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The Mori-Lee formalism for solving the Liouville (or Heisenberg) equation of motion for Hermitian
systems demonstrates that the Laplace-transformed dynamical correlations in canonical ensembles
can be written as (in)finite continued fractions. We show that a model-independent direct summa-
tion method allows accurate numerical evaluation of all known classes of these (in)finite continued
fractions that arise in dynamics problems and thus provides a powerful technique to study the dy-
namics of many-body and few-body systems. Some studies on dynamical correlations in s = 1

quantum spin chains are cited as applications of the method presented.
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I. INTRODUCTION

There is currently a strong interest in studying dynam-
ical phenomena in the physical and biological sciences
[1—3]. Of key concern in most studies is the long-time
behavior of dynamical correlations such as (A(t)B(0)),
A, B being dynamical variables. For most interacting
classical and quantum many-body and few-body systems,
long-time simulation studies in canonical ensembles are
seldom possible due to computational constraints [4—6].
Furthermore, time-evolution studies via simulations are
more computationally intensive because of the two-point
nature of the time correlations of interest. Therefore, in
recent years, there has been a renewed interest in solv-
ing the Liouville (or Heisenberg) equation of motion for
A(t) in a canonical ensemble [7, 6, 8]. A forrnal way of
solving the Liouville (or Heisenberg) equation of motion
for Hermitian (i.e. , nondissipative) systems with time-
independent Hamiltonians is by using the continued-
fraction (CF) formalism, originally due to Mori [9] and
later developed by Lee [7]. This formalism allows one
to study the dynamics of any Hermitian system whether
ergodic or not within the context of a canonical ensemble
[5]

Infinite continued fractions (ICF's) can seldom be ex-
actly evaluated [8—ll]. Therefore, historically, ICF's have
posed a challenge to mathematicians and to theoreticians
in physics and related disciplines. Often the usefulness of
the CF formalism itself has been questioned [12]. The use
of ICF's has either been avoided in favor of some other
methods [13] of study (such as mean-field techniques, dy-
namic scaling or simulations) which do not rely on the
CF representation or has been handled using a variety
of truncation functions [14—17]. There have been two

distinct approximation schemes used to evaluate these
ICF's. One technique has centered on truncation with
N poles (N being small, 3 being quite common) and
replacing the (oo —N) poles via some ad hoc trunca-
tion function typically derived from some experimentally
obtained spectra [4, 14—17]. In time it turned out that
these N-pole approximation schemes were, at best, only
of limited use. Recently, Hong and Lee [18] proposed a
second, more general method, a perturbative approach
for evaluating some ICF's when a closely related ICF is
exactly soluble. This approach, while useful, sufFers from
the handicap that few exactly soluble cases exist. Fortu-
nately, as we shall see later in this article, it turns out
that many of the ICF's of interest in studying many-
body relaxation phenomena can be approximated by a
finite but large number of poles.

It may be noted that the ICF representations are also
routinely used in density of states (DOS) studies as well
as in studying difFusive properties of incompressible fiows
[19]. In these studies ICF's are often replaced by a few

(say 10) poles. It may be noted that these calculations
could become somewhat complicated in the presence of
singularities in the DOS and require that the ICF's be ap-
proximated by as many as 20—30 poles [19]. DOS calcu-
lations, however, typically involve a tight-binding picture
and hence a one-body approach. The kind of dynamical
problems we are focusing upon here, on the other hand,
involve interacting many body systems. Replacing an
ICF by a 10-pole finite CF (FCF) almost always leads
to extremely poor results for long-time relaxation func-
tions in the real time domain in our systems of interest.
The number of poles necessary for accurate evaluation
of various classes of ICF's will be discussed at length in
Sec. III of this article. Therefore, for the Mori-Lee for-
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malism to be truly useful for studying the dynamics of
a large variety of physical systems, it is essenti. al to de-
velop a theoretical framework for approximating ICF's
which cannot be replaced by a few poles [8]. Thus ICF's
in the CF formalism must be handled in a more general
manner.

