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Theories of two nonlinear processes of magnetic-moment-field generation in wave-plasma interactions
are presented here. These processes are (i) resonant excitation of a moment field (REMF) and (ii) stimu-

lated excitation of a moment field (SEMF). This field generally evolves from the wave-induced bending
of the direction of motion of constituents of a plasma. It is important when it has a large value, and
when it grows to large values with time, because then it eftectively controls the wave-induced features of
a plasma. Specifically, this growing field gives rise to a strong anisotropy of the plasma in the region of
the common direction of propagation of the involved waves, which leads to enhancement of synchrotron
and bremmsstrahlung losses, and filamentation. The REMF is a static field of resonance when the beat
frequency of two waves equals the frequency of another wave, all propagating in the same direction. The
three possible cases of such interaction, involving waves of only high frequencies, with unmagnetized
plasmas, for which the REMF formula has been calculated, are (a) two transverse waves and one longitu-
dinal wave, (b) two longitudinal waves and one transverse wave, and (c) three transverse waves. The
SEMF is a parametrically stimulated nonoscillating, exponentially temporally growing field of stimulat-
ed Brillouin scattering from a signal Alfven wave, a pump Alfven wave, and a signal sound wave. A
second simultaneous resonance occurs only for weak nonlinearity and finite electrical conductivity, when

the signal Alfven wave frequency equals the parametric frequency shift. This, being a slow process of
transfer of plasma kinetic energy to field energy, can be a strong candidate for evolution of the field in

plasma configurations of outer space.

PACS number(s): 52.30.—q, 52.40.—w, 52.25.—b, 52.35.—g

I. INTRODUCTION

The magnetic moment p of a single charge q, in the cgs
Gaussian system of units, is given by [1]

1p= (rXj),
2c

where r is its position vector, j( =qr) is its current, and i
is its velocity. For several species of charges, in a plasma,
the expression for the induced magnetization from mag-
netic moment [2,3] per unit volume is g ( tg' X (N„q gp )] ) . (1.5)

where R is the position vector of a current point before
application of the waves, and g„ is the field-induced dis-

placement of the pth species of its charged constituents
from the point R. Since R is not a wave-induced dis-
placement of a specific species of charge unlike r and g, it
should not have the subscript p for specification. Then, if
we denote by (x ) the nonoscillating part (or the zeroth
harmonic) of x, Eq. (1.2) gives

(H'"& =4sr&p&

g [r~ X(N~q~r )],2c
(1.2)

For a single, electrically conducting Quid, the induced
nonoscillating field H '" obtains from the formula

(1.6)

(1.3)

In a multispecies plasma we can write

r„=R+g'~, (1.4)

where q is the charge per particle, X is the number den-
sity, r is the macroscopic velocity at r, and p is the
magnetic moment per unit volume of the pth species of
charges.

If, in a two-component plasma, the ions provide only a
static background of positive charges, for maintaining the
macroscopic charge neutralization, then (1.2) reduces to

where g is the wave-induced displacement of the fiuid ele-
ment at a point, and the current j is given in terms of the
magnetic induction Aeld 8, by the Maxwell equation

VXH= j,
C

which is without the displacement current, and is used in
the magnetohydrodynamics (MHD) approximation.

Several theoretical problems of temporal evolution of
the magnetic-moment field, due to the bending of direc-
tion of material motion in presence of wave fields, can be
formulated and studied, because plasmas generate and
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support many categories of waves and oscillations. This
is an effective process of transfer of kinetic energy to the
magnetization energy. Since this field is proportional to
the vector product of a displacement and a current, both
induced by waves, the contribution due to quadratic non-
linearities arises from the sum of two cross products, one
of which is that of a first-order displacement and a
second-order current, and the other is that of a first-order
current and a second-order displacement. The relevant
second-order quantities are those of Inixed harmonic of
two of the waves, which on cross product with the field of
first harmonic of the other wave, generate a magnetic
field of the zeroth harmonic due to a prescribed matching
of frequencies of first harmonic of the three waves. The
wave-induced displacement r and current j, satisfying the
nonlinear field equations, are expressed as a sum of all
harmonics, including some mixed harmonic as well.
Then the zeroth harmonic of H '", proportional to (r Xj),
obtains in many cases of combination of wave fields of
different categories. This magnetization from some
three-wave interactions is evidently an outcome of either
Compton scattering, or stimulated Brillouin scattering
(SBS), or stimulated Raman scattering (SRS) in plasmas,
depending on the nature of the involved waves.

This moment field was originally found in the interac-
tion of a circularly polarized wave with crystals in the
1960s [4,5] and with plasmas in the 1970s [6]. It was then
called the inverse Faraday effect (IFE) because, for circu-
larly polarized waves, it is essentially the inverse of the
Faraday rotation effect.

We have considered here the theories of generation of
(I) a static magnetic field from a matching of frequencies
of first harmonic of three high-frequency waves in an un-
magnetized electron plasma, and (II) parametrically tem-
porally exponentially growing magnetization, from a
matching of frequencies of a pump Alfven wave, a signal
Alfven wave, and a signal sound wave in an electrically
conducting medium. Evidently, case I is identified as the
resonant excitation of a moment field (REMF) because of
resonance of a mixed (nonlinearly) harmonic wave with
the first harmonic of another wave. Case II, on the other
hand, is identified as the stimulated excitation of the mo-
ment field (SEMF) because it is the nonoscillating field
from a wave field which grows parametrically due to
stimulated scattering processes [7,8]. The region where
the matching condition for the wave frequencies is
satisfied is small compared to the largest of the wave-
lengths of the involved waves. Such common regions
might exist where the waves cross each other, or where
these are rejected. Works on magnetization from other
causes have been briefly covered in Sec. V A.

