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Crossover from scalar to vectorial percolation in silica gelation
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We present a rheological study of the gel transition in silica gels resulting from the hydrolysis-
condensation of a silicon alkoxide. The complex shear modulus is measured in a large frequency range
(10 —10 rad/s). The exponents for the viscosity s =0.7+0. 1, for the elasticity t =2.0+0.1, for the dy-
namic crossover frequency z =2.9+0.2 and for the scaling-frequency power law 6=0.72+0.03 are in
agreement with the scalar percolation model in a restricted region around the gelation time (3%).
Beyond, there is a crossover to a vectorial percolation regime characterized by a much higher elasticity
exponent t'=3.6+0. 1.

PACS number(s): 83.20.Hn, 62.20.Dc, 64.60.Ak, 82.70.Gg

INTRODUCTION

When allowed to cross-link, polymers can go through
gelation: a transition from liquid to solid during which
the polymeric systems su 6'er dramatic modifications,
especially on their macroscopic viscoelastic behavior.
Fifteen years ago, it was conjectured by de Gennes [1]
and StauQ'er [2] that gelation could be described as a per-
colation transition. In particular, this should imply
universal critical behavior, on which system details are ir-
relevant ~ Although the experimental evidence is not
completely convincing, it is generally accepted that per-
colation provides a good description for the static proper-
ties of the gelling systems (polymer mass distribution,
divergence of the connectivity correlation length, grow-
ing of the gel fraction) [3]. The situation is quite diA'erent
for the dynamical properties. According to the original
de Gennes' proposal, the critical exponents of the viscosi-
ty [4] and the elasticity [1] are expected to be, respective-
ly, the same as those of the dielectric constant and the
conductivity of a random network of insulating and con-
ducting bonds. Later, diferent models were worked out
and led to diA'erent exponents. Some of them consider
the hydrodynamical interactions in the gelling solution
[5—9], others take into account the tensorial nature of the
elasticity [10—12]. The experimental situation remains
confusing, each polymeric system seeming to have its
own exponents.

However, the electric analogy has been fully verified in
a recent investigation on the viscoelastic properties of the
physical gels of pectin biopolymers [13]. In that study, it
has been shown that a definite conclusion can be obtained
by careful dynamic measurements below and above the
gelation point. It is the aim of the present paper to check
whether it holds for a completely diff''erent system, name-
ly, the inorganic covalent silica gels resulting from the
hydrolysis-condensation of a silicon alkoxyde. This work
is partially motivated by a previous study by Gauthier-
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The complex shear modulus G*(co) measured in linear
dynamic viscoelastic experiments is the stress response to
a harmonic strain excitation [16]. In polymeric systems,
this response reAects the distribution of the relaxation
times. Near a gelation point, the behavior of G'(co) is
controlled by the ratio of the measurement frequency cu

to a characteristic frequency coo equal to the inverse of
the longest relaxation time ~, . For co~, && 1, one observes
the static behavior for a viscous liquid before the gelation
point and for an elastic solid after the gelation point. For
co~, &)1, the broad distribution of relaxation times gives
rise to a power-law frequency variation of the complex
modulus. This can be schematized as follows [13,17]:

G (co)=cogo for t &t and co«coo,
G'(co) = Go for t ) ts and co «coo,
G*(co)—(ico/coo)
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for any t close to t and for co))~o,
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Manuel et aI. [14], who actually found exponent values
higher than those predicted by the electrical analogy, but
observed deviations towards lower values in the close vi-
cinity of the gelation point. Such deviations have also
been observed by Adam, Delsanti, and Durand [15] dur-
ing the polycondensation reaction leading to po-
lyurethane gels. In order to be able to quantify this devi-
ation, we have performed continuous dynamic measure-
ments during the gelation process in the large frequency
range (from 10 to 10 rad/s) and we have improved the
time resolution by using systems with long gelation times
(8 and 16 days). This allows one (i) to have a better
definition of the gel time t, (ii) to be sure that the mea-
sured viscosity and elasticity are really the static ones,
and (iii) to measure the dynamic exponents z and b, (to be
defined below).

