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Prediction of dendritic spacings in a directional-solidification experiment
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We present a theoretical analysis of the formation of a dendritic array in a directional-solidification
experiment. Our calculation contains three sequential ingredients: acceleration of an initially Hat inter-
face and the concomitant buildup of a solutal boundary layer in front of it; onset of a morphological in-
stability, triggered by thermal fluctuations, producing a relatively finely spaced array of dendritic tips;
coarsening of this array and final selection of a steady-state primary spacing. For sufBciently large
growth speeds, where the resulting dendrites interact with each other weakly, we find —with no adjust-
able parameters —good agreement with the experiments of Trivedi and Somboonsuk [Acta Metall. 33,
1061 (1985)]and Somboonsuk, Mason, and Trivedi [Metall. Trans A 15A, 967 (1984)].

PACS number(s): 68.70.+w, 81.30.Fb, 81.10.Fq

I. INTRODUCTION

Prediction of the primary spacing of dendrites in the
mushy zone of a solidifying alloy is among the most im-
portant unsolved problems in the theory of micros-
tructural pattern formation. To date the most carefully
controlled laboratory studies relevant to this problem
have been observations of dendritic arrays formed in the
directional solidification of thin films of experimentally
convenient substances such as succinonitrile. The most
detailed work along these lines has been that of Som-
boonsuk and Trivedi (referred to hereafter as TS for Ref.
[1] and SMT for Ref. [2]). Our purpose in this paper is
to report on a detailed theoretical analysis of their re-
sults.

In an earlier investigation, we carried out a stability
analysis for the final, steady-state, dendritic arrays ob-
served by SMT. We found that, at large enough pulling
speeds where we expected our analysis to be valid, a finite
range of primary spacings was allowed, and the observed
spacings were well within the predicted region of stabili-
ty. From this we concluded that the actual spacing ob-
served in any experiment must depend on the detailed
way in which the sample is prepared and set in motion;
that is, that dendritic spacings of this special class of ex-
perimental situations must be history dependent.

Accordingly, we present here a step-by-step analysis of
the sequence of events leading to the final, steady-state
configuration observed in the SMT experiments. This se-
quence is best described by reference to a set of photo-
graphs that appears in TS and is reproduced here as Fig.
1. The system consists of a thin film of succinonitrile plus
5.5% molar (4.0 wt%%uo) acetone, contained between glass
plates, and pulled to the left through a fixed temperature
gradient so that solidification appears to take place from
left to right. Initially the system is at rest and the liquid-
solid interface is Hat. The pulling mechanism is then
turned on abruptly, and the following events take place.

(1) The temperature decreases at the position of the in-

terface, that is, the solidification front moves backward
relative to the temperature gradient. In order to remain
in local thermodynamic equilibrium at this lower temper-
ature, solidification begins to take place and a boundary

(a) (b) (c)

(e)

FIG. 1. Sequence of photographs taken from TS illustrating
the instability of a planar interface and the subsequent develop-
ment of a steady-state dendritic array. (Reprinted from R.
Trivedi and K. Somboonsuck, Acta Metall. 33, 1061, copyright
1985, with permission from Pergamon Press Ltd. , Headington
Hill Hall, Oxford OX3 OB%', U.K.)
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layer of rejected impurities begins to form ahead of the
front.

(2) As solidification accelerates, the front undergoes a
Mullins-Sekerka instability seen in Figs. 1(a) and 1(b).
The wavelength A.p at which this instability first appears,
seen clearly in Fig. 1(b), was found by TS to be about an
order of magnitude larger than predicted by the conven-
tional Mullins-Sekerka analysis for a front moving at the
pulling speed. TS deduced from this observation that the
instability must be occurring while the front is still mov-
ing relatively slowly.

(3) At the point at which the instability becomes visible
(its amplitude becomes roughly comparable to its wave-
length), the forward-pointing bulges already look much
like an array of dendritic tips, and the motion of the front
apparently has entered a strongly nonlinear regime.
These dendritic tips now undergo a coarsening instability,
that is, they go through a stage of competitive growth in
which tips that fall behind their neighbors are overgrown
and eventually eliminated from the final array. This pro-
cess is occurring in Figs. 1(c) and 1(d).

(4) The spacing reaches its steady-state value A, , well
before the dendrites themselves are fully developed, as
seen in Fig. 1(e). The resulting regular array of tips final-
ly accelerates to the pulling speed. The steady-state array
is shown in Fig. 1(f).