In this article we present an efficient and reliable
method to evaluate numerically a large class of ICF's
that are often encountered in studying dynamical corre-
lations in many-body and one-body systems. We begin
with a brief overview of the Mori-Lee formalism in Sec.
II, followed in Sec. III by a discussion on the evalua-
tion techniques of the ICF's using the direct summation
method (DSM). Section IV presents several applications
of the DSM to a variety of many-body dynamics prob-
lems. Section V summarizes this work.

II. OVERVIEW OF THE MORI-LEE FORMALISM

A(t) = exp(iHt)A exp( —iHt) = ) a„(t)f„, (2)

where {f„) is a complete set of orthogonal basis vectors
that span 8. The inner product in 8 is the KSP de6ned
by

(X,Y) = (P)
' da(X(n)Yt) —(X)(Y~),

where P = 1/kT, k being the Boltzmann constant, T
being the temperature, X and Y being vectors in 8,

The Liouville (or Heisenberg) equation, as stated
above, can be formally solved via the Mori-Lee formal-
ism described as follows [7, 9]. In this formalism one
attempts to construct satisfactory solutions to two re-
currence relations (RR's). It turns out that the solution
to these RR's are automatically solutions to the I iouville

(or Heisenberg) equation for Hermitian (i.e. , nondissipa-
tive) systems.

Consider a dynamical variable A(t) in some d-
dimensional vector space 8. Then A(t) undergoes a
sweeping motion in 8 governed by the Liouville (or
Heisenberg) equation of motion. The space 8 is real-
ized by a physically meaningful inner product, namely,
the Kubo scalar product (KSP). The motion of A in 8
describes a trajectory which traces a hypersurface in 8.
It turns out that the dimensionality d and the structure
of this hypersurface completely characterize the time evo-
lution problem for Hermitian Hamiltonians.

The time evolution of A(t) is described by the Liouville
(or Heisenberg) equation of motion

dA(t)
dt

where L is the I iouville operator, i.e. , it denotes a Pois-
son bracket {,H) for a classical system and denotes a
commutator bracket (i/h, )[H, A] for a quantum system.
Formally, for an operator A(t) in 8 one can write down
an orthogonal expansion

X(n) = exp( —o.H)Xexp(nH), and the angular brack-
ets denote canonic@1 ensemble averages. The individual
terms in the right-hand side (RHS) of Eq. (2), i.e, the
f„'s and the a„(t)'s, are therefore temperature depen-
dent in such a way that their sum in the left-hand side
(LHS) of Eq. (2) is temperature independent.

If 8 is realized by the KSP, then the orthogonal {f„)
can be obtained via the following RR (referred to as RR
I) for the basis vectors:

f„+i = Lf„+A„f„ i, 0 & n ( d —1 (4)

= (f f )/(f -i f -i) =II f II / II f -i II

1 & n & d —1 are the relative norms of the basis vectors
referred to as recurrants.

Since Eq. (2) must satisfy Eq. (1), RR I leads to a
second recurrence relation for the a„(t)'s. This RR, i.e. ,

RR II, is given below:

—da„(t)& +ia +i(t) = d" +a -i(t).
dt (5)

Thus, RR I and RR II completely determine A(t), which
satisfies the Liouville (or Heisenberg) equation of motion.
If we choose fp as A(0), then ap(t) = (A(t), A(0))/(A, A).
Our choice renders a„(0) = 0, n g 0. Note as a result
that dap(0)/dt = 0, which is a consequence of RR II and
gives a condition which excludes the exponential func-
tion as a relaxation function from the class of admissible
solutions for Hermitian Hamiltonians [20].

Upon Laplace transformation RR II [see Eq. (5)] yields
[7] the following expression for ap(z):

1
ap(z) =

1z+
+ 2

z+ 3

+ ~ ~ ~

(6)

where 4„'s introduced above are static quantities, involv-
ing static correlations, that, in general, depend upon tem-
perature, wave vector, system size, interaction strength,
and other system parameters. We shall return to a dis-
cussion on the nature of L~'s later in Secs. III and IV.
Formally, if 4„'s are known, the relaxation function ap(t)
can be obtained. The evaluation of the ICF's of the form
in Eq. (6) above will be the main topic of discussion in
this article.

