and the medium gray javelin shows the local linear-
dynamical approximation.
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FIG. 4. The area-h rule. (a) The area contained between
intersections of the time evolved manifold of a state and a
position state (vertical line) is shown as black. If this area
falls below h, the semiclassical amplitude is in doubt. (b) A
coherent state of the type shown is subject to nearly the same
area rule. (c) If it is squeezed more like a momentum state,
no caustic problems arise.



