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Control of NMR-laser chaos in high-dimensional embedding space
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The unstable periodic orbits of a chaotic NMR laser have been identified and classified according to
their stability properties. The dynamical control method by Ott, Grebogi, and Yorke (OGY) [Phys. Rev.
Lett. 64, 1196 (1990)]has been successfully applied in a six-dimensional embedding space, as required for
a proper reconstruction of the attractors. An improved method has then been implemented in order to
circumvent the occurrence of several, possibly complex, unstable eigenvalues in the standard OGY pro-
cedure and has shown superior performance. Finally, an extension to several control stations per Poin-
care time is discussed.

PACS number(s): 05.45.+b, 76.60.—k

INTRODUCTION

Chaotic behavior is a commonly observed phenomenon
in a large number of physical systems such as hydro-
dynamical Qows, nonlinear-optical devices, mechanical or
electronic oscillators, and nuclear magnetic resonators.
The dynamics in phase space is deeply influenced by the
existence of an infinity of unstable periodic orbits. The
aperiodic trajectory describing the system's evolution is
attracted to any one of these when it approaches the
stable manifold and is repelled to some other region when
it finds itself in the vicinity of the unstable one. Because
of its invariance under smooth coordinate changes, the
set of unstable periodic orbits provides a topological
characterization of the dynamics which facilitates the
construction of a faithful mathematical model from the
observation of even a single scalar time series [1]. The
study of the periodic-orbit structure can be profitably ex-
tended to the evaluation of dynamical (metric) invariants,
such as the Lyapunov exponents, related to the attractive
and repulsive properties of the orbits. This knowledge
can be used to perform finite-time predictions about the
system evolution [2], to reduce the effect of noise on the
measured data [3], or even to constrain the motion to the
close neighborhood of some unstable periodic orbit. The
latter practice is called control and is usually carried out
by applying small, carefully chosen, perturbations to a
control parameter. The method, originally proposed by
Ott, Grebogi, and Yorke (OGY) [4], requires that the dis-
placed trajectory lie as close as possible to the stable man-
ifold of the target orbit y. In a practical implementation,
after having located the selected orbit in a suitable
embedding space, it is necessary to approximate the Aow
around it by means of a matrix M (usually estimated
through a least-squares fit). It is further assumed that the
target orbit is of the saddle type, so that its invariant

manifolds can be identified with the eigendirections of the
matrix M in an e ball centered at some reference point xz
on y. The dependence of the motion on a control param-
eter p is simply evaluated by comparing y(p =0) with the
perturbed orbit y(p) which is also to be extracted from
the observed data. For the case in which only one unsta-
ble direction exists, the required correction is given by
the simple expression [4]

p =k„(A,„—1) '[(g g~) f„]/(g—f„),
where the curve y has been cut by a Poincare section =
through x~ (yielding the point g~ ). The value p hence de-
pends on the current position g on =, on the unstable ei-
genvalue A,„ofM, and on the projection of the difference
vector g

—gF along the the contravariant basis vector f„.
The overall magnitude is finally weighted by the term
g f„, where g=Bg'F(p)/Bp ~ o expresses the sensitivity
of the system to perturbations. Notice that the Poincare
section " has only been introduced to simplify the pre-
sentation and is not, in fact, essential.

This method presents a few distinctive features: the
knowledge of the underlying exact equations is not need-
ed, although effective use of the linearized dynamics in
embedding space is made; the target orbit can be explicit-
ly chosen and the computations involved are relatively
simple. However, expression (1) becomes inappropriate
as soon as several unstable or complex eigenvalues occur.
An extension to the higher-dimensional case is neverthe-
less possible (as shown in [5]) although the procedure be-
comes rather cumbersome. The major source of inaccu-
racy comes from the evaluation of the eigenvalues with
the corresponding contravariant vectors and of the "Aow
derivative" g: in fact, they fluctuate considerably from
run to run, so that the control is not frequently reprodu-
cible in certain regions of parameter space.

Therefore, while retaining the positive characteristics
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of the method, we implemented an alternative technique
which is affected neither by the occurrence of more than
one unstable direction nor by the possible complexity of
the eigenvalues. The contro1 condition which substitutes
Eq. (1) is obtained by requiring that the expected devia-
tion of the orbit from the target be minimized by our
choice of p (minimal expected deviation method or
MED). Our prediction is based on the same matrix M as
for the OGY procedure, although the dynamics may now
be approximated by a more general nonlinear map as
well. No estimate of the eigenvalues and of the corre-
sponding contravariant vectors is needed, thus yielding
higher reproducibility of the control. The vector g is,
however, still determined as before. Finally, the method
may easily be implemented with several control stations
along the target orbit.