For some systems it is possible to obtain {4„)exactly.
However, it turns out that for most physical systems of
interest one can obtain only the first few 4„'s (typically,
the first 5—30 depending upon the Hamiltonian). The
remainder of the 4„'s often have to be obtained through
some extrapolation scheme. For most ergodie as well as
nonergodic systems (a completely nonergodic system is
one in which there rigorously is a finite number of A„s
only [5]) there are an infinite number of A„'s. We will
return to a more elaborate discussion on 4„'s in Sec. III.
Perhaps not so surprisingly, even when {E„)is given,
evaluation of Eq. (6) is a challenge. As stated in Sec. I,
various approximation schemes [15,17] have been used to
evaluate the ICF above with limited success.
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III. THE DIRECT SUMMATION METHOD
OF EVALUATING ICF'S

While using 3 or 5 poles with truncation functions for
approximating ICF's yields satisfactory results for a few
classes of ICF's [14], the form of the truncation function
can usually be determined based on some ansatz. Typ-
ically, this ansatz depends on the properties of the ICF
which is to be evaluated.

A better approximation for the ICF's is often possible
using the Hong-Lee [18] dynamical convergence method.
As mentioned in Sec. I, in this method one usually finds
an exactly soluble ICF, ap (z), that is closely related to(0)

the ICF, ap(z), that needs to be solved. Suppose 6„'s
are the recurrants characterizing the ap(z) to be solved

while AP„are those characterizing ap (z). Let 4„—+ EP„
for some large n & L. Then,

ao(z) =

3z+ +Lo'L+ 1 ~ ~

where o;1.(z) is a function of AP„with n ) L (see the Ap-
pendix). If the problem is such that AL, ~ A~& for small
L, say, L=3, 4, or 5, etc. , then the Hong-Iee scheme
works very well [18]. If, on the other hand, 4& —+ API

for larger L, say, L ) 10 or so, this scheme leads to in-
accurate results for ap(t). The reason for this inaccuracy
lies in the fact that for L ) 10 or so, ap(z) = N(z)/D(z)
(see the Appendix) involves division between large num-
bers which most computers are unable to handle accu-
rately. Indeed such problems are well known in the high-
temperature-series-expansion literature [21].

It may be noted that the Hong-Lee scheme is especially
well suited for the study of ICF's in which 6„= n~,
2: & 2. In such cases, the DSM converges slowly and
becomes impractical to implement. However, such fast
growth rates for 4„, as far as we are aware of, are al-
most never realized in many-body problems [22]. To sum-
marize, in practice, the Hong-I ee scheme works well for
L ( 10. It turns out that there are physical many-body
Hamiltonians in which one must go to L )) 10 for reliable
results. For such problems this scheme becomes increas-
ingly difficult to implement on a computer. Of course, a
major drawback of the Hong-I ee scheme lies in the fact
that the scheme is of little use when a closely related
soluble ICF is unavailable.

Thus one can argue that the efFort one must spend on
extracting a truncation function or in finding an appro-
priate soluble ICF to implement the Hong-Lee scheme is
no less demanding than in evaluating the ICF itself via
some other computational method. One such approach
is to replace the ICF by a FCF. Thus we get o.l. = 0 in
Eq. (7) for some large I in this scheme. How large L
must be is sensitive to the properties of the ICF under
study. Specifically, L is determined by (i) the sequence

and (ii) by the maximum time r up to which the
relaxation function is to be studied. It turns out that

with the availability of powerful computers, the evalua-
tion of a FCF with as many as 10 poles (nL, = 0 ~ L
poles) is readily possible. In fact, for some ICF's that
appear in many-body dynamics problems [8], as few as
10 poles faithfully represent the relaxation function up
to long enough times such that the asymptotic behavior
of dynamical correlations can often be reliably extracted
from the available information.