Our analysis deals quantitatively with each of these
stages of the process. In Sec. II we develop a simple
model to describe the initial acceleration of the Aat
solidification front and its concomitant buildup of the
boundary layer of impurities ahead of it. Section III is
devoted to an analysis of the Mullins-Sekerka instability
during this initial transient. Here we compute the way in
which the instability is triggered by fluctuations, and we
verify the TS conjecture that the instability goes all the
way into its nonlinear regime at relatively long wave-
lengths while the interface is still moving quite slowly. In
Sec. IV we present a model of the subsequent coarsening
instability. This model is a generalization of our earlier
analysis of the competitive interactions between dendritic
tips; it is used here to compute how the system moves
from the initial spacing Xp to a final, steady-state spacing

When we put together all of these ingredients,
without any adjustable parameters, we obtain values of A. I
that are consistent to within 20% with the experimental
observations of SMT.

II. MOTION OF THE FLAT INTERFACE

We start by defining our notation and specifying the
various approximations to be used in our analysis. The
solidifying material, a dilute solution of acetone in succi-
nonitrile, is contained between glass plates, with separa-
tions in the range 50—500 pm. Because k& is of the same
order of magnitude as the plate separation; our process
(at least in its later stages) is eff'ectively two dimensional.
We assume that hydrodynamic motion can be neglected
and that all transport of solute is diff'usive. In addition,
the latent heat of fusion is assumed to be sufficiently
small and the thermal conductivities of the liquid and
solid sufficiently large and close to one another that the

temperature throughout the system is determined by the
applied temperature gradient G. We define our coordi-
nate system so that

T = Tp+Gz, (2.1)

Bc Bc
D +v

az" ~ az

Bcp

at
(2.2)

where cp(z, t) is the time-dependent concentration field
ahead of the planar front. There are several boundary
conditions which must be satisfied. Assuming local equi-
librium at the boundary, we require

6
cp(zp, t) = — zp,

m
(2.3)

where zp is the position of the interface in the gradient
frame. The velocity of the interface in the frame of refer-
ence that is fixed in the solidifying material (hereafter re-
ferred to as the "material frame"), is

up(t)=u +zp(t) . (2.4)

Finally, conservation of solute at the interface requires

Bcp
D = up( 1 K)cp(zp t)

z 0
(2.5)

In principle, we must solve the system of equations
(2.2) —(2.5) for fixed u )0 and initial conditions appropri-
ate to the stationary interface at v =0. That is,

and, in accord with the assumptions stated in the previ-
ous sentence, understand that this relationship is in-
dependent of the position or shape of the solidification
front. The variable z measures displacement parallel to
the direction of motion in a frame moving at the pulling
speed v with respect to the solidifying material. In what
follows we refer to this frame of reference as the "gra-
dient frame. " The temperature Tp is the melting temper-
ature of the pure material. Note that, because the tips of
the dendrites must be undercooled, this choice of position
for z =0 means that the entire solidification front is al-
ways in the region z (0.

The specific experimental substance with which we
compare our theoretical results is the weak solution of
5.5% molar acetone in succinonitrile used by SMT. We
assume that this solution is sufficiently dilute that we can
make linear approximations for the liquidus and solidus
in the equilibrium phase diagram. The quantities m and
m' are, respectively, the slopes (dT/dc) of the liquidus
and solidus. The symbol c denotes the concentration of
the solute; and the ratio m/m'=K (1 is the partition
coefficient. The initial concentration of the liquid, that is,
the concentration infinitely far ahead 'of the solidification
front, is c =0.055. We also assume that solutal diffision
in the solid is much slower than diftusion in the liquid
and can therefore be neglected.

With the above definitions and assumptions, the equa-
tion which governs the evolution of our system is simply
the equation for solute difT'usion in the liquid. In the gra-
dient frame, this is
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c, z )zp(0)
'o'0'= 'rCC„, &z,(0) . (2.6)

—2(z —z /K) /I
c (z)=c„+ —c„e (2.7)

where the diffusion length I is

2D
l =

Up

(2.8)

We know of no exact analytic solution of this version of
the Stefan problem. Rather than resorting to extensive
numerical techniques, we propose a relatively simple
boundary-layer approximation that appears adequate for
our purposes. Note that in steady-state the concentration
profile ahead of a Aat interface moving at the pulling
speed is

Finally, using the local equilibrium condition (2.3) we ob-
tain

2D(zp —z„)
vp(t)=v +io=

l 1 —Kzo
(2.14)

4D (z„—Ezp )l=
I(1—E)zp

zp a (2.15)

A numerical solution of Eqs. (2.14) and (2.15) is shown
in Fig. 2 in the form of a trajectory in the zp, l plane.
Relevant parameters are 6 =67 K/cm and v = 10 pm/s.
For small times t, it is easy to show analytically that

' 1/2

l=
3

(2.16)

and z, the steady-state position of the planar interface
in the gradient frame, is

and

vz 2D
zo=z v t+ — t (2.17)I

Zoo
=

Coo (2.9)

Remember that, in steady state, the concentration of the
liquid at the interface is c /K, and the concentration in
the solid is c . The second term on the right-hand side
of (2.7) describes the boundary layer of excess solute that
moves ahead of the interface.

