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Nonlinear Auctuation effects in dilute polymer solutions in periodic How
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We study dilute solutions subjected to finite-amplitude periodic velocity-gradient fields of characteris-
tics strength Q, frequency ~, and vanishing time average. On time scales large compared to the Aow

period, Auctuations in particle position are equilibriumlike but with an effective diffusivity matrix

D(A, )—:E(A, )D, where D is the no-Aow diagonal diffusion matrix and D depends nonlinearly on A, =—0/co.
We prove that detD )detD and that trD trD for all Aows of this class; physically, this implies that the
rate of density decay and the rate of growth in size of a diffusing cloud of particles is always increased
relative to no Aow. This enhancement arises from the interaction of the Aow with microscopic Auctua-

tions and is an example of Taylor dispersion. When 1/0 and 1/cu become comparable to the longest
internal particle relaxation time the behavior changes since internal modes are excited. As an example,
we consider a dilute polymer solution in a simplified "Rouse dynamics" treatment. Relative to the
center of gravity the motion of a monomer decomposes into an "infinite" deterministic part arising from
the periodic stretching of the chain plus fluctuations whose long-time form is characterized by the same

effective diffusivity D as for the center of gravity. The mean-squared size of the chain is increased, rela-
tive to equilibrium, by the same factor trE/3 as the diffusivity. Correlation functions amenable to mea-
surement in dynamical scattering experiments are calculated; these provide direct measurement of the
nonlinear D.

PACS number(s): 05.40.+j, 36.20.Ey, 83.50.By

I. INTRODUCTION

When a liquid is subjected to macroscopic velocity gra-
dients the Auctuating microscopic degrees of freedom
describing the Auid particles interact with the macroscop-
ic flow. The most familiar effect is viscosity for the case
of a time-independent Sow. Another kind of effect (Tay-
lor dispersion [1])concerns the fluctuation in particle po-
sition; Aow and microscopic diffusion act together to
modify the particle diffusivity. In this paper our objec-
tive is to investigate this interaction when the velocity-
gradient field is time dependent' and of finite amplitude.
Given a Aow which Auctuates in time one can identify at
least two Aow time scales: that characterizing the time
dependence itself, and that associated with the strength of
the Aow, by which one means the typical magnitude of
the velocity gradient whose dimensions are inverse time.
To examine how such Aow-Auctuation effects depend on
these two time scales we choose the simple case of a di-
lute solution and we focus on the diffusivity of the dilute
solute particles; the problem then reduces to one of in-
dependent particles. One expects a change in behavior
when the Aow time scales become sma11 enough to corn-
pare to the time scales describing the internal scales of
these dilute particles. We investigate this in the case
when the particles are macromolecules, which are
characterized by a continuum of internal modes.

Our motivations in choosing polymers are twofold. On
the one hand they provide an opportunity to investigate
the effects of internal mode excitations as mentioned

above; on the other hand we are interested quite generally
in the properties of polymer solutions under strong Aows.

Flowing polymer solutions exhibit unusual non-
Newtonian effects when time scales associated with the
Aow are small enough to compare to characteristic poly-
mer time scales. The majority of experimental and
theoretical studies of Aowing dilute polymer solutions
have dealt with the linear Aow regime in which the Aow

strength scale is much smaller than any polymer rate and
so "drops out" of measured physical quantities (e.g. ,
viscosity by definition is independent of Aow strength, be-
ing the proportionality constant between stress and strain
rate in the linear regime). In this case only the fluctua-
tion time scale of the liow remains [e.g., co in measure-
ments of frequency-dependent viscosity g(co)].