A. The sequence of A„'s

A standard problem in evaluating an ICF as an FCF
with a large I lies in the determination of 4„ itself. The
determination of 6„ is often the most difficult step in
evaluating the ICF. It appears that for most interacting
many-body problems it is practically impossible to ob-
tain E„ for n ) 30 or so, depending upon the spatial
dimensionality of the problem and the nature of the in-
teractions. One way of getting around this difficulty is to
obtain some approximate form for the large-n behavior
of 6„'s through some acceptable extrapolation scheme.

The approximate form of 6„ for large n is often mo-
tivated by the physical content of the lower order f„'s
and 4„'s [see Eq. (4)]. However, it turns out that for
problems often encountered in many-body and one-body
canonical ensemble dynamics studies it may be sufficient
to know the first few 4„'s (say, the first 5—30 or so de-
pending upon the nature of the Hamiltonian, as stated
above) accurately and the rest approximately. It turns
out that often the long-time behavior of the relaxation
function to be eventually calculated is not too sensitive
to the exact values of the higher-order 4„'s but rather
depends instead more crucially upon certain general fea-
tures of the higher-order E~'s, such as their n depen-
dence.

So far the CF formalism has been used to study relax-
ation phenomena in a variety of simple many-body and
one-body systems. A list of the major studies includes
(i) density response in a quantum electron gas at T = 0
in the long-wavelength limit [18], (ii) two-spin relaxation
function of the total spin operators in the Kittel-Shore
model at all temperatures [23] and on-site dynamical spin
relaxation in the one-dimensional XY and transverse
Ising models at both T = 0 and at T = oo of [24—29], (iii)
velocity autocorrelation function for a tagged mass in an
infinite classical and quantum simple harmonic oscillator
chain [30], and (iv) velocity autocorrelation functions of
an oscillator in a single double-well, and in a quartic well
(Duffing oscillator) at all temperatures [6].

In all these problems, E„has been obtained for 1 (
n & oo either exactly or approximately. Many of the
cases listed above can be described via ICF's that are
exactly soluble. We have successfully compared our DSM
calculations for those cases against the exact calculations.
In cases where the exact results cannot be obtained, we
have used extrapolation schemes to approximate large-n
behavior of b,„'s and have obtained reliable results.

The studies reveal that a general feature in most of
these problems is that L~ can be generally described as
4~ = n~ for large enough n where typically 0 & x (
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2. A second general feature is when A2„+1 = k" and
= k & where y ) 0 say [24]. It turns out that

the second case is easily soluble numerically and leads
to oscillatory relaxation phenomena with the frequencies
involved being sensitive to k and y. To see this behavior,
observe that for k ) 1 large k and/or y, A2„—+ 0 even for
small n and thus the ICF tends to naturally self-truncate
thereby leading to oscillatory relaxation. We shall return
to this simple behavior later.

For 4„= n*, 2: & 0, the ICF's again tend to self-
truncate for large enough n and the relaxation phenom-
ena exhibit oscillatory behavior. These ICF's can be ac-
curately replaced by FCF's with less than 103 poles and
yield accurate results. However, there are no physical
systems that we know of which exhibit x & 0 behav-
ior. One should note that the CF formalism of Mori and
Lee, in its present form, is a recently introduced method.
So far, relatively few physical systems have been studied
using this scheme. Therefore it is quite plausible that
x ( 0 exists for some important and interesting class of
physical problems.

The scenario 6„=n, 0 & x & 2 is, however, common
in many-body as well as one-body relaxation studies. In
these cases, I = 10& typically has 3 & ( & 5. The density
response in a quantum electron gas at T = 0 in the long-
wavelength limit is characterized by x = 0 behavior in
two and three dimensions [18]. Relaxation of tagged two-
spin correlations at T = oo in the semi-infinite quantum
spin chain is characterized by 0 & x & 1 depending upon
the location of the spin. The surface spins exhibit x = 0
behavior while the bulk spin exhibits x = 1 behavior.
The dynamics of the intermediate spins are character-
ized by 0 ( x & 1. The velocity autocorrelation function
in an infinite classical simple harmonic oscillator chain is

characterized by x = 0 behavior. There are some one-
body and two-body problems in which the growth rates
can be faster, say 2 & 2: & 3 [22]. These are, however,
rare and hence will not be addressed here. We have found
that the DSM can handle 0 & x & 1 very well. The cal-
culations become computationally intensive but remain
feasible for 1 & x & 2. This method is no longer feasible
for growth rates x & 2.