With (2.7) in mind, it seems plausible to assume that
the non-steady-state concentration profile can be approxi-
mated by a function of the form

Note that the initial motion in the material frame is pro-
portional to t . The most prominent feature of Fig. 2 is
its oscillatory approach to steady state, which occurs for
all pulling speeds greater than v =0.024 pm/s. We be-
lieve this oscillation is a physically realistic effect, not an
artifact of our approximation scheme. On the other
hand, for pulling speeds greater than about 10 pm/s, this

—2(z —zo )/t
cp(z, t) =c + [cp(zp, t) —c ]e (2.10)

0

where I is now a time-dependent parameter describing the
thickness of the boundary layer, and zo(t) is the instan-
taneous position of the interface. Behind the interface, in
the solid where no diffusion occurs, the concentration is
c (z &zo) =Kc(z =zp(t)). We see that this approximation
correctly describes both the initial and final states of our
system; that is, l =0 and c(zp, t =0)=c correspond to
the initial state, and I =2D/v~ and c(zo, t = ~ )=c„/K
correspond to the final state.

Our strategy now is to use the ansatz (2.10) to derive
equations of motion for zo and l. Equation (2.5) com-
bined with (2.10) implies

8
N

N

—10—
2D

vp( 1 K)cp(zp t) = [cp(zp t) c ] (2.1 1)

Integration of the diffusion equation (2.2) from zp to bo

yields

BCp—D
Z =Zo

+vo[c„—co(zo t)] 200 400
t (p.rn)

600 800

QoI dz'c(z', t),
Bt

which, with (2.10) and (2.5), gives

l [cp(zp t) c ]
Vp [C Kcp(Zp t) ]= at 2

(2.12)

(2.13)

FIG. 2. Trajectory in the (zo /~z „~,I ) plane for the
boundary-layer model with U~ =10 pm/s. Here zo is the posi-
tion of the interface and I is the thickness of the boundary layer.
We have also indicated the times a —e along the trajectory.
Time a corresponds to 10 s, b to 30 s, c to 70 s, d to 90 s, and e
to 105 s. Point e identifies the crossover from linear instability
of'the Bat interface to nonlinear dendritic behavior.
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oscillation becomes so large that it drives l all the way
back to zero, at which point our approximation (2.10)
ceases to be valid. Fortunately, we are concerned only
with the early portion of our trajectories (as we show
later), which are well defined for all velocities, and there-
fore we do not need to worry about this unphysical
consequence of the approximation (2.10).

—
q z' dc

Sc„(z',t) =e " c„(t), =co„(t)c„, (3.7)

slow, however, we may be able, temporarily, to ignore the
time dependence of co and zo while we carry out a con-
ventional Mullins-Sekerka stability calculation [3]. That
is, we write

III. ONSET OF INSTABILITY
dzk

dt
=cvk(t)zk, (3.8)

Our next job is to examine the morphological stability
of the accelerating flat interface. For this purpose, it is
simplest to work in a frame of reference moving with the
interface. That is, we write (in the gradient frame)
c(x,z, t)=c[x,z —zo(t), t], so that the diffusion equation
becomes

DV c+vo Bc Bc
Bz' Bt

(3.1)

where z'=z —zo and, as before, vo=v&+zo. We now al-

low variations in the x plane perpendicular to the growth
direction. For the situations being considered here, we

expect the initial instabilities of the flat interface to occur
on length scales smaller than the thickness of the sample,
that is, smaller than the spacing between the glass plates.
Thus x must be a fully two-dimensional variable.

Suppose the interface is at z =z, (x, t)=zo(t)+z,'(x, t) .
Denote the value of the solute concentration at the inter-
face by c, (x, t). Local thermodynamic equilibrium at the
interface requires

tv& =D(qk —k )
—qkvo . (3.9)

Note that we are not assuming quasistationarity; that is,
we are not setting cvk =0 in (3.9) as is frequently done in
the steady-state analysis. The boundary conditions (3.2)
and (3.4) yield a second relation which we can write in
the form

Ddok m
qk D + (1—K)vozo+

and then compute the ampli6cation rate cok and inverse

decay length qk as functions of the slowly time-dependent
quantity zo. Note that the only quantity for which we as-
sume a slow time dependence, in order to perform the
Mullins-Sekerka calculation, is qk. The accuracy of this
procedure is uncertain, and a more careful treatment may
eventually be needed.