This paper includes a study of the case in which both
time scales are relevant; thus the Aow Auctuates as rapid-
ly as, and the Aow strength is as large as, the longest po-
lymer relaxation rate. In this nonlinear regime polymer
configurations are strongly distorted and a number of
novel physical effects result from the interaction of this
nonlinearity with the excited internal polymer modes.
Our approach has been to begin with the simplest imagin-
able system from which to glean understanding of these
effects, namely, a single polymer chain (corresponding to
dilute polymer solutions) studied in the Rouse model [2]
(which is the simplest available many-body dynamical po-
lymer model) subjected to a periodic Bow. This paper is a
continuation of a study of this problem by one of the
present authors and collaborators I3]. In this paper
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"equal time" configurational quantities were calculated;
here we calculate dynamical quantities such as the root-
mean-square (rms) displacement of one monomer of the
polymer and other dynamical correlation functions such
as are relevant to scattering experiments.

There are at present few theoretical results on poly-
mers in nonlinear time-dependent Aows of the type de-
scribed above. Aside from the fundamental interest, po-
lymer chains experience velocity-gradient fields of this
kind in turbulent Auids containing polymer additives.
The study of such Aows should therefore shed light on
the phenomenon of polymer-induced drag reduction
[4—8]. Since the present study is in the Rouse model,
which neglects hydrodynamical and excluded-volume in-
teractions between the monomers, our results are not
directly comparable to experiment. However, the physics
which emerges is nontrivial and understanding this rela-
tively simple system is, with hindsight, a prerequisite for
more sophisticated calculations. Among the results we
obtain here perhaps the most intriguing is the entirely
nonlinear effect of the enhanced diffusivity of a polymer
segment. That is, we find that the Auctuation in the posi-
tion of a segment, when averaged over the time scale of
the Aow, grows with time in the same manner as in equi-
librium (no fiow) except for an enhancement factor which
derives from the stretching effect of the flow during one
cycle. Fluctuations are amplified by the Aow. Corre-
spondingly, the steady-state size of the polymer has been
shown to be enhanced by the same factor [3]. On longer
time scales one finds that the polymer center-of-gravity
diffusion is enhanced by this same factor; this effect has
been previously observed in center-of-gravity diffusion of,
for example, colloids in oscillatory shear flow [9].

Viscosity measurements constitute the major part of
the existent experimental data on lowing dilute polymer
solutions, both at zero frequency [10—13] and at finite
frequency [14—17] and theoretical work has dealt mainly
with the linear Aow regimes corresponding to these ex-
periments [18—22]. In the nonlinear regime there have
been a number of experimental studies of strong Aow
effects in dilute systems using two-roll and four-roll mill
devices [23,24] which create strongly extensional nonos-
cillatory flow environments for a polymer chain. At large
fiow strengths shear thinning has been observed [25],
while in strong extensional Aows the extensional viscosity
is strongly enhanced [26].

Theoretical work on finite Aow effects in dilute polymer
solutions is very limited. The effects of strong extensional
fiow were investigated by de Gennes [27] and nonlinear,
time-independent shear was considered in the works of
Fixman [28] and Ottinger [29] which addressed shear
thinning and by Rabin and Kawasaki [30] who investigat-
ed the suppression of excluded volume at high shear
rates. Using scaling arguments, Rabin and co-workers
[31] derived a shear-dependent form for the intrinsic
viscosity which exhibits thinning and adapted this picture
to include the effect of monomer-monomer ("internal" )

friction [32] on viscosity at high constant shears. Recent-
ly Baldwin and Helfand have [33] calculated the stresses
induced by finite shear Aow in a renormalization-group
study in which excluded-volume and hydrodynamical

effects were fully incorporated.
The structure of this paper is as follows. In Sec. II we

consider the diffusion of a dilute species in oscillatory
flow characterized by time scales far greater than any
internal particle scales; in this case a Brownian particle
treatment is valid. We prove that the diffusion is always
enhanced by the Aow in this simple system which de-
scribes the motion of the center of gravity of our polymer
chain. In Sec. III we perform the analogous calculation
for a polymer segment, i.e., the rms displacement of a
segment is calculated as a function of time; for times
greater than the Aow time scale, the diffusion is enhanced
similarly to the center of gravity. In Sec. IV the polymer
chain dynamical scattering function is calculated; its
form directly reAects the enhancement of diffusivity.