Case I. Consider the magnetic moment due to plasma
motion induced by resonance of three waves, when the
sum frequency of two of the waves equals the frequency
of the other wave. Then one term of this moment field
becomes a constant. This term is important if it has a siz-
able value for waves of occurrence in space and laborato-
ry plasmas. The three possible problems of such interac-
tion of waves of only high frequency with a plasma are
those of (a) two transverse waves and one longitudinal
wave, (b) two longitudinal waves and one transverse

wave, and (c) three transverse waves. Since the longitudi-
nal waves are of high frequencies, these are assumed to be
only the electron acoustic waves.

Case II. The evolution of an exponentially temporally
growing magnetic field dependent on the pump power,
when it exceeds a threshold value, is predicted in the
three-wave resonance of SBS of an Alfven wave (wave 2)
and a sound wave (wave 1) by an Alfven wave (wave 3) in
a finitely electrically conducting MHD Quid, when

N i +F02 —C03 . (1.8)

This double resonance from (1.8) and (1.9) is shown in
Sec. IVB to appear only for weak nonlinearity and finite
electrical conductivity. For infinite conductivity both en-
ergy and momentum of the system remain conserved, and
this double resonance effect is not possible.

II. RESONANT EXCITATION
OF A MOMENT FIELD

For high-frequency electromagnetic (EM) waves, and
weak ambient magnetic fields, the plasma can be assumed
to be unmagnetized, only the electron current is impor-
tant, and the ion current is not a dominating factor for
wave fields of moderate or weak intensity. Since the
higher harmonic fields are weaker than the corresponding
first harmonic fields, the main contribution to REMF ap-
pears from a matching of frequencies of the first harmon-
ic of the waves. So, the REMF is proportional to prod-
ucts, taken three at a time, of the wave amplitudes.

When two of the three waves are transverse waves
[namely, in subcases (a) and (c)], the REMF exists only in
a lateral direction with respect to the common direction
of propagation of the three waves. So it causes anoma-
lous diffusion of plasma in the presence of wave fields.
All these waves have a cutoff frequency, so the prescribed
frequency matching generates a mismatch between the
wave numbers, and a corresponding sinusoidal space
variation of the magnetization along the direction of
propagation of the waves. This gives rise to a longitudi-
nal gradient in subcase (a) and a transverse gradient in
subcases (b) and (c). The distance between the successive
regions of maximum and minimum of magnetization, due
to the gradient, is of the order of C, /co in subcase (a),
C, /co in (b), and c/m in (c), where co is the Langmuir
frequency of the plasma, C, is the electron sound speed, c
is the vacuum speed of light, and co is the frequency of
the transverse wave. Moreover, a charge-dependent drift
and the consequent electric current of instability are pos-
sible. And, since a static magnetization enhances
diffusion of plasma in its direction, subcases (b) and (c)
augment anomalous diffusion of plasma in the presence of
EM waves. The longitudinal gradient of (a) gives rise to
bunching of charges at the positions of maximum of the
sinusoidally varying fields; in other words, a magnetic

This SEMF is further enhanced when the signal Alfven
wave frequency co& equals the parametric frequency shift
co [which is the real part of the complex frequency co of
the relation (3.41)],

(1.9)
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bottling of the plasma occurs with necks at these posi-
tions.

The REMF, in unmagnetized plasmas, is an instan-
taneous effect of the time of switch on of the wave fields
in the region where the frequency matching occurs so
that, after a short duration, the guiding plasma field
equations used for this study will no longer hold.

A. The basic equations

linearized approximation are

k2 2 — 2 2
gi C —

COyi COp

for the ith transverse wave, and

2 C2 — 2 2
lli s lli p

(2.1 1)

(2.12)

for the ith longitudinal wave of the electron acoustic
type, where C, ((C, and the electron plasma frequency
cu is given by

The equations of unmagnetized, and collisionally un-
damped, electron plasmas are 4~We 2

CO

m
(2.13)

BX +V.(Nu) =0,
Bt

2
Bu e e+—E+ VN= —(u V)u — (uXH),
Bt m No mc

i BH
c Bt

(2.1)

(2.2)

(2.3)

2 2 2 2
co~; )cop, Q)

ll,
)QPp (2.14)

Solving now Eqs. (2.1)—(2.6), up to first order, for H;,
X, , u~;, r~, , and rlli, we find that

The conditions for free propagation of these two types of
waves are

1 BE
c Bt

V E= —4~e+

V H=O.

4~eÃ u,
C

(2.4)

(2.S)

(2.6)

mc
H; kI; ( pI;SIngI;, aI; COSOI;, 0),

e

uI; =c (aI;singI;, —PI, cosgI, , O),
e

( aI,.CosgI, ,PI,.SingI, , 0),

(2.15)

(2.16)

(2.17)

Here u is the perturbation velocity of the electron Quid;
No is the electron number density in the unperturbed
state, p is the electron pressure perturbation, p ( =mN) is
the perturbed electron mass density, po (=mNo) is the
electron mass density in the unperturbed state, C, is the
electron sound speed, and E and H are, respectively, the
electric and magnetic wave fields.

The first harmonic of the ith elliptically polarized
transverse wave, having the frequency co&;, wave number
k J

' and electric field E~, is

CO;lli CO;
uii;

=c 0,0, aii;slngii; Pii;cosgii;
Q)p COp

C Calli.

COp

1 mc
iV; =

4~e e

where

(2.18)

(2.19)

(2.20)

EI; = (aI;cosgI, , bI, singI, , O),

where

(2.7)
(aI, ,PI; ) =

mero~;
(a„,b„), (2.21)

L9~, =k~, z —
co~, t (2.8) (2.22)

E[[;=(o,o, a/[;cosg/[, +b/[, sing[/, }, (2.9)

because all the waves are assumed to propagate parallel
to the z direction. The first harmonic of the ith longitudi-
nal wave electric field is

mc coll;

r; is the displacement induced by the ith wave; its com-
ponent, induced by the ith transverse wave, is r~, , and by
the ith longitudinal wave is rll, . Evidently the a's and the
p's are dimensionless amplitudes of the electric field.