THEORETICAL BACKGROUND
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where i/o and Go are, respectively, the static limits (co =0)
of the viscosity and elastic modulus. At t =I, , the cross-
over frequency coo goes to 0, giving rise to a power-law
behavior in the whole frequency range (this frequency
range is, however, limited at high frequencies by a cross-
over to the regime which characterizes the internal
viscoelastic behavior of the gelling units). The singular
behavior near the gelation point is described by a set of
critical exponents defined by coo-e', go-e ' and Go —e',
where e is the relative distance from the gelation point.
In the case of an irreversible chemical reaction, one can
take e= ~(t —rs)/ts ~

if one assumes that the control pa-
rameter of the reaction is proportional to time (this point
will be discussed below in relation to our NMR study of
the silica gelation kinetics [18]). From the analyticity of
the complex function G*(co), which refiects the unity of
the physical phenomenon governing the viscoelastic
properties below and above the gelation point, one
deduces two relations between the exponents, namely,
z =s + t and 6= t /z, which allow only two independent
exponents. This scaling behavior has been demonstrated
for random electrical networks [19] as well as in the case
of the different models which have been proposed to de-
scribe the dynamical properties of branched polymers

Then the question of the values of these dynamic ex-
ponents is raised. Table I displays the predictions of
different models. Some of them introduce relations with
the static exponents df and v and with the spectral di-
mension d, . The fractal dimension df characterizes the
geometrical structure of the gelling polymeric units and v
is the exponent of the diverging correlation length (the
typical radius of the largest finite clusters): g —e [20].
The spectral dimension d, describes the density of the vi-
brational modes on the fractal clusters (fractons) or
correlatively the diffusion of a random walker on such a
structure [21—23].

The classical theory (Flory-Stockmayer) relies on
mean-field approximations. For example, it expects, at
the most, a logarithmic divergence for the viscosity,
whatever the interactions between the polymers. Pro-
posed by de Gennes [1], the electrical analogy associates
the critical mechanical behavior of gelling systems with
the conductivity properties of a random network of con-
ductors. The values in the table correspond to the nu-
merical estimations for the tridimensional case [24,25].
The next two lines give the results of the hydrodynamical

models [5—9]. These models generalize the results of the
Rouse and Zimm dynamics for linear polymers to
branched polymers [16]. They assume a scaling law for
the relaxation times, the longest relaxation time being
fixed either by the diffusion on the polymer (Rouse dy-
namics) or by the hydrodynamic interactions through the
solvent (Zimm dynamics). After t, they imply a mean-
field equirepartition of energy on the typica1 volume unit
V=/", which leads to Go-kT/g" and thus gives t =vd
[26]. Instead, the model proposed by Daoud (last two
lines) [27] retains for t the conductivity expression involv-
ing d, which takes into account the anomalous diffusion
on the fractal percolating cluster. This is completed by
postulating a value of the exponent z according to the
type of hydrodynamic interactions. It can be seen that
the Daoud-Zimm gelation model is the one whose results
are the closest to the numerical estimates for the electri-
cal network. Moreover, it appears to be consistent with
both the Straley (z =vd ) [28] and the Kertesz
(s =v /3/2) [2—9] conjectures.

It should be noticed that in all of these models elastic
interactions are considered as scalar or isotropic. This
was justified by Alexander [30] who claims that the
liquidlike hydrostatic stresses should be dominant for the
very tenuous structure formed by gels near the gelation
point. However, it has been stated by others [10—12] that
the elasticity is mainly due to bending forces which are
vectorial by nature and that this should lead to different
universality classes for conductivity and gelation transi-
tions. Two conjectures have been proposed for the elasti-
city exponent t' in vectorial models: t'=1 +vd[10] and
t'=t+vd [11,12], leading to higher exponent values than
in scalar percolation, t'=3. 64 and 4.58, respectively, for
d =3.

EXPERIMENT

The systems under investigation result from the
hydrolysis-condensation of a silicon alkoxide, the
tetraethoxysilane or TEOS. The molar composition of
the polymerization solutions was TEOS:
water:ethanol=l:10:6, corresponding to a Si concentra-
tion of 1.3 mol/1. Two solutions were studied under
different catalysis conditions: acidic (water pH =4) and
basic (water pH=9). The gel times of these solutions
were, respectively, 8 and 3 days at room temperature
(21'C). In order to slow down the kinetics, the rheologi-

TABLE I. Predictions of different scalar models. The dynamic exponents t, z, s, and 6 are related by
z =s + I, = t/A. The numerical results are obtained assuming the standard values for d =3 percolation:
v=0. 88, df =2.5, and d, = —. The exponents P and 0 are defined as usual as P=v(d —df) and

0=2(df /d, —l ).