The most significant microscopic observations of poly-
mer dynamics in dilute solution have been made in
dynamical-light-scattering [34—36] and neutron-spin-
echo [37—40] studies. Light scattering was used by Cot-
trell, Merill, and Smith [41] to study high-molecular-
weight polyisobutylene solutions in shear flows, and
Lindner and Oberthur [42,43] used small-angle neutron
scattering to measure the coherent scattering function of
polystyrene molecules in dilute solution subjected to
shear Aows. In these experiments the shear flows were
constant in time; we are unaware of such dilute polymer
scattering studies which have been performed in the pres-
ence of time-dependent flows. Our results suggest this
would be of considerable interest; we discuss in Sec. VI
which aspects are expected to remain in a more sophisti-
cated treatment than that provided by the Rouse model.
The results of Secs. II—IV are mainly concerned with the
long-time regime (relative to the fiow time scale) since
this is the most universal regime and such time scales are
anyway more likely to be accessible in experimental stud-
ies. In Sec. V these results are extended to the small-time
regime, and we conclude with a discussion in Sec. VI.

II. ENHANCED DIFFUSIVITY:
CENTER-OF-GRAVITY MOTION

where A(t) is periodic in time with period 2~/co and is
written

Q(t) =Qg(cot ) . (2)

The parameter 0 measures the fiow strength and g(u) is
of order unity, has period 2~, and vanishing integral over
one period:

g(u+2~) =g(u),

J du g(u) =0 .
0

(3)

Our interest here is in Aows whose time-averaged gra-
dients vanish. As will be clarified below, a nonzero time
average leads to qualitatively different behavior (e.g. , the

In this paper we will study the behavior of a single par-
ticle (corresponding physically to a dilute solution) in a
velocity field of the form

v(r, t ) =A(t) A r,
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notion of enhanced diffusivity ceases to have meaning).
The time-independent matrix 3 represents the "shape"
of the Bow. All results will be phrased for arbitrary
traceless 3, though as specific examples we will often
treat the following two particular forms:

1 0 0
W= 0 —

—,
' 0

0 0

representing pure extension, and

0 1 0
0 0 0
0 0 0

representing simple shear.
In this section we consider the case when Q, co &&1/70

where ro is the longest relaxation time of the particle (see
Fig. 6). Then the particle's center of gravity RG obeys
the simple Brownian particle Langevin equation (plus
fiow)

dRG
=Q(t)ARG+ fG(t),

dt

where the Gaussian random force fG(t) has zero mean
and is correlated as

( fG(t ) fG(t') ) =I 5(t t') . —2

1/gG is the center of gravity mobility and I the unit ma-
trix (we work in units where k~ T= 1). In terms of the in-

itial condition at to, namely, RG(to), the solution is

R (t)=l, l, 'RG(t )+j dt'l, I,, 'fG(t'),
0

where I, is the (matrix) propagator from time 0 to time t
for the deterministic dynamics of a fluid element in the
fiow field Q(t) dr (i.e., no random force fG), and I, ' is
its inverse,

A J d( A((') ') —A j d( r)(('')I,=e I, =e

Note that the time-dependent Aow breaks the time
translational invariance of the problem; hence the propa-
gator between two general times t' and t, which equals
I,I, ', depends on both times. I, refers specifically to
t=0 as the initial time. Since Q(t) is periodic and its
time integral over one period 2~/co is zero [Eq. (3)], it fol-
lows that I, is itself periodic. This is an important prop-
erty which leads to the existence of an effective
diffusivity; the absence of this property in the case of a
nonvanishing time average of Q(t) would induce qualita-
tively different behavior.