Oll;
—k ll.z coll, t (2.10)

B. The case of two transverse
and one electron acoustic waves

The corresponding familiar dispersion relations of the In this case [subcase (a)j the electric field is

EI = ( QI I cosgII +QI2 cosgI2, bI I cosgII +b I2 slng12, a
~(
cosg~l +b

The first-order solutions of Eqs. (2.1)—(2.6) are

(2.23)

mc
pJ I I jsinO» —plzk»singll, a»k»cosgI, +aIzkJ2 JI 0)

e
(2.24)

PIC
(2.25)
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II ~ II
CO CO

ill C allsln8II +al2 ln8I2' pl 1C S8II pl2C S8l2' 2 allsln811 2
COp COp

rl=c[(all/col, )cos8J, +(a|2/col2)cos8I2, (PII/coll)sin8II+(PI2/col2)sin8I2 nil cow)allcos811+ cull con)Pllsin8

(2.26)

Assuming the frequency resonance condition

(2.28)

&H'") =0 &H'"& =0 (2.29)

we solve Eqs. (2.1)—(2.6), correct up to the second order
of small quantities, and find & H '" ) using Eq. (1.2):

kJ, +kJ2
r

1
(

2 2)1/2
S

L

~I2)+
S

(
2 2)1/2

&~2 COp

(2.35)

where

2 3~Roe copnllc S„,. (~k.— ),
s

(2.30) Ak is the wave number mismatch for the frequency-
matching relation of (2.28). We simplify (2.33) with the
help of (2.14) and (2.28), and obtain

S x = p
k C

II 2

&I =2«ilpl2+aiP»)
~2+ ~1—+

(2.31)

(2.32)

2
COp

(2.36)

1+ «Ilpl2+al2pll )
COi2

Hence the formula of (2.30) effec ely simplifies to

m.X conc
2

C,Xll

Xsin —y
C,

(2.37)

1
2+ 2 2 2 2

col, —c (kll +kl2 )
—~

& =(a +p )' y=tan ' =tan
II II II

II

(2.33)

(2.34)

Since this magnetization exists only along the common
direction of propagation of the three waves, its spatial
sinusoidal variation has only a longitudinal gradient.
Distance between two successive layers of a maximum
field strength is proportional to C, /cop, taking ~ll ~p
plasm as.

C. The case of two electron acoustic waves
and one transverse wave

In this case [subcase (b)]

El ( J. 8l bJ. 8l ( ll1 +bill ) (8lll yl)+(~ ll2+b ll2 ) (8ll2 y2)) (2.38)

mc
Hl = ( —plklsin8l, alklcos8l, 0),

e
(2.39)

Ton
II
c Ton II2c

N, =
All lsin(8ll, —y, )+ fill2sin(8ll2

—y2),
II1 s X(I2C,

(2.40)

r

u, =c alsin8l, —PJcos8J, sin(8, l,
—y, )+ II2

II2

sin(8ll2 —y2) (2.41)

I1=C
az PI

cosOy,
Ct)i COy

r

sinai,
II1

ll2cos( 8ll 1 y 1 ) +
II 2 II 2

COS( 8ll2
—y 2 ) (2.42)
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CO)( y+ CO)(2
=

COg (2.43)

we find the components of ( H '" ) from (1.2),

3mNpe 5~~]5~~2c PlD
2 X XC

cos( b, kz —y, —y2),

Solving Eqs. (2.1)—(2.6), up to the second order, when k;C, CO

][i
(2.49)

(2.50)

(2.51)

(2.44)
Relations (2.14) and (2.43) give

(Hin)
V

mXoe 6~i&6i~2C 0.~D
3

I

cos( b, kz —y, —y2),
2

COp

(2.52)

(Hin) ()

with

2
2coz n

~~,
n

~~2D:2(K~[]+Eii2 )5+ 5, + 62

(2.45)

(2.46)

(2.47)

COy

ak =k~~, +k~~2
—k, =

C,
(2.53)

With the help of (2.52) and (2.53) formulas (2.44) and
(2.45) are much simplified. Equations (2.44) —(2.46) show
that this field is purely lateral.

1

col —C, (k((]+k((2) —~„
(2.48)

D. The case of three transverse waves

In this case [subcase (c)]

El =«l]COSOl] +& l2COSOl2+ &l3 COSOl3, b l]S]nOl1 +bl2S]nOl2+ b13S]nOl3, 0)

Solutions of Eqs. (2.1)—(2.6), up to the first order, are

X) =0,
u] c(al]slnOl]+ al2slnO12+al3slnO13, pl]COSOl] pl2COSO12 pl3COSOl3, 0)

T

Qgi O'X2 /31, Pl2
cosOi) + cosOg3, sinOj ) + sinO~2+ sinO~3, 0

CO

CXj 3
COSOi2+

COy i COg )COg3 COy2 COg3

mc 2

H] ( pJ ]kJ, sinOl, —
/312k 12sinOJ 2 pJ 3k J 3 sinOJ 3 aJ ]k J ]COSOJ ]+a12kl2 COSO12+ al3kl3 COSO13 0)

e

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

Dropping the subscript l, which is unnecessary now, we
write

CO3
—

CO
~
+CO2 (2.59)

and solve Eqs. (2.1)—(2.6) correct up to the second order;
we find that

(0' ) =~Npec (p]B23+/32B]3+p3B]2 )sin(bkz)

(II]n ) ()

where

(2.62)

(a,a +P,P. )(k,.+k, )

C, (k, +k ) —(co;+co. ) +co~
2

cop 1 1Ak=- +
2C CO

~ CO2 CO3

(2.63)

(2.64)

(2.60)

(H~") = vrNpec (a,B23+a2B
—]3+a3B]2)cos(bkz),

(2.61)

Hence, in subcase (c), as in (b), only the lateral magnetiza-
tion is generated. This field causes anomalous diffusion
of plasma in the presence of wave fields. The sinusoidal
spatial variation of the magnetization, perpendicular to
its direction, is a transverse gradient, consequences of
which are a drift and the related current of charges.