Inserting (3.7) into the diffusion equation (3.1), we ob-
tain

G
c~ = z~ doJY~ (3.2)

Here %', is the curvature of the interface, and do is the
capillary length,

=zo+( I E)—V oZo dpvpk Pl
+COpzp + Vp + 6

(3.10)

do
/To
Lm

(3.3)

where L, is the latent heat per unit volume. Conservation
of solute at the interface implies

The above result may be put in a more familiar form by
employing our boundary-layer calculation from Sec. II
and using (2.11) to write vozo(1 K)=2D—jl(zo —z„)to
6nd

BcD, ,
=—(v +z, )(1 IC )c, . —

Z ~s

To carry out a linear stability analysis, we write

c (x,z, t) =co(z, t)+5ck(z, t)e'"

(3.4)

(3.5)

d ok P1

qk 1+—(zo —z )+

zo 2 vo k 1 dok m
+—(zo —z„) + + +

zo Gzp

(3.1 1)

and

z, (x, t) =z, (t)+z„(t)e'"", (3 6)

where the functions co and zp are the time-dependent
concentration profile and the position of the planar inter-
face that were computed approximately in Sec. II. Note
that for this portion of the calculation, we may treat cp
and zo as the exact solution to the flat interface problem,
as the results are independent of the approximations used
in Sec. II. A fully exact procedure for our stability calcu-
lation would involve linearizing (3.1), (3.2), and (3.4) in ck
and zk and solving the resulting di6'erential equations. If
the acceleration of the planar interface is sufficiently

Eliminating qk from these equations and inserting the
values of zp and l obtained from our previous calculation,
we can compute a time-dependent spectrum of
amplification rates cok ( t)

We now must address one of the most difficult issues
that arises in problems of this kind. In order to deter-
mine when and in what form the instabilities just de-
scribed make themselves apparent in an experiment, we
must specify how they are initiated. The natural assump-
tion is that the triggering mechanism is simply the action
of ambient thermodynamic fluctuations in the solidifying
liquid. This is, in fact, quite a remarkable assumption—
that microscopic atomic-scale irregularities are so
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dramatically amplified by the instabilities that they pro-
duce macroscopically observable patterns. This assump-
tion has been tested in other related situations, for exam-
ple, as an explanation for dendritic sidebranches [4] and
as a theory of the onset of hydrodynamic instabilities [5].
In most cases, the strength of purely thermal Auctuations
appears somewhat small to explain the observed phenom-
ena; but elements of the theory remain uncertain and the
apparent discrepancies generally do not seem large
enough to require the explicit introduction of alternative
noise sources as essential ingredients of realistic models.

In principle, we would like to derive and solve a sto-
chastic version of (3.8)

formations z& to this force. The Langevin term is chosen
so as to reproduce the known fluctuations of c in an
infinite system in thermodynamic equilibrium. In doing
this, we are ignoring the effect of the boundary upon the
Langevin force, which is equivalent to performing the
calculation in the so-called "symmetric model" [7].
These calculations are straightforward but cumbersome,
and need not be reproduced in detail here. (A more
correct calculation using the "one-sided model" seems
unnecessarily complicated for present purposes. ) The re-
sult that we need is

2

(2~) 5 (k, +k~)
dzg

dt
= co(, (t)zI, +qI, (t), (3.12) x5(A, +62)Re[f(k„A,)], (3.17)

where g(, (t) is a fluctuating force whose statistical prop-
erties ought to be deducible from thermodynamic con-
siderations. The formal solution of (3.12) is

z&(t)= f dt exp f co ((t )dt rt(, (t ) . (3.13)

We use the term "formal" because, in all likelihood, the
stochastic forces g& depend on the state variables zj„cI„
etc. , especially under strongly nonequilibrium situations
such as this one.

Rather than tackle this problem in all its theoretical
subtlety, we proceed as follows. Suppose that the gI, are
statistically distributed in such a way that

(i)„(t)g.(t')) =I (k)(2m-) 5 (k+k')5(t —t'), (3.14)

where the angular brackets denote an average over the
ensemble of Auctuations g&. Let us further assume,
despite our expectation to the contrary, that I o(k) is
state independent and therefore independent of time t.
Then

(z, (t)z„(t)) =r,(k)(2~)'5'(k+k')

X f '
dt, exp 2 f '~„(t")dt" (3.15)

For times t (0, before the pulling speed has been
changed from zero to U, the system is in stable equilibri-
um, that is, co(, (t & 0) =—co(1,

'q' & 0 for all k, and

where zl, ti is the time Fourier transform of z(, (t), 0 is the
corresponding frequency, n is the total number of mole-
cules per unit volume in the Auid, Re indicates the real
part, and

1

f(k, Q)

1/2md
2 I 2

G D

i (1—K)mc„Sl
I2]DG

ffld p1+ k

(3.18)

l

f (k, O)

i (1—K)mc„Q
DG

ffld p1+ k . (3.19)
G

Combining (3.16) and (3.17), we have

Because f (k, Q) is proportional to a response function,
we except that it should have a pole in the 0 plane at0= —i~'I,' ', which is almost, but not quite, true because
we have used the symmetric model. We may correct this
problem (albeit in a nonrigorous fashion) without chang-
ing the basic structure of the expression, by eliminating
the factor of 2 in curly brackets in (3.18) so that the pole
occurs at the correct point. Thus, we write

Pldp
1 + g2 Q2

G D

(z„(t)z„.(t) ) =(2~) 5 (k+k')I (k) 1

( q)l r (k)=0 G

2

21~I;q'I f " Re[f (k, &)]
Dn 2n

—:( zpzk' ) equi( (3.16)

This is a quantity that we can calculate with some
confidence. The coI,

' ' can be obtained from (3.9) and
(3.10) simply by setting Uo =0 and zo=z; thus, if we can
compute (z(,z(, , ), „;(,we can evaluate I 0(k), and then we
can use this result to compute the amplification of fluc-
tuations in (3.15).