A comment is necessary at this point on the choice of
lower limit, t'=0, in the integral in the exponent defining
I, above. The choice is arbitrary, in that observables are
unaffected; however, a natural rule is that the lower limit
t( obeys ( f', du g(u ) ), =0, where ( ), denotes time

average over one period. Throughout this paper we as-
sume a time coordinate chosen such that t& =0 obeys this
criterion.

From Eq. (8) the two-time dyad correlation function is
the sum of a deterministic term and a diffusive term (the
second on the right-hand side),

( [RG(t) —RG(t() ) ][RG(t)—RG(t() )] )

=(r, r —I )R,(t, )(r,r —I )R,(t, )+ j'dt" j'dt'r, r;, '( f, (t') f,(t"))(r,r;„')',
t0

(10)

where we have used the vanishing of the mean of fG and
the fact that Bx=xB for any matrix B and vector x.
There is no averaging over RG(to) in Eq. (10); these are
the statistics for a given initial particle position. Using
Eq. (7) one finds that this diffusive term in Eq. (10) is
given by

2

G 0

D—:lim j dt'I, '(I, ')
t tO (o—

(12)

where ( ), denotes a uniform time average over one
period of the How 2m/co. We name the time average ap-
pearing in Eq. (12) the "enhancement tensor" E:

(13)

We seek the form of this correlation function for times
much larger than the Aow period, t —t0))co '. Let us
define the effective diffusivity matrix D as follows:

Since I, is positive, bounded, and periodic, the limit of
Eq. (12) exists and equals a finite positive constant in-

dependent of the initial value t0. For large times t —t0
we thus have

([R,(t) —R, (t, )][R,(t) —R, (t, )])=(r,r —I)R,(t, )(r, r —I)R,(t, )+2r,D(t —t, )r,', (14)



MING J. HSIA AND BEN O'SHAUGHNESSY 47

with small corrections of order I,Dc@ 'I, . In the ab-
sence of flow (I, =I) this reduces to the usual expression
2D(t —to) for the fluctuation in the center of gravity
where D is the diffusivity matrix in the absence of Aow.
When Aow is switched on the tensor E represents the
enhancement of D relative to D:

D =ED, D:I/gG—. (15)

To connect with the usual difFusion constant D defined in
terms of the mean-square displacement, which equals the
trace of the dyad, observe that this latter is given by
3/gG, the standard result. Note that Eq. (12) guarantees
that D is always symmetric and positive definite
[equivalently, see Eq. (16) below]. We emphasize also the
importance of the vanishing of the time integral of the
flow gradient field A(t) [Eq. (3)], without which D would
not be defined; in this case the second term in Eq. (14)
would grow faster than linearly with time at a rate deter-
mined by the time-averaged value of Q(t)A. As a result
the limit of Eq. (12) no longer exists. In Appendix A we
consider this case, the physics of which for long times is
essentially that of a time-independent gradient field, and

I

we demonstrate that the growth in time of the Auctuation
in particle position is either polynomial (with degree
greater than unity) or exponential. In practice a small
time average [relative to the magnitude of the fluctuating
part of B(t)] will not upset the enhanced diffusive behav-
ior for smaller times; at sufficiently large times, however,
this will yield to the polynomial or exponential behavior.

The correlation function of Eq. (14) describes the
statistics of the displacement of a cloud of independent
diffusing particles relative to its position at time tz. At to
the cloud is a point contained in the Auid element at
RG(to). The deterministic first term is the dyad formed
from the displacement of this Auid element and equals the
dyad formed from the mean displacement of particles be-
longing to the cloud [take the average of Eq. (8)]. The
diffusive second term describes the shape and size of the
cloud itself, relative to its center of gravity, as it gets de-
formed by the Aow and by the diffusion of the particles
which comprise it. Indeed, this term is the Auctuation in
the position of particles in the cloud relative to their ini-
tial position, being the matrix of second cumulants of
products of the different components of the cloud dis-
placements:

( [RG(t) —RG(to)][RG(t) —RG(to)] ),—= ( [RG(t) —RG(to)][RG(t) —RG(to)] )