E. Some remarks

Subcase (a) is identified with the SRS instability when

N, )N, l4, N, being the electron density and N, its criti-
ca1 value. In this case a photon of lower energy and a
plasmon are scattered. Subcase (b) is identified with the
two plasmon decay instability at N, =N, /4, in appropri-
ate density ranges. Subcase (c) is a Compton scattering of
two photons of low energies by a photon of high energy.
Since the frequency of the acoustic wave is smaller than
the frequency of the 1ight waves, relatively more energy is
transferred to the scattered light wave in subcase (a), as
may be seen from the Manley-Rowe relations, or other-
wise also. Specifically, the incident and scattered light
waves interact to drive, via the ponderomotive force, an
electrostatic beat wave with phase velocity
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V h =(&J.l &i2)/(kll kl2) [4]. If V h 0 U h (U h is the
electron thermal velocity), then the beat wave (an elec-
tron plasma wave of SRS) is resonantly enhanced by plas-
ma. If v h-v, h, then stimulated Compton scattering re-
sults; since the frequency of its scattered field is larger
than that for Raman scattering, relatively more energy is
thus scattered.

coi =co, +iy, , /=1, 2, 3 . (3.1)

B+(v V)B—(B V)v+Bdivv=gV B, (3.2)

~1 ~2 and ~3 are the real frequencies and 7 & y 2

and y3 are the decay constants of the three waves. The
basic field equations are

III. SBS OF AN ALFVEN WAVE
IN FINITELY CONDUCTING MEDIA

H
at

(pv)+(pvv ) = —V p+J ~j 8m
+ (H V)H, (3.3)

1

4~

A parametrically temporally exponentially growing
magnetization (case II of Sec. I) obtains in a finitely elec-
trically conducting MHD Auid, when the parametric
growth rate of the system exceeds the rate of damping,
which is possible if the pump power exceeds a certain
value. This threshold value, for instability to occur, is
different for supersonic, subsonic, and sonic Alfven
waves. For subsonic or sonic pump Alfven waves, the in-
stability occurs when the two signal waves are copro-
pagating. But, for supersonic Alfven waves, the instabili-
ty may or may not occur. For counterpropagating signal
waves the instability condition is just the opposite.

A resonant amplification occurs if, in addition to the
frequency-matching condition (1.8), the real part of the
parametric shift of frequency equals the frequency of the
signal Alfven wave, Eq. (1.9). Since the amplification fre-
quency is proportional to the pump amplitude, for a
large-amplitude pump Alfven wave this resonance is not
possible; but this amplification is possible for a weak non-
linearity, for which the wave modes retain their basic
identity, but are no longer completely independent. The
quasilinear relaxation of an initially unstable particle dis-
tribution, when inAuenced by developing oscillations, can
stabilize the growth at best during a time inversely pro-
portional to the wave energy. This means that the
neglect of nonlinear wave interaction cannot be justified,
even for small amplitudes; its importance is evident from
comparison of the quasilinear relaxation time with the
time of energy distribution of different modes.

The light wave creates pressure through electrostric-
tion; the resultant density change affects the susceptibili-
ty. Thus in SBS light pumps the sound wave which
scatters it; the scattering creates a second, frequency-
shifted, idler light wave of a parametric amplifier when
the frequency- and wave-number-matching conditions are
satisfied for conversion of the incident light wave to the
acoustic wave and the scattered light wave [9]. For
acoustical phonons, with frequency be1ow 10' cps, these
matching conditions can always be satisfied [10]. The
SBS of Alfven waves by sound waves in an isothermal,
homogeneous plasma may be associated with the heat
balance of sunspots due to the effective transfer of a
significant fraction of the Aux of energy of Alfven waves
to the short waves by convective motion above the sun-
spot [11].

p+div(pv) =0, (3.4)

where V—= (O, O, B/Bz), g(=c /4m. cr) is the diffusivity of
the medium, cr is the electrical conductivity, and the oth-
er symbols have their usual meanings. For'paramagnetic
materials, setting the magnetic permeability p = 1, the
components of the basic equations, in the direction of
wave propagation, are

pv, +pv, = —C,' c}z Bz

H
Bz 8m

(3.5)

p+ (pv, )=0 .
a (3.6)

The components, in the perpendicular directions, are

Bvg
pvi+pvz

BZ 4~hz ' (3.7)

8 H BUJ
H —g =Ho

Bz
(v, H) .

a
BZ

(3.8)

po is the unperturbed density of the medium, Ho is the
uniform background magnetic field acting along the z
direction, p& is the first-order perturbation of the Quid

density, and v& is the velocity induced by the sound wave.
The quantities v2 and H2 represent the first-order velocity
and magnetic field of the signal Alfven wave and v3 H3
represent the same quantities for the pump Alfven wave.

B. The basic equations for parametric interaction

For study of the parametric interaction of the three
waves the relevant portions of these equations are

C,' ap,
v)+

po c)z

Bv&
pi+po

&az

a
(H2 H3),

4~po az
(3.10)

(3.1 1)

For the magnetic field, Quid velocity, and density of the
medium, in the perturbed state, we write

H=Hoz+H2+H» v —v&z+v2+v3y p=po+p& .