The technique for calculating the morphological Auc-
tuations of a solidification front at or near equilibrium
was first described by Cherapanova [6] and later
developed by one of us [4]. The idea is to add a Langevin
force to the diffusion equation for the solute concentra-
tion c, and then to calculate the linear response of the de-

(eq)
l (1 K)Gn A (k)— (3.20)

where

mdp
A (k)=1+ k6 (3.21)

We are finally able to answer several physically impor-
tant questions: At what point in the development of the
instabilities on the planar interface do deformations be-
come observable'7 What is the characteristic wavelength
of the deformation for which this happens~ At what
point do these deformations begin to behave in an intrin-
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IV. DYNAMICS OF THE DENDRITIC ARRAY
ci zi (4.5)

Our strategy for the next part of this calculation is to
use the parameters computed at the crossover point, A,o
and zo, as initial conditions for an array of dendrites
whose average spacing at later times will be denoted A, , (t)
and whose tips, on the average, will be at z(t) as mea-
sured in the gradient frame. Our problem, therefore, is to
derive and then solve a pair of coupled equations of the
form

z=V(z, k„.u ) (4.1)

and

A(z, A, i', u~ ) (4.2)

where V and A are functions to be determined. These
equations must describe, at least in some useful approxi-
mation, the way in which the dendritic tips compete with
each other during growth, and the way in which this
competition produces coarsening of the array, that is, an
increase in A, We expect to be able to integrate (4.1) and
(4.2) forward in time and thus to predict the final steady-
state configuration of the system.

In order to accomplish this task we modify our earlier
steady state model [8] so that it applies at velocities z not
necessarily equal to the pulling speed. The required
modification is very small, but it will be best for purposes
of clarity to review briefly the basic ingredients of the cal-
culation. More details can be found in Ref. [8].

Our starting point is the diffusion equation for the
solute concentration in the gradient frame [9],

Bc Bc—u DV' c= g—4;(r, t),
Bt ~ Bz

(4.3)

where 0 is the Green's function for the operator on the
left-hand side of (4.3).

Our strategy is to use Eq. (4.4) to write an equation of
motion, not for the entire solidification front, but only for
the positions z, (t) of the tips of the dendrites. To do this,
we make a number of assumptions, specifically the fol-
lowing.

(1) Quasistationarity We neglect . the explicit time
dependence of 4, in (4.4); however, 4; still depends impli-
citly on the time because it is a function of the instan-
taneous growth rate v;, the position of the tip z, , and the
radius of curvature of the tip p;.

(2) Slender, three dimensional d-endrites The tip of.
each dendrite is assumed to be well separated both from
all other tips and from the walls of the container.

(3) Local equilibrium. The concentration c, at the posi-
tion z, of the ith tip is fixed by the liquidus on the phase
diagram, that is,

where 4; denotes the source strength associated with the
ith dendrite, that is, the rate at which the solute is being
rejected into the Quid at positions r along the
solidification front. Equation (4.3) has the formal solu-
tion

c(r, t)=c„+gf dr' f dt'Q(r, t~r', t')4';(r', t'), (4.4)

pivi

2D
(4.7)

For the well-separated dendrites of interest to us p; will
be small, of order 10 or less, and the limit p; ~0 almost
certainly is accurate enough for our purposes. (For succi-
nonitrile, o *=0.04.)

A more serious assumption, especially for growth con-
ditions near the cell-to-dendrite transition, is that the sol-
vability condition does not depend on the spacing A, In
general, we must expect that when A,

&
is less than the dy-

namic diffusion length l =2D/v, the dendritic tips will in-
teract so strongly with each other that their shapes will
be deformed and, therefore, the solvability mechanism
for velocity selection will be significantly altered. In
short, we are making the strong assumption that the
properties of any dendritic tip in our array are the same
as those of an isolated dendrite growing slowly in a
homogeneous melt. The condition A, , ) I is an important
limitation on the validity of our calculation.