—([R (t) —R (t )])([R (t) —R (t )])=21,D(t —t )I T. (16)

Now the inner part of the fluctuation matrix, D(t —to),
represents the shape and size of the cloud at "reference
times" which are integer multiples of 2'/cv; this grows
linearly with time and with aPoiv enhance-d diffusivity D.
We will prove below that the diffusivity is indeed always
enhanced by an incompressible Aow. The operator
I, I ]I, acts on this inner part to give the fluctuation at
times which are not integer multiples of 2irltv. This
operator effects the periodic deformation of the cloud in
the Aow, and represents a deterministic effect in addition
to the motion of the center of gravity of the cloud.
Thermal Auctuations disperse the cloud and the deter-
ministic Aow then periodically deforms this dispersion.
In the next section, when we come to consider the dis-
placement of one unit of the polymer for short times, we
will find similar physics but also subtle differences. A
unit is attached to a chain which is itself deforming in the
Aow, somewhat like the deforming cloud. However, any
one diffusing particle does not physically interact with its
cloud, in contrast to a unit which is actually attached to a
polymer chain.

Let us now justify our use of the expression "enhance-
ment of diffusivity" by proving that the Auctuation in the
mean-square displacement of a particle (for times which
are large compared to the flow period) is greater than or
equal to the same quantity in the absence of Aow. From
Eq. (16) this fluctuation equals 2 trI, D(t —to)I, where tr
denotes the trace operation; without Aow this becomes
2trD(t —to). First we demonstrate that trD ~trD. Con-
sider any d X d matrix I (we have a flow in d dimensions
in mind). Define ( . ) =(1/d)$';:di[ . I, and let the

2 trX (17)

where we have used the fact that the determinant of a
matrix equals the determinant of its transpose. The use
of Eq. (17) and the general result (e ) ~e( ) allows the
establishment of the following inequality:

tre —e ——:d (e ' ) ~ deX XT

1/d

e

=d(dete —e — )' "

(2/d) trX

From Eq. (13), E is the time average of a matrix of the
form exex with X being minus the time integral of the
flow gradient matrix A(t) A. When the flow is incompres-
sible this matrix is traceless; noting that the time averag-
ing and trace operations commute, Eq. (18) then implies
that trE + trI and thus from Eq. (15)

trD ~ trD (incompressible flow) . (19)

This result implies through Eq. (16) that at times which
are integer multiples of the Aow period 2~/co the Auctua-

X XT i=deigenvalues of the matrix e —e — be Ie '
I,':i. Note that

this matrix e —e—,being of positive-definite form, has ei-
genvalues which may always be written in this form for
real p;. Its determinant is given by

X Xdete —e — = (dete —
)
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tion in cloud displacement is enhanced. In fact this is true for all times, since from Eqs. (16), (15), and (12) one can
write

([R (t)—RG(t )][R (t) —RG(t )]),=2D(r, r, ,(r, r, , )'), ,

=2D(e "~' e (20)

X'
The quantity in the time-averaging brackets is again of the form e —e — with X traceless; its trace is thus greater than or
equal to trI and we establish that the Auctuation in displacement is enhanced at all times,

( [R (t ) R (t )]2)compressible flow ) ( [R (t) R (t )]2)no flow (21)

Consider some particular cases now. For simple extensional Aow, the deterministic Aow propagator and the effective
diffusivity matrices are diagonal, Eqs. (12) and (9),

Xf du g(u)
e

0

0

0
—(1/2)2 f du g(u)

e 0

0

0
—(1/2)i.f du g(u)

e 0

(22)

and

D=D

(
—22.f "g)

(23)

I

account of its relative simplicity). From this inequality
we will deduce that the density of a diffusing cloud is re-
duced by the Aow. We will make use of the Holder in-
equality [44],

N N 1/q, .