(3.9)

A. The basic 6eld equations

All the three waves are diffusive due to finiteness of the
electrical conductivity. For their complex frequencies we
write

Ho BH2 cIv3
V2 v1

4~p, az ' az

8 H2 Bv2

az2

1
(plv3)

po
(3.12)

(3.13)
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Hp BH3
V3 =0

47Tp p Bz
(3.14)

since

(3.25)

8 83 BV3
IIo

az2 Bz
(3 1 5) we find that

H, =e ' [(H»x+iHt2y)e '+c.c. ] (l=2, 3),
r)f iO)

ui —e [(vit+lvtp)e +C.C. ]1 ()L,v, = — (H2 H3)
4m.po BZBt

(3.16)
where

These give the following inhomogeneous wave equations:
(3.26)

(3.17) oi=kiz tutt —(/=1, 2, 3) . (3.27)

3 a a'LV=
r)t Qz 2

t)v3
Vj

Bz
l'gcOlkl +&I kl CA =0 . (3.28)

Using the solution of H& (l =2, 3) from (3.23) in (3.20) we
obtain for 6 the relation

1+
p,

(u, H, ),
~O BZ2

(3.18) k,'C, =~, and y, = gk, y2. (3.29)

A similar relation is valid for its complex conjugate.
Hence, equating real and imaginary parts from both sides
of this relation and neglecting yl, we find that

BV3
LzH2=Ho U& +

a2+ (viH3),azat

L z( 3vH3) =0,
where

Ho
Pi"3

po

8 +C2

Bt Bz

(3.19)

(3.20)

(3.21)

These are, respectively, the dispersion relations (in the
linearized approximation) and the value of the decay con-
stants for the signal and pump Alfven waves. Eventually,

y2 and y3 are negative quantities, showing damping of
the waves due to the finite electrical conductivity.

Equations (3.22), (3.29), and (3.20) give the wave-
number-matching condition k3 =k, +k2, and the wave
phase matching condition 03=0, +02. Hence, in a dissi-
pative medium, the total momentum of the system
remains conserved, though the energy conservation does
not necessarily hold good owing to wave decay.

C. The relevant field variables and the wave equations

2C2~ 2
CO) (3.22)

where k &, co] are the wave number and the real part of the
frequency, and C, [=( kTtt, ~M)' ] represents the sound
velocity, T, is the electron temperature, M is the ion
mass, and k& is the Boltzmann constant.

The first harmonic field variables are

Equations (3.16) and (3.17), being those for the sound
wave, do not contain any term involving q; so its disper-
sion relation is

Substituting the wave solution for H2, H3, and U, in the
linearized equations (3.11), (3.12), and (3.14), we obtain

pok, igl
p, = e ' [(cot —iy, )(v»+iu, 2)e '+c.c.],

6)(
(3.30)

rI f
Hokle iO)

v&
= —

[(co& iy& )(H»x+—iH&zy)e '+c.c. ]
4&poCOl

( i =2, 3 ) (3.31)

H&=(H»x+iH&zy)e '+c.c. (1=2,3),
i8)

v, =(u„+iu, 2)e '+c.c. ,

(3.23)

(3.24)

where 0&=klz —colt and c.c. means the complex conju-
gate. In the linearized approximation the amplitudes of
the wave fields of (3.23) and (3.24) are constants. And,

Now we retain the first-order time derivatives of ampli-
tudes of the idler waves. Since the pump wave is releas-
ing its energy to these waves, it is not parametrically
amplified, so its amplitude does not vary for such pur-
poses. Thus proceeding, we obtain the following equa-
tions for evolution of the parametrically amplified signal
wave:

~r2+r3 —r l ]fk
D(ui i +iv i2) =

2
e (cot iy i )(y2+ y3

—iso )—(HtH~t+3HtqqH3 ),2
87Tppct) i

(3.32)

D(H»x+iH»y) =— 2
~r&+r3 k 1 k3 CA

e ' ' '
(rvz+rv3+i y i)——

z (rot+iy i) (v it
—iu i2 )(H3tx+iH32y),

2CO2 CO)

(3.33)
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where D:—Blat. Nontrivial solutions obtain for y1=0,
because the sound wave is not affected by the conductivi-
ty of the medium. Hence

Alfven wave arise:

(i) C~ (C, (subsonic), (ii) C„=C, (sonic),
(3.42)

k1 (y +y )t
D(vii+iu12)= e ' ' (y2+y, —i~, )

8'ITPPCO1

X (H2, H31 22H32 ), (3.34)

(iii) C~ )C, (supersonic) .

For C„(C„since to2+co3(1 —C„/C, ) )0, we find that

tv+i y =+i(k, k 2/16' one, cv2)'~ e '

D(H21x+ iH22y) =— 2 (y3 —y2)t
e ' ' co2+ co3 1 ——

2CO2 C,
X [tv, + i(y2+ y3) ]'

1/2

X ( u 11
—i v 12 )(H31 x+ iH32 y ) . X CO2+ CO3 1

C,
~H3 ~, (3.43)

Equation (3.34) gives
—[r2+ r3)D[e ' ' D(u»+iu, 2)]

k,
( y 2+ y 3 i co )D1—(H H213+1H 2H23)2. (3.36)

877ppco1

where

[oui+i(y2+y3)] ~ =co, cos —+i sin-~ 1/2 1/2

y2+y38=tan
CO1

(3.44)

(3.45)

Since the left side of this equation can be written as

[&2+&3)'+[e D (v»+iu12)],

the assumed solutions are

(3.37)

( »u+i , u)=2(u»+ »tu)e' ',
(H21x+ H22y) = (H21x+iH22Y)e

(3.38)

(3.39)

X CO2+ CO3 1
S

where co=co+iy; co is the real, parametrically evolved,
frequency shift and y is the growth rate (also called the
amplification constant); and D = r)IBt =i tu = i tv y-
Since y2 and y3 are small, compared to y, for occurrence
of the parametric instability, the first term in (3.37) can
be neglected compared to the second one; then (3.36) be-
comes

2/3tik, k2e
D (u, i+iu, 2)= (y2+ y 3 1~1)—

16~ppco1 co2

which can also be expressed as

8=tan '(8y3),

with

(3.46)

1
2 2

2 —2 +
CO1 CO3Cs

(3.47)

Here the squares and product terms of y2 and y3 have
been neglected. Now, equating the real and imaginary
parts from both sides of (3.43) we get

y3t j 3f 0
co = + Ae sin —,y =+Ae cos—,2' 2' (3.48)

where

k k
1 2

16&ppco2
CO2+ CO3 1

S

1/2

H, i.