Model

Classical theory
Electrical analogy
Rouse dynamics
Zimm dynamics
Dao ud-Rouse
Dao ud-Zimm

3
l.94

vd =2.64
vd =2.64

P+ v0= 1.96
/3+ v0=1.96

3
2.69

v{df +2) =3.96
vd =2.64

2vdf /d, =3.75
vd =2.64

0
0.75

2v /3= 1.32—
0

2v —/3= l. 32
v(d —0)—)0=0.66

l
0.72

d/(df +2)=0.67
1

0.53
0.75
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was not disturbing for the stress measurement. A
periodic strain was applied to the bottom plate while the
top cone was mounted on a torque transducer for force
measurements. The amplitude of oscillation of the bot-
tom plate was selected to keep the strains imposed on the
sample during measurements within its linear viscoelastic
response range. The real and imaginary parts of the com-
plex shear modulus 6*(co) were recorded as a function of
the oscillation frequency between 10 and 10 rad/s.
The frequency scanning was cycled continuously. A fre-
quency scan lasts about half an hour, which corresponds
to 6t/t equal to 1.3 X 10 and 2.6X 10 for the acidic
and basic gels, respectively. The rheometer sensitivity set
a modulus value of 10 Pa as a lower limit for reliable
measurements of 6'(co) and 6"(co).

cal experiments were performed at 16 C for the acid ca-
talyzed reaction (tg =16 days) and at 14'C for the base
catalyzed reaction (ts =8 days).

These two systems display quite different kinetics dur-
ing the aggregation phase prior to gelation. In the acidic
solution, the hydrolysis of the alkoxide is fast and com-
plete and it is followed by a slow condensation phase [31],
while, in the basic solution, the hydrolysis is the limiting
step of the polymerization reaction. This is reflected in
the Si NMR spectra recorded near the gelation time
(Fig. 1). For the acidic solution, there is no more Q or
Q' species (here Q" denotes a silicon linked to n other sil-
icon atoms through oxygen bridges) and the degree of
condensation is c =0.81 at t = t . For the basic solution,
there is still a large amount of unreacted monomers at
the gelation time (21%%uo) and the degree of condensation is
only c =0.63. This is of some consequence on the struc-
ture of the gels, as evidenced by small angle scattering ex-
periments: in the aggregation growing range (typically 1

to 10 nm), one usually observes a larger fractal domain
for the acidic catalyzed gels than for the basic ones [32].
This can be explained by assuming that, in basic gels, the
progressive releasing of the reactive partially hydrolyzed
monomers leads to the formation of dense units (poisoned
Eden process) which connect each other by colloidal ag-
gregation. On the contrary, in acidic gels, where the
starting units are small oligomers [31],the formation of a
much more interconnected polymeric network is ob-
tained. Thus it seems very promising to compare the
gelation behavior of these two systems which exhibit the
same chemical composition, but which present so
different structures: according to the universality princi-
ple, one expects these structural details to be irrelevant as
concerns the properties at the gel transition.

Small-amplitude oscillatory shear measurements were
performed with a Rheometrics, model RFS2, mechanical
rheometer using a cone-plate geometry (diameter 5 cm,
angle 2. 29'). The polymerizing solution was put in the
rheometer measuring cell long before the gelation time
and maintained at a constant temperature. ParafFin oil
was layered onto the plunger cone and sample to prevent
solvent evaporation. It was checked that this protection

Figure 2 displays the frequency variation of 6'(co) and
G "(co) at different times around the gelation point. The
gelation time is determined as the time for which 6'(co)
and 6"(co) are parallel in log-log plot over the whole fre-
quency range. It appears that this condition is fulfilled
only for one or two frequency scans, leading to an incerti-
tude of about one hour on the determination of t . Thus
the relative uncertainty on t is 10 for the acidic sys-
tem and +2X 10 for the basic system. The frequency
dependence of 6(~) at t = ts is fitted as a power law as

6'(co)=0. 16Xco, G"(co)=0.34Xco

(acidic system)

6'(co)=0.07Xco ', G"(co)=0.15Xco ' '

(basic system) .

Then, the value of the frequency power-law exponent 6
appears to be in full agreement with the prediction of the
electrical network analogy. Moreover the ratio
tan5=6"(co)/6'(co) is equal to 2. 1 for both systems.
This is consistent with Eq. (1), which predicts
tan5=tan(irk/2) and thus gives tan5=2. 13 when one
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FIG. 2. 6'(co) and G"(co) for t (tg, t =t, and t) t for the
acidic and basic TEOS gels. The data at t =0.95 tg and
t = 1.05t~ are shifted by a factor 10 downwards and upwards, re-
spectively.

FIG. 1. Si NMR spectra for t =tg for the acidic and basic
TEOS gels. The reference for chemical shift is TMS
(tetramethylsilane).