The next step is to evaluate each term in Eq. (4.4) for a
value of r near the tip of, say, the ith dendrite. Consider
first the contribution 5c; to the sum in (4.4) from the jth
dendrite with j Wi According . to assumption (2), the re-
gion near the tip of this dendrite should look like a one-
dimensional source of solute when observed from dis-
tances of order A, , ))p . After some calculation we find

Gp (1—K) l A, ; d;I 2 ld; 2l

kfJdgJ
z, — E, , (4.8)

21 ' l

where l~ =2D/v; A, ,J is the distance, in the plane perpen-
dicular to the growth direction, between the ith and jth
dendrites; di=z; +[A,;~+z,"]';zj=z, —zj; and Fi is
the exponential integral

E, (x)= f dt . (4.9)
x

Approximating 4, by a line source is not appropriate
for the term 5c,,., where the point r at which c (r) is being
evaluated is the tip of the same paraboloidal surface from
which solute is being rejected. In this case, we find

Note that we are omitting the Gibbs-Thomson correction
here. Capillarity plays a role only in the next of these as-
sumptions.

(4) Soluabili ty or, equivalently for these purposes,
"marginal stability" [10]. The instantaneous growth rate
u, of the ith tip is determined by a condition [11—13] of
the form

2Dd0
~

—0 (4.6)
(bc;)u, p;

where the quantity b, c; = —(1 —K)Gz;/I is the jump in
equilibrium concentration of solute between the solid and
liquid phases at a temperature To+ Gz;. We assume that
o.* is independent of the solutal Peclet number
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e =
EI

G (1 I—C)p; l p,1+I 2 E

Pi Pi
z, +p, + E, (4.10)

which is a generalization of the Ivantsov relation [14].
Combining the formal solution of the diffusion equa-

tion (4.4), evaluated at the tip of the ith dendrite, with the
boundary condition (4.5) and the specific results (4.8) and
(4.10), we find

i oa P /I Pl

(1 K)
—P '

i lp

Pi
Z. +P +

2 p

——(1„+p;)

+ g p
j (wi)

klJ
Zl

2l
d, l

Ei
2

k)J
1 — exp

l d J lp
(4.1 1)

Here it is useful to remember that the velocities v, which occur in the Peclet numbers p; are related to z; via

dz
U;=U +

dt
(4.12)

Our calculation so far has been identical to Ref. [8]. Our first deviation from Ref. [8] comes in writing our results for
a uniform array that is not necessarily at steady state. For the uniform case, all our velocities v; (which in turn measure
the strengths of the various tip sources) are not equal to v but instead are equal to the instantaneous array velocity v(t).
This small modification yields

z z

(1—K) ' 2 2
=pe~E, (p) z+p+ ——(l +p)+p

I& J
(i%j)

kgJz
2l

J lp
Ei +-

l 2

AllJ —1
AIgJ

exp
l

(4.13)

where
2DE=

U

In steady state we have p ~p, therefore

(4.14)

To study linear stability, we linearize (4.11) about the
uniform solution described by (4.13), and assume that all
small departures from steady state grow (or decay) with
an amplification rate co. For example,

z; —z=6z;e ', v,
—U=co5z;e ', (4.17)

(4.15)
etc. Then, from the solvability condition (4.6), we find

In the same fashion, the solvability condition (4.6) is
modified to read 5p;= ——

z
5z; (4.18)

3Dy To

(1 K)LGvp z— (4 16) aild

1 co—+ —5z
2 z v

(4.19)Equation (4.16) determines p as a function of z and z,
for fixed v, and we can use this relation to eliminate p
from all other expressions. If this elimination is per-
formed in (4.13) we obtain z as a function of z and A,

„

which is precisely the type of equation that we were seek-
ing at the outset of this section. The condition z =0 im-
plies steady state, and it is easy to check that this steady
state is a stable attractor for fixed ki.

Having now found one of our equations of motion, we
have yet to determine the expression governing the evolu-
tion of A, We do this by studying the stability of the
non-steady-state dendritic array, again using the same
methods that we developed in Ref. [8] for the steady-state
situation.

Ultimately, we find results quite similar to the steady-
state results of Ref. [8], namely an equation of the form

co g 3; 5zj = g 8,1.5z1 .
J J

(4.20)

Here

(4.21)

with

o p leE (p) (1—p) z+'pl +
2U 2

p l E

pl (1+p) + z+p—lz+ (4.22)
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g( )—
1J

2U

XIJ
z

2l . 'p

AI
7J (4.23)

(1—K)p

z
exp

gJ

1

2z .

p I p
ei'Ei(p)(1+p) z+2pl„+ —z+2pl + +— (4.24)

Al)J
z

2I

kg J
1

p

t
Al[J+ —,'(A, ;

—
l~ )exp

z 7J (4.25)

Fourier transformation of (4.20) (in the array index i)
yields the spectrum of amplification rates

~(q) = &(q)
J(q)

(4.26)

The only change in the above from Ref. [8] is in the re-
placement of p by p and u by u at several points in the
expressions. We already understand how eo(q) behaves
for a variety of z, u, and ki when z=0. It is useful to
find out if there is a significant change as z varies from
—

U (stationary in the material frame) to z =0 (moving at
the pulling speed). In Fig. 5 we examine co(q) for fixed
values of A,„z,and u, and we allow z to have three
difterent values. The results seem physically sensible.
For z = —50 pm/s our system is stable, for z =0 pm/s, it
is marginally stable, while for z =100 pm/s it is unstable.