The OGY procedure has so far been implemented in
Ref. [6], where a driven magnetoelastic ribbon has been
controlled around the periodic orbits of order 1 and 2.
Since the two-dimensional Poincare map was always sin-
gle valued in the neighborhood of these orbits, the pro-
cedure was considerably simplified. Moreover, the forc-
ing frequency v=0. 85 Hz was rather low, so that plenty
of time was available to perform the numerical calcula-
tions and send the control signal to the system. We ap-
plied both the OGY and the MED methods to a NMR
laser which displays attractors with dimension in the
range (2.2,2.6), upon modulation of a parameter with a
frequency v of the order of 100—120 Hz. Although the
minimal embedding dimension is, in this case, E =5—6
and the operating frequency about 120 times higher than
that of Ref. [6], control has been achieved under several
conditions for the lowest periodic orbits.

Notice that generic reductions of chaotic motion to
periodic behavior have been made recently by various
groups. Some of these methods consist of a simple feed-
back or modulation mechanism which does not require
any calculation [7—10]. Although valuable for their sim-
plicity and achievable speed, these techniques allow one
to predict neither the type of periodic orbit which is in-
duced by the perturbation nor the amplitude of the latter.
They rely to a considerable extent on empirical criteria
and cannot be really regarded as controlling processes
but rather as stabilization methods. On the other hand,
periodic entrainment of chaotic motion has been obtained
by forcing the system to follow the behavior of model
equations for the target dynamics [11]: the amplitude of
the perturbations depends on the distance between the
chaotic attractor and the aimed orbit and need not be
small.

I. IDENTIFICATION OF PERIODIC ORBITS

We applied the control techniques to a parametrically
modulated NMR laser. The system [12] consists of a ruby
crystal placed at a temperature of 4.2 K in a static mag-
netic field Bo of magnitude 1.1 T. The laser activity is
provided by the nuclear spins of the Al in the crystal.
The population inversion is obtained by means of a mi-
crowave pump and the resonance by enclosing the spins
in a cavity which consists, in our case, of an IC circuit

kp+z
E' =Q Xk Xk

k=k +1p

ko =io —[r/2], (2)

where a E(0.3,0.6) is a user-specified constant, v=4 is
the discrete delay time, and [ ] denotes the integer part.
This choice yields higher resolution in portions of phase
space where the data points are very close to each other.
A return (x;,x;+„) can be refined by computing
d;+, —=d(x;+„x;+„+&)and checking whether the relative
distance d,.+, /e;+& has decreased or not with respect to
d;/e, . If this is the case, the procedure is repeated until
an increase is found, thus determining the best return. In
order to avoid collapse of the distances below the noise
level, we introduce a cutoff proportional to b&E, where
b =2 ' is the sample resolution.

II. FITTING THE RETURN MAP
AND ESTIMATING

THE STABILITY PROPERTIES

Once an unstable orbit y of period Tz has been
identified, the dynamics around it can be approximated

providing the feedback radiation field 8, necessary for
coherent spin-fiip behavior. The circuit quality factor Q
is furthermore sinusoidally modulated as Q(t)=Qo(1+ 2 cosset), where co/2m E (100, 120) Hz. The
NMR laser exhibits chaotic behavior in a wide range of
parameter values (Qo, A and co), characterized by low-
noise output and absence of noticeable drift. The data
have been recorded with a 12-bit-resolution analog-to-
digital translation board by sampling the output voltage
[proportional to the nuclear transverse magnetization
M, (t)) at a frequency v=24/TE(2400, 3000) Hz, where
T =2'/co is the period of the forcing term. Time series
of length %=1.5X10 were usually stored for subse-
quent analysis. The data z, =M, (i/v) have been embed-
ded in an E-dimensional space X. Its points are given in
the form xk = [zk, zj, „.. . , zk &z, ~], where r =4 and
~/v is the appropriate delay time.

The information dimension D of the chaotic NMR-
laser attractor lies in the interval (2.2,2.6), depending on
the parameter values [13]: hence the minimal embedding
dimension required for a proper reconstruction of the at-
tractor is E =6~2D+1 [14]. The embedding window
~E spans a whole period of the forcing term. Unstable
periodic orbits of order up to 6 (i.e., of period 6T) have
been located by the method of close returns [1] simul-
taneously with the acquisition of data points. The ex-
istence of a return in a region B, of size e; around point

lp p

x; is tested by following the trajectory [x, ] for all
p

i H [i0+t;„,i 0+t,„], until the condition d (x;,x, )
p—:(~x;

—x,. ~~
~e, is satisfied for some index i. A return

p p

consists then of a pair (x;,x;+„),with n close to a multi-
ple of vT, which satisfies the above inequality. The (in-
teger) times t;„and t,„help in selecting the lengths of
the orbits to be investigated. The precision e; has been

0
chosen proportional to the norm of the local velocity in
phase space:
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+i gF-—M[/ gF) (3)

where M=D&F(g'~) is the Jacobian matrix of the (re-
duced) Poincare map F: B,(gF)~8,(gz). The matrix
M has been estimated with a least-squares procedure
which makes use of singular-value decomposition [15],
using a collection of m (m =50—100) vector pairs
(5g', 5f ) in B,(g'~), where 5g=g —g'~ and 5$'=F(5$').