CROSSOVER FROM SCALAR TO VECTORIAL PERCOLATION. . .
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takes 5=0.72.
Below t, one expects a change in the frequency varia-

tion of G'(co) and G"(co) with the low-frequency part
becoming G'(co)-co and G "(co)-co below the crossover
frequency ~o. This behavior is apparent on the frequency
scans at 0.95t in Fig. 2. However the co law becomes
rapidly difficult to observe because G'(co) drops below the
rheometer sensitivity at low frequency, especially for the
basic system. From the linear variation of G"(co), one
obtains the static viscosity go. Above t, one observes the
coming out of the finite static elasticity Go as a plateau
on the low-frequency side of G'(co). Moreover, one can
consider the frequency for which G'(co) =6"(co) as a
measurement of the crossover frequency coo. [As a matter
of fact, coo could also be determined below t from the
changes in the slopes of G'(co) and 6"(co), but this deter-
mination would be quite subjective in practice. ]

Figure 3 displays the time variation of the static viscos-
ity and elasticity go and Go, as well as the values of G'(co)
and 6"(co) at the finite frequency co= 100 rad/s for the
acidic and basic gels. A primary observation shows two
important differences between these two systems: first,
the kinetics is two times faster for the basic system,
second, the values of the moduli are two to three times
smaller in the basic system at a given stage of evolution.
These lower values can be understood as resulting from
the less interconnected nature of this gel with respect to
the acidic one which forms a more rigid network. Both
effects make the study of the gelation in the basic system
less favorable as the time resolution is poorer and the
measurements of small moduli are limited by the sensi-
tivity of our rheometer.

Figure 4 displays a log-log plot of go, Go, and coo versus

e= (t —t ) Itg ~

for both systems. There are clear devia-
tions from the linear behavior expected for power laws.
We have fitted the linear parts of the experimental data in
Fig. 4 by power laws. For the acidic gel, this gives two
sets of exponents "near t " and "far from t ." For the
basic gel, there are not enough points to obtain the ex-
ponents "near t," although a deviation towards smaller
exponents is clearly apparent. The results are given in
Table II. The uncertainties mentioned in this table give
the range of values which are obtained by slightly chang-
ing t and by choosing different fitting ranges.

It turns out that the values of the exponents for the
acidic gels near t~ are in very good agreement with the
numerical results for the electrical network (second line
in Table I). As the experimental values are somewhat
dependent on the choice of t and on the chosen fitting
range, it is interesting to test directly this model by an al-
ternative procedure which permits us to get rid of any
uncertainty in t determination. This is done in Fig. 5
where one has plotted po Go an.d coo as a function
of time by taking for the exponents the values predicted
for the electrical percolation network (namely, s =0.75,
t = l.94, and z =2.69). It can be seen that the three
curves display linear behaviors which converge to the
same time t on the abscissa axis. Besides, this value of t
is the same as the value determined from the parallelism
between ln[G'(co)] and ln[G "(co)]. These results strongly
support the electrical analogy.

Another method which is often used to determine the
exponents is to rescale the frequency variations of G'(co)
and G "(co) on the same master curves [13,33]. The time
dependence of the frequency and modulus scaling factors

TABLE II. Experimental values of the critical exponents for the acidic and basic TEOS gels.

Experiment

pH=4

pH=9

near t~
far from tg

near t~
far from t~

2.0+0.1

3.6+0.1

3.6+0.1

2.9+0.2 0.7+0.1

1.1+0.1

1.0+0.1

0.73+0.02

0.72+0.03
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inset shows the whole variation which evidences the deviation
from the model far from tg.

gives the exponents z and t, respectively. This procedure
is inadequate in the present case, because of the existence
of two different scaling regimes.

DISCUSSION

Before comparing our results with those of previous
studies, we would like to mention that our conclusions,
namely, the values of the exponents s, t, and z as well as
the existence of two successive regimes of elasticity, are
dependent on the implicit assumption that the degree of
reaction (the probability p of the percolation theory) is
actually proportional to time. This assumption is very
difficult to ascertain. However, in the absence of any per-
tinent information, it is generally considered as valid, at
least in a limited range around t . In the present case,
the experimental range for e is restricted to 1 —10% (see
Fig. 4). Besides, we have some experimental indications
in favor of the validity of the proportionality hypothesis
in silica. In a recent NMR study of the gelation kinetics
[18], we have shown that the degree of condensation,
which is the mean number of Si—0—Si bonds per sil-
icon, increases proportionally to time in the range
@=+50% around t . Of course, this is not a definite
proof that p is proportional to t, because some of these
new bonds may be related to intracluster reactions rather
than gel-forming intercluster reactions. However, a devi-
ation from the proportionality would require an increas-
ing (or decreasing) proportion of intracluster bondings.
There is, at present, no evidence for or against such a de-
viation.