I I I
1-

FIG. 5. Arnplification rates co(q) for fixed values of A, &=59.2
pm and Up

= 100 pm/s. The unstable curve occurs for
z=100 pm/s, the marginally stable curve for z=0 pm/s, and
the overstable curve for z = —50 pm/s.

I

But perhaps most significantly, f'or our purposes, is that
the maximum in co(q) persists at q=(~/A. , )e„—=q

This wave number q „corresponds to the instability
in which every other dendrite grows at the expense of its
nearest neighbor. That is, very roughly, the rate at which
every other dendrite in the array is being overgrown by
its neighbors and falling out of the front of the array. We
therefore interpret m „asa doubling rate, and write

A, i—-Pco,„ki for co,„)0, (4.27)

where I3 is some constant of order unity. Equation (4.27)
makes sense when co „)0; the coarsening instability that
we are considering allows only X, )0. Accordingly, we
assume that when co „(0,A, &=0.

This hypothesis, along with our results in Eqs.
(4.13)—(4.16), produces the desired pair of nonlinear
first-order differential equations describing the evolution
of z and A.I. However, we must take our equation for k,
with more than a few grains of salt, as it is far from en-
compassing all of the physics of our system. We have ig-
nored phenomena such as tip splitting, the growth of ter-
tiary arms along the dendrites [both of which would al-
low for reduction in wavelength), i.e., ki & 0], and
perhaps other mechanisms for coarsening. Although we
have omitted a great deal, it is probably fair to say that
what we have postulated is some sort of rough estimate
for the coarsening process. Probably it is the best we can
do at this point.

Now that we have found our equations for z and k& we
should be able to evolve our array forward from an initial
state. But, before we perform this evolution, we must ask
whether the wavelengths ko computed in Sec. III are sen-
sible initial conditions for our dendrite model. If they are
not, we will need to extend our mode amplification model
into the cellular regime, as is discussed in Ref. [15]. Since
the basic quantitative measure of whether a system is
likely to be in the dendritic regime of growth is whether
A, i

~ I (where our approximation of weakly coupled den-
drites is valid) we may use as initial conditions those
states for which ko I. This condition is either met or
nearly met for all pulling speeds for which we are able
meaningfully to characterize the final steady state using
the work of Ref. [8].

A typical trajectory in the X&,z plane based on solu-
tions to (4.1) and (4.2), for a pulling speed of
u =65.6 pm/s, is shown in Fig. 6. The initial point is la-
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40 80
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beled by a dark triangle, and we see by its position rela-
tive to the A, I=I curve (long-dashed) that it is not quite
inside the regime where XII=XI(t =0)) l, but is close
enough, given the roughness of this criterion. The inter-
section of the z=O curve (solid) with the A, , =O curve
(dotted) defines the marginally stable solution for the
steady-state dendritic array, which was computed in Ref.
[8]. The trajectory is indicated by the short-dashed curve
emanating from the black triangle and terminating on the
z=O curve. Note that the system reaches a stable pri-
mary spacing well before arriving at the pulling speed, a
phenomenon also observed by TS. The black circle is the
experimental point from SMT, and the agreement is quite
good for this pulling speed.

Figure 7, the culmination of this paper, is a plot of our
new theoretical final wavelengths compared to the stabili-
ty boundary computed in Ref. [8] and the experimental
points of Somboonsuk, Mason, and Trivedi [2]. The
agreement between theory and experiment is good only at
the higher pulling speeds. Considering the complexity of
the calculation, however, and the fact that we have al-
lowed ourselves no adjustable parameters, we find this de-
gree of agreement to be quite encouraging.

i 00

10
v, (p.m/'sec)

100

FIG. 7. A plot of our final wavelength (the dot-dashed line)
compared with the experimental data from SMT (the solid tri-
angles). The solid line is the neutral stability curve [erik )=0].

FIG. 6. A full trajectory for a dendritic array (the short-
dashed curve) with V~=65. 6 pm/s, starting at the crossover
point determined by the boundary-layer model (the black trian-

gle) and ending at a stable fixed point on the z =0 curve (solid
line). The long-dashed curve indicates the locus of points where
A,

&

= l. The intersection of the A,
&
=0 curve (dotted) with the

z =0 curve (solid) defines the neutrally stable configuration of
the array. The black circle is the experimental result of SMT.