(3.49)

Since y3=0(1/o. ), we have t =1/y3=0(o ), so it will

take a long time for the pump wave to decay at the rate
of y3. Hence, at t =0, we obtain

x(u„+tv 12)~H3 ~' . (3.40)

Now, substituting the value of v»+iv, 2 from (3.38) in
this relation we obtain

0 0co=+ A sin —, y =+A cos—.2' 2' (3.50)

[t'ai+ &(y2+y3)]
167TPpCO1CO2

The threshold limit of the parametric instability is
determined by setting y =y2 which means having
y2= 3 cos8/2. Moreover, this relation, together with
y2= —gk2/2, yields

X CO2+ CO3 1
S

(3.41) H3 co2C PoCaC~a=
2H() 0 CO1

2 I9
sec —co +co 1—

2 3
S

So, both co and y depend upon the pump energy
( =H3/8n ) which is initially very large; y2 and y3 are,
therefore, small compared to y. When the two signal
waves are propagating in the same direction (that is, if
kik2) 0), the following three cases of evolution of the

(3.51)

for the threshold pump energy for the onset of such insta-
bility.

Similarly, for a sonic Alfven wave,
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and

k, k2
X=T =+

16mpo

1/2

iH3 icos—0 (4.2)

Substituting v2 from (3.31) in the relation (4.2) and then
integrating with respect to time, we get

2c POC~C, 2 g
4 4 3

H 4
sec-

2HO~ ~1~2 2
(3.52)

(r2 —r)t

4~poco3I (co~ —co) +(y2 —y) }

k, k2
e ' [co, + i(y2+ y3) ]CO+1 P —+

1 677poc01c02

for the threshold pump energy. Since co3 & cu2, the
frequency-matching condition co3=co, +cu2, for a super-
sonic Alfven wave, gives co2+co3(1 —C~ /C, ) (0. Hence

1/2

X [(~2—iy~) [(co2 co)—i (y—2 y)—}
& I k2z —(co2 —co) t IX(azix+ia22y)e ' ' +c.c. ] . (4.3)

Substituting Hz from (3.23) in the MHD equation (1.7)
and assuming

X c02+ c03 1
S

and consequently,

1/2
H2] x+ ia22y = (u2, X+iu22y )e '"'

we obtain
~ 7

(r2—y)t
e4'

(4.4)

0 . 0co=+3 cos—and y =+3 sin —at t =0 .
2 2

(3.54)
t I k2z —(co2—co) t IX [(8»y —ia22x)e ' +c c. ] . (4.5)

y3t
Ee i 83

E3 [( 3co+yi3 )H32e +c.c. ]k3c
(3.55)

Since y2 and y3 are small, from (3.43) we find that 0 is ei-
ther very close to zero or is any multiple of ~. Thus, for
a supersonic Alfven wave, parametric instability may or
may not occur. The reverse situation occurs for all the
three cases of subsonic, sonic, and supersonic Alfven
waves, if the two signal waves propagate in opposite
directions (i.e. , for k, k2 (0).

The electric field components of the pump wave,

The magnetic dipole moment, per unit volume, due to the
signal Alfven wave, is then evaluated from formula (1.6).

A. Magnetization in a finitely conducting quid

For finitely conducting fIuids, we find that

22(y —y)t

8vrHOI(co3 —co) +(y2 —y) }

X [(co&—iy2) [(co2 co) i—(y2 —y) }+—c.c. ] iH2 i z .

(4.6)
e i 03

E3~ = — [(co3+iy3)a»e +c.c.],k3c
(3.56) Therefore the nonoscillating magnetic field is given by

are obtained if H3 is substituted from (3.26) in the
Maxwell equation (2.3). Then, the pump field Poynting
vector,

22(r —r)t

2HO I (~2 —~)'+(r 2
—r )'}

X [(co2—iy3) I (co2 co) i (y2——y—) }

(E3XH3)= 0~0~ lII31 e (3.57) +c.c. ]ia, i
z . (4.7)

is exclusively along the direction of the field propagation.
The initial value,

It is along the direction of wave propagation only. Elim-
inating iazi we obtain

C

decays exponentially with time, because y3 (0.
(3.58) H'" =— e ' [co~+co3(1—C~/C, )]

8aoc~(~'+r') I(~2 —~)'+(r3 —r )'}

X [(co2—iy2) I (co2 co) i (y2 y) }+c.c. ]— — —

XU iH i (4.8)
IV. STIMULATED EXCITATION

OF A MOMENT FIELD IN SBSOF ALFVEN WAVES

The fiuid displacement g' is given by

v= = +(v P')g' .
dt at

(4.1)

For the signal Alfven wave, neglecting the higher-order
convective term, we have

for the z component of this field; the other two com-
ponents vanish.

Instability occurs for negative values of y. By (3.29),
y3 is also negative. Hence, for iyi ( iy3i, the induced
field decays exponentially. At y=y3, it becomes con-
stant, and for

i y i ) i y3 i, a temporally exponentially
growing field is obtained. At the threshold point of
growth of the parametric instability, the induced magnet-
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ic field is

e ' ' [co3+co3(1—C~/C, )] co3
Hi 2 3 3 U]1~31

40ocg (Co + l 2)(Q)2 Co)

y3=0, @3=y and, replacing co by y in (1.6), obtain

e ~'[co2+co3(1 —C~/C, )]
U', 1m31',

0 A V

(4.14)

B. SEMF from a double resonance

(4.9) y [ =
I (k i A@3/16+)i)(H3 /4irpo) I ] is the growth

rate of the conservative system.