We will illustrate the use of DSM by applying it to
some quantum spin chains. The choice of quantum spin
chains is dictated by the fact that these strongly anhar-
rnonic systems have been rather extensively studied and
are known to exhibit a rich variety of growth exponents
in their 4„'s.

B. Time regime for relaxation studies

The number of poles I needed to accurately evaluate
an ICF using the DSM is sensitive to the time regime
for which relaxation processes are being studied. For
specificity we shall assume 0 & t' & 100, where t' is
t scaled by the appropriate coupling that sets the time
scale for the dynamics of the system under study. Thus,
in magnetic systems, t* = Jt where J is the coupling and
for a harmonic oscillator t" = pt where p = g(r/rn),
e being the spring constant and m being the oscillator
mass. We shall drop the asterisk in t from now on for
notational simplification.

First let us compare this simple truncation scheme
with short-time expansion. One can show that [6]
the short-time expansion of ap(t), obtained via inverse
Laplace transform (ILT) of ap(z) is always an infinite
series whether ap(z) in Eq. (7) is finite or infinite. Thus

ap(t) =1 —Kit'/2! + &1(&1+ &2)t'/4. —&1[(&1+ &2)'+ &2&3]t'/6!

+61[(41+ A2) + 4243(41 + 42) + 4263(41 + E2 + 63 + 44)]t /8. — (8)

Observe that due to the two-point nature and time re-
versal invariance of ap(t), only terms with even powers
of t appear in Eq. (8). We also observe that 4„'s ap-
pear in such a way that they persist in terms of order t™,
m ) 2n. Higher-order 4 's are unimportant if we are
interested in short-time behavior. The accuracy of ap(t)
obtained in DSM of order n is thus exact to 0(t2") in
the time domain and approximate beyond. This accu-
racy is, however, diFicult to achieve if one carries out the
same calculation in the time domain itself by expanding
ap(4) directly without using CF representation of ap(z)
and expanding the latter. The difhculties with accuracy
in our CF approach arises when the time series is slowly
convergent and when the cancellations between the coef-
ficients of terms of O(t "), where n is a large number, in
the power series in time in Eq. (8) introduce significant
errors [8].

For noninteger x, it is typically not possible to cal-
culate ICF's analytically. For these cases, the results
obtained with a large value of truncation level L can be
used to compare with the results obtained using a slightly
smaller L. In addition, one can and should also check
whether the FCF is sensitive to I being an odd or an
even number. A stable and convergent result is insensi-
tive to the oddness or evenness of L. This dependence on
the oddness and the evenness of L is commonly referred
to as the odd-even eBect.

We have calculated ap(t) numerically for various values
of x and I. The computation of the inverse Laplace
transform is based on the paper of Crump [31],who uses
a Fourier series approximation. For a given complex-
valued function ap(z), we can obtain an approximation
of its inverse Laplace transform ap(t) by computing the
partial sums of
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[24]. We were able to solve for the surface spin dynam-
ics exactly. In fact, this case corresponds to E„= 1

under appropriate scaling and leads to ao(t) = 2Ji(t)/t.
The subsurface spin, however, was much more difficult
to solve. We calculated the first five 6„'s exactly for
that case. These were b, i = 2, b.z

imated the 6„'s by a straight line extrapolation for
5 ( n ( oo on the basis of the available results and given
by 6„= (0.05)(n —4) + 1319/938. We then summed
up the resulting ICF using the direct summation scheme
described here with I = 104. We have learned recently
that using a diferent approach Stolze and co-workers [26]
have obtained a closed form expression for the subsurface
spin correlation function given as