V. SUMMARY AND CQNCI. USIQNS

In the calculation described here, we have
attempted —with some success —to follow the formation
of a dendritic array all the way from the initial instability
of a planar solidification front to the selection of a final

steady-state primary spacing. Each stage of this calcula-
tion involves approximations and theoretical assumptions
that deserve closer attention, specifically:

(l) The formation of the initial pattern of deformations
of the planar front depends sensitively on the way in
which this front and its accompanying diffusive bound-
ary layer respond to the abrupt onset of motion of the im-
posed temperature gradient. We have used a rudimenta-
ry boundary-layer model to describe this process, and we
suspect that any inaccuracies in this model are responsi-
ble for the fact that our predicted crossover wavelength
ko is slightly larger than that seen experimentally. In
particular, we suspect that a more accurate calculation
would perform better at higher velocities.

(2) Unlike the situation in Ref. [4), for example, where
thermal fluctuations seemed to be too small to account
for observed effects, the thermal noise in this case seems
easily large enough to explain the strength of the instabil-
ity that determines ko. Our calculation of the effects of
thermal fluctuations contains several approximations, at
least one of which is of a very fundamental nature. Im-
proving this calculation will require the development of
new techniques in nonequilibrium statistical mechanics,
which is an important project for the future. %'e suspect,
however, that any discrepancies are most likely to be ex-
plained by an improved boundary-layer calculation as
mentioned in (l) above.

(3) By assuming only weak interactions between our
dendritic tips, from the moment that they first appear at
spacing A.o to their final coarsened configuration at spac-
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ing k, , we have avoided a number of important problems
that may need to be solved in extensions of this work.
Specifically, our approximations are only valid at
suSciently large pulling speeds, and we have not even
touched upon the possibility of cellular structures that
might form at slower speeds or as intermediate stages in
the formation of dendrites [15]. Also nothing that we
have done would allow us to deal with situations in which
the dendritic spacings might decrease via tip-splitting or
higher-order side branching. Our coarsening model,
based on stability of the weakly interacting array, is very
crude, but at present we have no feasible improvement to
suggest.

A number of extensions of the SMT experiments might
be very useful in testing the accuracy of these various ap-
proximations and assumptions. It should be possible to
check the location of the neutral stability curve in Fig. 7

simply by starting with we11-formed steady-state arrays as
obtained in the previous experiments and then decreasing
the pulling speed gradually until further coarsening
occurs. Also, it might be both possible and interesting to
check more details of our calculation by direct observa-
tion of the time-dependent position of the planar front,
zc(t), the mean position of the dendritic tips z(t), and the
spacing A, ,(t).

ACKNOWLEDGMENTS

We thank both A. Karma and C. Caroli for their care-
ful reviews of this work and for their helpful comments
and corrections. This research was supported by U.S.
Department of Energy Grant No. DE-FG03-84ER45108
and also in part by National Science Foundation Grant
No. PHY82-17853.

'Present address: National Institute for Standards and
Technology, Gaithersburg, MD 20899.

[1]R. Trivedi and K. Somboonsuk, Acta Metall. 33, 1061
(1985).

[2] K. Somboonsuk, J. T. Mason, and R. Trivedi, Metall.
Trans. A 15A, 967 (1984).

[3] W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444
(1964)~

[4] J. S. Langer, Phys. Rev. A 36, 3350 (1987).
[5] G. Ahlers, M. C. Cross, P. C. Hohenberg, and S. Safran, J.

Fluid Mech. 110, 297 (1981).
[6] T. A. Cherapanova, Dokl. Akad. Nauk SSSR 226, 1066

(1976) [Sov. Phys. Dokl. 21, 109 (1976)].
[7] J. S. Langer and L. A. Turski, Acta. Metall. 25, 1113

(1977).
[8] J. A. Warren and J. S. Langer, Phys. Rev. A 42, 3518

(1990).
[9] One might be tempted to make a self-consistent approxi-

mation by writing the diffusion equation in the frame of

reference that is moving at the mean velocity U=z+v~,
but this would be a mistake. The mean velocity U is
defined by the average over all tip positions z;. Its use in
the diffusion equation would, in effect, introduce an
infinite-range interaction which would violate the quasi-
stationarity approximation at the outset and cause
difficulties in the stability analysis.

[10]J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
[11]J. S. Langer, Chance and Matter, edited by J. Souletie, J.

Vannimenus, and R. Stora, Lectures on the Theory of Pat-
tern Formation, Les Houches Summer School, 1986
(North-Holland, New York, 1987), pp. 629—711.

[12] D. Kessler, J. Koplik, and H. Levine, Adv. Phys. 37, 255
(1988).

[13]Dynamics of Curued Fronts, edited by P. Pelce (Academic,
New York, 1988).

[14] G. P. Ivantvsov, Dokl. Akad. Nauk. SSSR 58, 567 (1947).
[15]J. Warren, Ph. D. thesis, University of California, Santa

Barbara, 1992 (unpublished).