Comparing (4.8) and (4.14) we observe that, in a finitely
conducting Quid, resonance is possible if m=~2 in addi-
tion to co3=co&+co2. However, this double resonance is
not possible in an infinitely conducting fluid. Since yz
and y3 are both small in magnitude, the induced field
grows slowly; and from (3.49), (3.50), and (3.54), the
amplification frequency ~ is found to depend directly
upon the pump energy. So, for a strong pump Alfven
wave this double resonance cannot occur if the signal
Alfven wave frequency is very low. For a subsonic
Alfven wave, at the double resonance due to co=co2, the
pump energy 8'& is given by

2Pocw Cs~z8~=
~i[~2+M3( I —Cz /C, ) ]sin 0/2

(4.10)

This energy should be less than the threshold pump ener-

gy,
' so at the critical point of parametric instability, we

have

(4.1 1)

For high electrical conductivity, 0= sr/2, so

HH»8'~ . (4.12)

C. Magnetization in an infinitely conducting Quid

In an infinitely conducting, compressible MHD Quid,
the pump and signal Alfven waves propagate undamped
in the same direction with real wave numbers k3 and k2
are real frequencies co3 and co&, respectively. They in-
teract parametrically with a sound wave of frequency co,
and wave number k„such that

co3=co, +m2, k3 =k, +k~ . (4.13)

Hence the total energy and momentum of the system
remain conserved, and energy is effectively transferred
from the pump Alfven wave to the two signal waves. The
SEMF of this SBS process, in a conservative system, is
due to amplification of the signal Alfven wave; the acous-
tic wave has no contribution to the magnetic moment be-
cause it has no current transverse to its direction of prop-
agation.

When the electrical conductivity is infinite, we set

Since this SEMF from a double resonance is possible
when the pump energy is not strong and the electrical
conductivity is finite, after a long relaxation time, an in-
stability will ultimately develop due to a weak nonlineari-
ty. A similar situation also develops for weakly nonlinear
supersonic and sonic pump Alfven waves.

V. SOME REMARKS

A. General remarks

Three Faraday effects of electrodynamics are known to
us to exist. One is the Faraday law of electromagnetic in-
duction, which states that the rate of change of magnetic
Aux gives rise to the electromotive force of an electric
field. The second Faraday effect is the Faraday rotation,
which is the rotation of the plane of polarization of a
plane-polarized electromagnetic wave, by an ambient
magnetic field acting along its direction of propagation.
The third one is the magnetization of the inverse Faraday
effect (IFE). Originally, the IFE was conceived as the
field from magnetic moments induced only by electric
current of circularly polarized waves, in crystals and
plasmas; so it was essentially the inverse of Faraday rota-
tion effect [1—6, 12]. However, this magnetic-moment
field also exists for all bendings of motion of plasma con-
stituents by waves. So, physically the effect is of more
general occurrence than from the earlier conceived IFE,
from waves of circular polarization only. It can be evalu-
ated in other cases of wave-plasma interaction. Any
search for a nonoscillating field, and particularly for a
temporarily growing nonoscillating field, thus generated,
seems important, because it controls the features of the
relevant parametric instability.

We have here investigated theories of examples of two
physical processes of generation of this magnetization,
which have been designated as the SEMF and REMF, by
us. One example per process has been considered for elu-
cidation. Also we have initiated brief discussion on their
application. We intend to begin further work on applica-
tion soon.

In plasmas this effect was first calculated for nonrela-
tivistic one-electron dipole approximation, considering
the rotating electric field of a circularly polarized mi-
crowave radiation, which drives the electrons into circu-
lar orbits. Since the ions are much heavier than elec-
trons, their effect was neglected to a first approximation
[12]. Steiger and Woods [6] studied the same effect for
interaction of plasmas with a laser beam. For strong,
high-frequency fields the static magnetic field produced
by the ion motion nearly cancels the field produced by
the electron motion [13]. Such IFE fields occur in times
which are shorter than twice the oscillation period of the
driving field, so that, beyond such time scales, the wave
becomes unstable and parametric instability develops
[14,15]. This field has been investigated for interaction of
propagating and standing Alfven waves with plasma [2].

Problems of plasma heating by lasers, employing two
lasers, one of which is strong and the other weak, have
been studied [16]. The resonant wave-plasma interaction
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of subcases (a) and (c), where the beat wave is a local
noise field, may be used for understanding this heating.

A plasma interacts with coherent dispersive waves,
which include local noise fields and strong driving fields,
for rise or fall of the quasistatic magnetic field, both in
small regions, and globally almost uniformly, for an en-
tire body. Such growing fields generate bunching of plas-
ma and energy evaporation for short durations, from
strong synchrotron and bremsstrahlung radiations. For
instance, puffs, or blobs of plasma are produced in labora-
tories, which have short life. These exhibit Aares of still
shorter durations, which may be due to such growing
fields. Solar prominences and polar glows could be the
consequences of this type of magnetization from para-
metric coupling of local noise fields with strong driving
fields which emerge from disturbances elsewhere in outer
space, and pass through the regions of the glows.
Charges might become the elements of cosmic rays by
getting a large amount of kinetic energy from such grow-
ing fields.

The resonance due to a matching of frequencies of first
harmonics of three waves occurs in regions which are
small compared to the largest of the wavelengths in-
volved. In regions marked by large density gradients, the
spatial distortions break the large-amplitude waves. It
seems that the direction of the gradient of spatial inho-
mogeneities of the plasma is then important, because that
decides the direction of the change of momentum and
whether, as a consequence, the inhomogeneity can pro-
vide stabilization. The role of the magnetic-moment field
in such processes is not clear to us.

The field from the thermal gradient source ( VX X V T )

[17], rippled surface irregularities [18], and the dynamo
effect [19], have been investigated. Contributions from
these and other sources of field generation determine the
direction and magnitude of the quasistatic magnetic field
of a magnetized plasma. Obviously the diamagnetic
sources reduce and paramagnetic sources increase the
value of this field vector.