Jd Qf( ) + Jd f '( ) ', N 2,

where A, —:A/cu measures the degree of nonlinearity of the
flow [3]. Here

N —=1, q, )0,
(25)

l 2~. ) du[ j2' 0
(24)

denotes time averaging over one dimensionless cycle (of
length 21r) of the fiow. Using (e')„)1+(x)„on each
of the elements of D in Eq. (23), one immediately verifies
the enhancement trD ) trD for nonzero k. The emer-
gence of A, as the natural measure of the nonlinearity of
the Aow and of the degree of enhancement is a general
feature. A, parametrizes the net strain in one Aow cycle
(i.e. , a strain rate —Q persisting for a time —to '). This
strain, which in the extensional Aow case is exponential in
A, , is the flow-induced fractional increase in the diffusive
"blur" in the position of the center of gravity which
occurs in one Aow cycle. It is this "blur straining" aver-
aged over one cycle which enhances the diffusivity. On
time scales beyond one Aow cycle the diffusion does not
feel the stretching effect of the changing Aow and devel-
ops linearly in time as in the no-Aow case, albeit with an
enhanced coefficient.

It is important to realize that these effects are entirely
nonlinear in A, , as can be seen by expanding D, Eq. (12), in
powers of 2 and 2 . After time-averaging a term of nth
order is proportional to A,"((fog)")„; thus terms linear
in A, are linear in A or 3 and are annihilated by the
trace operation. There is no enhancement of diffusivity
to order k.

In fact the enhancement in the trace proved above can
be deduced from a stronger inequality on the determinant
of E (we have presented the weaker inequality above on

Td /2
[det( r, r,—1

) ]
—1/2

j
1/T

d/2
7 (26)

T
where we have used det(I, 'I, ' )=[det(I, ')] =1
which follows since detl, =exp[tref ~A j and tr/I =0
for these incompressible Aows. Thus we conclude that
(detE) ' ~ 1 or

detE ~1 . (27)

This inequality is the central result of this section. In
fact the inequality is strict with the exception of purely
rotational fiows for which /I + A =0 [only then are all
of the [f, (x) j the same]. Equation (27) also implies a
similar inequality on the trace

where f, (x) takes non-negative values and the equality is
only true when at least one of the I f, (x) j is zero
or all of the [f;(x)j are proportional to each other.
Since E is positive definite we can express
(detE) '/ =et " f d x exp[ xEx j, an—d write

1
TE=(l/T)Q, , Ir, 'I, , ', i.e., we have discretized time

into T units of size At per period, T =2~/
(cob.t) Using . Eq. (25), with N =q, = T and

—1 —1f;(x)=expt —xI, 'I, ' x/Tj, and noting that
detI, = exp I trA f ~/I j

= 1 since tr /I =0, we find that

1/T
T —xr, 'r, ' xJd "x e x—x~ g Jd "x e
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trE ~d, (28)

which follows since trE/d ) (detE)' " which is the state-
ment (for our positive definite E) of the fact that the ar-
ithmetic mean of a set of positive-definite numbers
exceeds their geometric mean. Equation (28) is of course
equivalent to our previously derived inequality, Eq. (19).
As we have shown previously, since D =E D where
D=L/gG is the no-ffow diagonal diffusivity matrix we

have tr[I,D I, ]
)d[det(I, D I, )]'~"=d(detD)' "

)d(detD)'~ =trD. From Eq. (16) this implies that the
fluctuation in particle position is enhanced by the How,
i.e., the mean-square size of the cloud is greater. Note
that D is no longer diagonal, i.e., How destroys isotropy;
therefore the inequality on the trace does not in itself im-

ply that the Aow reduces the cloud density, since dis-
placement is in general enhanced in some directions and
suppressed in others. To demonstrate reduced density,
we note also from the Langevin equation that RG(t) is
Gaussian and thus the density p, at the center of gravity
of the cloud I,1, 'RG(to) is simply the normalization of

0

this Gaussian whose correlation matrix appears in Eq.
(14): p, = [det[4vrI, D(t to)I, ] ]

—' . Then since
detI, =1 we have P, /p, =(detE) ' ~ 1 where p, is the
equivalent quantity without How. Thus the Aow reduces
the cloud density.