A simple noise-reduction method can be implemented
to enhance the quality of the fit by discarding the vector
pairs for which a considerable discrepancy is found be-
tween actual and predicted image of the starting point:
i.e., point g; is neglected if

1154™411& e,„,
where M5$ and 5$' are the expected and observed vec-
tors, respectively, and e „is a suitable cutoff. A new
matrix M is then estimated from the "cleaned" set of
points in =. This step can be further iterated. Notice
that a barrel-shaped neighborhood is obtained, since the
rejected points lie at the border of the ball, close to the
unstable manifold. The same procedure can be adopted
with minor modifications to handle the case of L ) 1 con-
trol stations along the target orbit y. This has been im-
plemented with L =2 to 4, obtaining considerably better
predictions of the dynamics. Then, one has L matrices
Mi. B,(xi)~8,(xi+&), with l =1,. .. ,L and xL+, =x, .

The stability properties of y are determined by the ei-
genvalues of M which are computed by balancing the ma-
trix in order to reduce its overall norm, by transforming
it to Hessenberg form and, finally, by applying the stan-
dard QR algorithm [15]. The corresponding eigenvectors
are evaluated by inverse iteration. The case of complex ei-
genvalues requires more sophisticated methods including,
of course, computation in complex arithmetic. We found
complex eigenvalues many times, especially for orbits of
period 3 or higher and when there were several control

by means of one or more (linear) maps. Following [4], we
introduce a surface of section =PL in order to reduce
the dimensionality of the problem and to simplify the ex-
position (this step is not strictly necessary, in fact). Indi-
cating with x~ —= (xF", . . . , xF ') the control "station" on

y, the section is defined as == [x:x =xF j, where
x =—(x"', . . . , x' '). This choice always yielded a plane
transversal to the vector fiow in the neighborhood 8,(xF)
of xz. For each portion of trajectory passing through
B,(xz) both at times t and t+T~, we choose the closest
return (x;,x;+„) (where n =vT&) and associate to x; an
intersection point g; on =, determined by linear interpo-
lation (between the first two images or preimages of x;
which lie on opposite sides of:-). Since, by definition,
xF E =, we shall indicate it with g'~ in the following, for
homogeneity of notation. The requirement that both
start and end points of the returning trajectory belong to
8,(xF ) guarantees that the target orbit y is shadowed for
a time length T~ + T, since the embedding window
(which has been taken backwards in time) spans a period
T.

Assuming, as a first approximation, that the dynamics
from 8,(g'F ) to itself is linear, we can write

stations per orbit. This fact shows rotation of the vector
How. The occurrence of complex eigenvalues requires
modification of the standard OGY method. Moreover,
when several unstable directions are present, a generali-
zation of that control algorithm is needed [5]. Both is-
sues severely restrict the range of applicability of OGY's
method. Notice that application to the NMR laser is fur-
ther complicated by the speed of the system: the dynam-
ics is, in fact, about 120 times quicker than for the mag-
netoelastic ribbon of Ref. [6] (and must be reconstructed
in a higher-dimensional space). Therefore we developed
an alternative control algorithm.

III. MINIMAL EXPECTED DEVIATION METHOD

=minimum . (6)

We set a=g —Mg and P—:M[)'„—g'~(0)]. This yields

a p (g™g)[M[e.—CF(0) ) ]

llg
—Mgll'

pn p min

(7)

The optimal (minimal) distance achievable is hence
11

—(a P)a+Pll, where a—=a/Ilail. Notice that if g„ is
already close to the stable manifold of g~(0), its predicted
image g„+,(p„) will be close to the target point (F(0), so
that Eq. (7) will yield a small correction p„, in agreement
with the OGY algorithm. We also define a range for the
control parameter, —p~ &p &p, , so that no control is
attempted if the computed p overshoots these limits.

This procedure does not require us to determine the
stability properties of the orbit and allows us to fit the

In order to circumvent the above-mentioned problems,
we developed a method which relies on predictions of the
local dynamics and employs a different control condition
than OGY's. While the extraction and identification of
the unstable periodic orbits and the fitting of the return
map take place exactly as before, it is no longer necessary
to compute the stability properties of the chosen orbit.
Rather than demanding that the perturbed point g„+i(p)
falls onto the stable manifold of the target orbit [i.e.,
f„g„+,(p) =0, yielding Eq. (1)], we require that it comes
as close as possible to the control station gF. We first
rewrite Eq. (3) with explicit dependence of g'~ on p as

C. + i CF(p') ™—
I 4. 4F(p'))-

where g'F(p„)=gF(0)+gp„ in a linear approximation
(this relation being the operational definition of g). No-
tice that M is assumed to be p independent, in agreement
with Ref. [4]. Once the trajectory enters the control sta-
tion [ball 8 (g'~)], we seek the value p„ that minimizes
the n«m 114+i(p. ) 4F(0)ll where g. +i(p ) is the p«-
diction for f„+i obtained from Eq. (5) taken as a strict
equality. This expresses the condition that the next ex-
pected return on the Poincare section, after application of
perturbation p„, must lie in a neighborhood close to the
fixed point:

11
g'„+ i (p„)—gF (0)11=

I Ip„(g
—Mg ) +M[/„—g'r(0) ]11
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