1.00
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where J„'s are Bessel functions of order n. The agree-
ment between the Stolze formula and our approximate
result is excellent as shown in Fig. 3. The impressive
agreement between Stolze's result and ours can be read-
ily attributed to the linear growth rate of the 4„'s with
n in this problem and hence the rapid convergence of
the ICF under study. One should expect similar highly
accurate results for all ICF's with effective growth rates
that are less than quadratic in n. This successful pre-
diction confirms that long-time behavior of strongly an-
harmonic systems can indeed be studied using this direct
summation scheme for ICF's. Our earlier prediction that
subsurface and inner spins rapidly go to bulk behavior
(which is Gaussian decay), based on the numerical eval-
uation of ICF's using the direct summation scheme, is
also con6rmed by the analysis of Stolze.

FIG. 3. ao(t) vs t for the subsurface spin of the semi-
infinite XY chain at infinite temperature. The solid line is
the result obtained using the formula of Stolze and co-workers
[26]. The dashed line is the direct summation result [24]. The
inset magnifies the regime where the two results differ the
most.

B. Case 2: Dynamical correlations in a transverse
Ising chain at T = 0

Recently [27], Lee and Kobayashi were able to solve
for the relaxation function of the magnetization and the
energy operators in a s =

&
transverse Ising chain at

T = 0. The calculations in [27] were performed for small
o, where o = —1/ln [

e ], e = (h —h, )/h„h, = J/2, J
and h being the Ising (between nearest-neighbor z com-
ponents of the spin operators) and field couplings (along
the x direction), respectively. It has been shown that
the recurrants for the relaxation functions under study
in this model are

Ai = (1+&)J o/3,

b2„+i = (1+s)J [2n(2n+ 1)/(4n+ 3)(4n+ 1)][1+(4n+ 1)cr/2n(2n+ 1)],

A2„——(1 + e)J [2n(2n+ 1)/(4n + 1)(4n —1)][1 —(4n + l)o/2n(2n + 1)], n & 1

to O(o). The ICF corresponding to the 6„'s above is
solvable as shown in [27]. However, the result in [27]
is not correctly linearized. The error can be trivially
corrected by expanding the results in [27] to O(o) and is
given by

ao(z) = (z) [1—(o/3)(J /z )F(l, 1;5/2; J /z )], —

(14)
E(l, 1; 5/2; —Jz/zz) being the hypergeometric function
which when inverse Laplace transformed gives the relax-
ation function ao(t) given in Fig 4. The ri.se in the mag-
nitude of ao(t) at t = 100 in Fig. 4 is real and not an
artifact of the calculations. Indeed it occurs in both the
exact and the DSM results. Clearly then, the relaxation

function has some oscillations even at t = 100 in this
problem. The ICF characterized by the above E can
be readily evaluated via DSM. The Laplace-transformed
DSM result is plotted with that obtained via numerical
inverse Laplace transform of ao (z) given above. The plot
reveals remarkable agreement between the exact result
obtained by plotting Eq. (14) and those using DSM re-
sults.

The above two cases demonstrate that the DSM leads
to remarkably accurate results for many-body dynamical
correlations. Since the spatial dimensionality of the prob-
lem under study does not enter into the DSM approach,
we expect that this method will give equally good results
for higher-dimensional problems.
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FIG. 4. Plot of ao(t) vs t for the transverse Ising chain
at T = 0 using the exact result in Eq. (14) (dotted line)
against the result obtained via DSM with C' = 4 (diamond).
The difference between the two results is smaller than the line
width in the figure.

With reference to the discussions in Sec. III, one can
approximate an insoluble ICF by writing it in terms of
some soluble ICF beyond L levels. If L is sufficiently
large and if the insoluble ICF is such that A„~ b,0,
where b,0 's pertain to the recurrants of the soluble ICF,
then the following simple expressions may be useful in
evaluating the insoluble ICF. Let a0(z) and a00be the
insoluble and the soluble ICF's, respectively, as given
below,

a0(z) =

V. SUMMARY

To summarize, we have presented a simple method of
evaluating infinite continued fractions. We believe that
this method is extremely useful for long-time dynamics
studies of many-body and one-body systems in canon-
ical ensembles. The direct 8umrnation method involves
replacing an infinite continued fraction by a large finite
continued fraction with L = 10C poles with 3 ( ( ( 5
poles. The g value necessary for accurate evaluation of
dynamical correlations is determined by the nature of the
recurrents which characterize the continued fraction and
by the time regime in which the dynamical correlation is
being studied (see Fig. 1). We have sketched several ap-
plications of the DSM to physical systems in this article
(see Figs. 3 and 4).