This increased rate of density decay is in fact related to
an increase in the entropy production due to the particle
diffusion as follows. For nonequilibrium processes the
entropy production rate o for a How field v is generally
given by [45] (p is the particle number density of the solu-
tion)

„"fpsdv= —f " ' "dv f—' "dv

dV,
T2

(29)

where s is the entropy per particle, H is the stress tensor,

j the solute particle number Aux, p the chemical poten-
tial, T the temperature, and j the heat Aux. In the
present case of uniform T the third term vanishes. Let us
consider the contribution from the diffusive motion (i.e.,
in addition to the stress contribution represented by the
first term), which we name cr= J(j.Vp, )/TdV. Now the

current j is given by j= —pD VC where C is the ratio of
particle number densities of solute to solution. Now C is
proportional to number density of solute particles each of
which obeys our Langevin equation, and so has Gaussian
distribution of the form below (M is the total number of
solute particles):

C(R, t;R„t, ) = M
p [(4') det[D(t —to)+Xo]] '

(R I I Ro)(4I [D(t to)+Xo]f ) (R I I Ro)
0 0 (30)

for the case of an initially Gaussian distribution with dispersion matrix Xo. The dispersion from a 5-function initial
condition is obtained from Eq. (14); one then simply adds dispersions to obtain that in Eq. (30). Using this form in
p= T lnC+%(Tp ) (the ideal solution result with p being the pressure) gives [X,=D(t —to)+Xo is the dispersion at
time t]

VRCD VRC
o. = d R

C

L Vx
[det(4~X, ) ]'

XX, 'X
r, 'Dr, "V —(1/4)xx 'x

4

—( ~ /4)xr 'xd'xx(x;"r D r;"x )xe ""'-'—
[det(4~X ) ]'

t [x;"r D r;"] (31)

where we substituted X=I 'R —I 'R and we used the identity f d XX8 X exp[ —X 3 X]
=

—,'[det(m3 )]'~~tr[B A ']. Thus the change in entropy (from this term) in the time interval (to, t) is approximately
given by (assuming t —to ))co ')

AS= f dt cr= f dt'tr[X', ' D]= tr f dt'[(t —to)I+X+ ']
0 0 0

tr ln[I+D 'X (t oto)]—
det[XO+(t to)D ']-

ln.
2 det(XO)

= —M 1n[[det(4~XO))'~ p, ] =M ln[po/p, ], (32)
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D=D
(

—2A. sinu )

0 ( A sinu)

0

]T
where I, 'D I, ' was preaveraged to give D which is

T
justified due to the slow variation in time of X, (note

]T
X, ' has already been preaveraged). For long time (rela-
tive to the diffusion time associated with Xo) we find that
the total change in entropy per particle at time t for an
initial (to) patch of density po is given by AS =1n[po/p, ]
for time differences much greater than the Aow period.
Then since p, is less than the value it would have without
How, thus AS is greater than it would have been without
Aow when compared at the same time.

Let us now consider several particular cases. A simple
specific example of the general extensional Aow of Eqs.
(23) and (22) is that of sinusoidal extensional fiow
g(u) =cosu:

for calculating the enhancement tensor E of Eq. (13)
(which determines D) is the fact that the real velocity gra-
dient matrix A(t) A can be expressed in Jordan canonical
form under a suitable transformation. That is, there ex-
ists a nonsingular matrix P such that A =P(A+N )P
where A is the diagonal matrix of the eigenvalues of 2
(with each eigenvalue repeated as many times as it is de-
generate) and N is nilpotent. The procedure for finding
the Jordan canonical form of a matrix (i.e., for deriving
P) is standard [47]. Thus e "=Pe—+ P'—=P[e e ]P—
since A and N commute. Since A is diagonal e is easy to
evaluate, and with N being nilpotent e —is a polynomial
in N. Replacing A —+ fQA one can thus obtain 1, and
then E from Eq. (13).