Our results for go and Go are in full agreement with
those of Gauthier-Manuel et al. which were performed
at low and fixed frequency (co=0.6X10 rad/s). As we
benefit from a better time resolution, we have been able
to measure s and t near the gel transition in the acidic gel.
Moreover, we have obtained independently the exponents
z and b, using the frequency dependence of G'(co). The
fact that all these four exponents obey, within the experi-
mental accuracy, the expected scaling relations z =s+t

and b, =t/z gives further confidence in the results. Dy-
namic viscoelastic studies of the silica gel transition have
also been performed at higher frequencies and in more re-
stricted frequency ranges by Hodgson and Amis
(6 X 10 —7 X 10 rad/s) [33], by Martin, Adolf, and Odi-
nek (2—10 rad/s) [34], and by Soskey et al. (0.6—10
rad/s) [35]. Our results are consistent with those of
Hodgson and Amis as concerns s and 6, but disagree for
the value of t. Instead of two successive values t =2 and
3.6, they find an intermediate result t =2.4. It is prob-
able that this is due to the use of a unique master curve
for the analysis of the data. Moreover, it is clear that the
lower the measurement frequency, the closer the ap-
proach of I, . This is especially important in the present
case, where the critical regime is restricted to a very
small region around tg.

When one compares the experimental results in Table
II and the theoretical predictions for the scalar percola-
tion in Table I, it is clear that the only models which ac-
count for the scaling near t are the electrical network
analogy and the Daoud-Zimm model. In particular the
hydrodynamic model which predict t =vd =2.67 should
be discarded. On the other hand, none of them appears
as relevant far from t where the exponent for the elasti-
city t =3.6 is consistent with the conjecture of %'ebman
and Kantor for the vectorial percolation.

Thus, in agreement with de Gennes's proposal [1] and
Alexander's arguments [30], this gelation transition ap-
pears to belong to the same universality class as the per-
colation of a random conductor network. However, this
critical regime is restricted in the present case to a very
narrow region around t (about 3%), beyond which the
tensorial nature of elasticity becomes dominant. This is
in contrast with different systems in which the scalar elas-
ticity regime can be observed in a large range away from
the percolation threshold: gelatin [36], hydrolyzed po-
lyacrylamide in presence of chromium salts [37], and pec-
tin biopolymers cross-linked by Ca + ions [6]. This
difference may be accounted for by the nature of the
cross-links and the rigidity of the polymeric structure be-
tween reticulation points. The later cases of gelation are
quasiequilibrium situations, in the sense that the weak
hydrogen or ionic bonds between chains are not expected
to be permanent. This makes a thermodynamic descrip-
tion more appropriate than for the silica gelation for
which the formation of irreversible covalent bonds, with
a well-defined orientation between silicon tetrahedra,
enhances the vectorial elasticity response due to the
bending terms in the energy. Moreover, the fractal ag-
gregates, which should be considered as the basic units
for the gelation transition in silica, are expected to be
much more rigid than the linear chains in the organic
systems. In this respect, an important parameter for the
crossover from scalar to vectorial elasticity is probably
the ratio from the polymer persistence length to the dis-
tance between reticulation points. This view is supported
by the results on polyurethane gels, where deviations
from vectorial behavior become apparent when the mean
molecular weight between two successive junctions is
raised [15].

Some qualitative predictions can be made on the
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dependence of this crossover upon silica concentration.
On the one hand, the scalar term due to the osmotic pres-
sure should provide an elastic modulus contribution pro-
portional to the concentration. On the other hand, due
to the structure resulting from the aggregation, the
modulus raising from the response of the network itself
does not behave so simply. Experiments on alcogels and
aerogels give a power-law dependence on concentration,
with an exponent of 3.7+0.2 [38,39]. Even though these
systems are far from the gel point, one can expect a rath-
er similar behavior for the gel fraction after the thresh-
old. Hence one gets G„,&-ce' and G„„-c"e',with
t =2, t'=3. 6, and k =3.6. The crossover from the scalar
to the vectorial regime is then expected to scale with the—k 1concentration as a power law: e„-c ' " " ". lt
would be interesting to check experimentally this concen-

tration dependence.
In conclusion, we expect that the scalar percolation is

actually the relevant model to describe the dynamic prop-
erties of the gelation transition. However, this behavior
is dificult to observe in silica and in other covalent strong
gels, because it can be restricted to a narrow region
around the gel point.
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