We have included an appendix with this article, to gen-
eralize the Hong-I ee dynamical convergence scheme of
evaluating ICF's for studying dynamical correlation func-
tions in canonical ensembles. We believe that the gen-
eral formulas can be readily included in a simple FOR-
TRAN program for evaluating insoluble ICF's (i.e.,with
quadratic or faster growth rates in 6„) when a closely
related soluble ICF exists. We have pointed out that the
only difBculty in implementing the generalized Hong-I ee
scheme for large L values lies in one's ability to handle
large roundoff errors when division between large num-
bers is involved. Until now, we have had limited success
with the generalized Hong-Lee scheme [32]. We hope,
however, that some of our readers will End the materi-
als presented here to be insightful in understanding the
behavior of ICF's and will perhaps be able to devise an
accurate way to obtain higher-order Hong-Lee scheme
calculations.
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lim a0 )(z) = ao(z).
L ~oo (A5)

For finite L, the error El, in Eq. (A4) can be estimated
as follows:

where 6„=b,„+s„and (b,„j and (e„) are known.
Further, it is necessary to require that there exist some
integer p (0 (p ( oo) such that

(A3)

Then for L & p
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Now,

(A6)



280 SURAJIT SEN, ZHI-XIONG CAI, AND S. D. MAHANTI 47

+ ~ ~ ~

g + 0 ~ ~

(A7)

where

L—1

x('&(z) = ) ~"r(", „, (A10)

where

&I.+i

z+ z+ . tooo

(A8)

and

L
D('l(. ) = ) ."A&'&„.

n=O
(A11)

One can always show that The coefficients rl &
„and AI „are given as follows:(L) (L)

p( ) p( ) (A12)

r('~ = A('l = n, ~„ (A13)
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When I is odd the bounds on j in Eqs. (A14)—(A17) are,
respectively,

]. & '( L —1
2

1 ( I —3
—2 —

2 )

are, respectively,

1( L —2

2

C
L —2-2 —

2

I
2'

I —1
]. &j&

2

When I is even the bounds on j in Eqs. (A14)—(A17)

L —2
]. &j&

2

Therefore, for odd and even L, aL can be written, re-
spectively, as
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odd
(0)( )[ AL(0) + zL 2—AL(0) + + AL(0)] [zL 1~—L(0) + zL —3PL(0) + + PL(0)]

[zL—2p ()+zL—4p ()+ . +zp( )
]
—a()(z)[zL—iA +zL 3A +. +A ]

(A18)

even
(0)( )( AL(0) + zL 2AL(0) + + AL(0)] (zL 1I,L(0) + zL 3I,L(0) + + zI,L(0)]

[z -'p "'+z -'p '"+ +p' '] —a"'(z)[z -'A "'+zL-3A '"+ "+zA "'] (A19)

where the superscript (0) implies 60's instead of 4„'s
are involved in the evaluation of I"s and A' s.

It may be noted that the formulas in Eqs. (A18) and
(A19) above may be used to evaluate ICF's with fast
growth rates, i.e. , when x ) 2. Unfortunately, as men-
tioned earlier, it is computationally challenging to carry
out the approach presented here. The primary reason
for the difficulty lies in the fact that for L & 10 or so,

the evaluation of aL involves division between two large
numbers, which contributes to large roundoff errors in
the computation. However, we feel that, should there be
some convenient algorithm to accurately carry out divi-
sion between large numbers [21], the reader can benefit
from these general formulas and incorporate them in a
computer code to calculate ICF's with rapidly growing
6„'s.
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