B. Remarks on application

The electrical conductivity is likely to be high in the
latest stage of stellar evolution, where inside the star car-
bon and oxygen burn at temperatures of the order of 10
to 10' K; the mass density po=10 to 10' g/cm,
HO=10' G, the sound velocity C, is about 10 cm/s.
Then the phase velocity of Alfven waves is C~ = 10 cm/s
(these are subsonic Alfven waves) and the ion gyration
frequency 0, =9.6X10' rad/s. A pump Alfven wave
(wave 3) of electric field amplitude E3 = 10 V/m
( = 10 /3 esu/cm of electric field intensity) and frequen-
cy co3=2000 rad/s is assumed to act on such a superdense
plasma. Its magnetic component has the amplitude
II3(=c/2C& )E3 =50 G, which is evaluated from (2.3).
This pump field interacts parametrically in a SEMF, with
a signal sound wave (wave 1) and a signal Alfven wave
(wave 2). We take co2=1500 rad/s; then the frequency-
matching condition (1.8) gives co, =500 rad/s. The rela-
tions (3.22) and (3.29) yield k, =5 X 10 /cm,
k2 = 1.5 X 10 /cm, k3 =2 X 10 /cm. Assuming the

electrical conductivity o.= 10' /s, we find that the plasma
diffusivity i)( =c /4~o. ) =72 esu, yz( = —i)k~/2)
= —8X 10 /s, y3( = —ilk 3/2) = —1.4X 10 /s. The
Poynting Aux of the pump wave, evaluated from the rela-
tion (3.57), is 4X 10 ergs/s/cm . The relations (3.48), for
growth rate of the parametric instability, give y =10 /s.
The threshold pump energy density, evaluated from
(3.51), is WH = l. 2 X 10' ergs/cm .

Since this energy density is directly proportional to the
cube of the plasma mass density, and inversely propor-
tional to the fourth power of the ambient magnetic field,
the threshold value is significant for very dense plasmas
and even for moderate values of the ambient field. The
temporally exponentially growing field of the parametric
instability locally increases the distributions of fast parti-
cles along its direction and so enhances the tendency of
anisotropy of the plasma there. The accelerating parti-
cles, in turn, generate Alfven waves [20]. Also, the very
high pump wave energy, at the switch-on instant, soon
becomes depleted as the signal waves begin to extract ap-
preciable amounts of energy from it. If the signal sound
wave is thus driven to a large amplitude, it may trap and
accelerate particles in its potential trough, and thus be
damped at a rate longer than the linear damping rate.
For a large effective damping, the pump intensity may be
below a threshold value and the instability may be
switched o6'.

In the ionosphere the electron temperature is about
300 K, the number density (X; = No ) -10 cm, and the
ambient magnetic field Ho -0.3 G; the corresponding ion
gyration frequency is 3000 s '. We assume the frequen-
cies of the large- and small-amplitude Alfven waves to be
375 and 250 s ', respectively, and their common phase
velocity C„ to be 10 cm/s. Resonance occurs when a
sound wave of frequency 12S s ' propagates with sound
velocity 1.86X10 cm/s. If the amplitude of the pump
wave is 10 V/m, the JnH3~ =0.03. The characteristic
time is y

' (=9.2X10 s), for growth of the field from
the initial value 0.032 G to 0.224 G.

The brighter parts of the spectrum luminosity func-
tions, now observed in the Sb, Sc, and Irr galaxies will
remain in a steady state for at least 10' years [21]. This
slow evolution process may be a consequence of the weak
nonlinearity, considered in Sec. IVB, which develops in
the galactic systems. For stars with masses greater than
the "white dwarf limit" a star cannot stabilize itself by at-
taining a degenerate configuration and, as it successively
exhausts various sources of fuel, it will pass through
higher and higher density and temperature ranges. It is
now believed that at some point, strongly endothermic
nuclear processes, rendering the star unstable on a very
short time scale, will occur. An enormous amount of en-

ergy may be thus released in a short time scale, due to
collapse of a star, which would be detected as a superno-
va explosion.

VI. CONCLUSIONS

Spontaneous magnetization is generated from quadra-
tic nonlinearities for a matching of frequencies of first
harmonic of three high-frequency waves (sum of frequen-
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cies of two of the waves equalling the frequency of the
third wave), all propagating in the same direction. This
magnetization may be called the resonant excitation of
magnetic field, or REMF in short. It causes enhance-
ment of the synchrotron radiation loss, and plasma
bunching, which increases the collision frequency, and
the consequent bremsstrahlung loss. Due to a wave-
number mismatch, it has a sinusoidal spatial variation in
the direction of propagation. In the case of two trans-
verse waves and one electron acoustic wave, this magneti-
zation is axial (that is, along the direction of wave propa-
gation); so it has a longitudinal gradient. The gradient
causes increase of plasma bunching in regions of max-
imum field strength. In the case of interaction of one
transverse wave and two electron acoustic waves with a
plasma, as well as in the case of interaction of three trans-
verse waves, this magnetization exists only in a lateral
direction, relative to the direction of propagation. It aug-
ments anomalous diffusion of plasma in the presence of
wave fields. Evidently, it also has a sinusoidally varying
transverse gradient, which causes a drift and a current of
charges.

When a pump Alfven wave interacts with a signal
Alfven wave and a signal sound wave, all propagating in
the same direction, in a finitely electrically conducting
MHD Quid, the parametric instability which develops
when the pump power crosses a threshold value, also gen-
erates a temporally exponentially growing, nonoscillating
magnetization, which may be called the stimulated exci-
tation of the magnetic moment field, or SEMF, in short.

All the various features which are associated with the
growth of instability in a plasma, due to wave fields, are
efFectively controlled by this predicted magnetization.
The threshold value of the pump power, for instability, is
different for subsonic, sonic, and supersonic Alfven wave
phase velocity. For subsonic, or sonic Alfven waves, the
instability occurs when the two signal waves are copro-
pagating. But, for supersonic Alfven waves, the instabili-
ty may not occur. For counterpropagating signal waves
the instability condition is just the opposite.

At the threshold limit of the pump power, a resonant
amplification occurs when the real part of the parametric
shift of the frequencies equals the frequency of the signal
Alfven wave. The amplification frequency. being propor-
tional to pump amplitude, for a large-amplitude pump
Alfven wave, this resonance is not possible; it is possible
for a weak pump Alfven wave, because then the wave
modes retain their identity though they are no longer
completely independent.
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