The two-dimensional case, for which D can be explicit-
ly calculated for arbitrary Aow, serves as a convenient ex-
ample. In this case for incompressible Aow 2 has the
form

0 ( 2. sinu )

where (e """)„=Io(2A,) is the modified zeroth-order
Bessel function of pure imaginary argument [46].

In the simple shear case, Eq. (5), one has A =0 so
e —=1+ad for constant o.'. Then the deterministic flow
operator I „Eq. (9), is

1 A. f dug(u) 0
0

a b

c —a (37)

so A has diagonal elements +(a +bc )' . One finds that,
provided a2+bc&0, N=o and the elements of P are
p„=p22=1, P,2=[ —(a +bc)' +a]/c, P2, =[(a
+bc )

'~2 —a ] /b. This leads to

r, = 0 1

0
0
1

(34)
sinhO sinhO'

0

D=D

'1+&'&( f "g)'&„

—k& f g&„
0

0

—k( f g)„o
0

0

1+x' (( f "g)'&„o o
0

and the effective diffusivity matrix sinh0
0

sinh0
coshO —a

0
sinhO

C
0

sinhO
coshO —a

0

sinhO'
0
sinhOcoshO+a

0
0

1 0
0 1

(35)

k21+' 0 0
2

D=D 0
0

1 0
0 1

(36)

For a general periodic How a convenient starting point

where we have used the property ( f og )„=0 (as en-

forced by our choice of lower time limit). The trace of
the matrix multiplying D is manifestly greater than 3 for
nonzero k. Observe how in pure shear the exact Aow-

induced part of the Auctuation appears additively as a
quadratic term in the natural parameter A, . Note also
that D in general describes an anisotropic dispersion of
the cloud whose diffusion in certain directions is
enhanced and in others is suppressed.

In simple sinusoidal shear Aow one has

where 9 (t)—= (a +bc)O (t). With the fiow operator
evaluated, it is simple to obtain E from Eq. (13). A spe-
cial case is when the determinant of 2 vanishes,
a +bc =0, which would render P as defined above
noninvertible; then A itself is nilpotent ( A =0) so A =0,
and P changes form. Thus I, =expfoIlA =1+fOAR.
Note that this matches the expression in Eq. (38) in the
limit 0—+0.

What are the experimental predictions of our theory?
A number of experimental techniques are suited to
measuring the effective diffusivity matrix. For example,
light scattering on solutions subjected to strong periodic
Aow which contain diffusing particulate scattering
centers furnishes a direct probe of the dynamic structure
factor S(k, t), namely, the two-time correlation function
of the kth Fourier amplitude of the particle density.
Defining S(k, t) to be the correlation function per parti-
cle, using Eq. (14) and the fact that RG(t) is Gaussian,
one finds for an %-particle system in which the ith parti-
cle is located at RG (for k&0)
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1 'kfR' ( )
—R'

t )))
N

S kt= Ze
IJ

ik(RG(t) —RG(to)]
)

N

I k( Vt V& I )RG( tp ) ktf dt'l, l, , fG(t')

(2~)3 —(1/2)kl D(t —t )L k

5(k[I,I, ' I])e—

(2~) —(1/2)kI~, D(t —tp)I~, k

5(k —k(t))[det(I, I, ')]e

2 3 ( 1/2)kI D(t tp)F k
5(k —k(t))e ' ', k(t)=kr, r

where V is the volume of the scattering region and the
above result holds for t —to ))1/co, i.e., time scales much
greater than the How period which permits us to preaver-
age to get D. The 6 function is defined over the finite
volume V [i.e., 5(0)= V/(2') ]. Note that the average
must be taken both over diffusion histories during [to, t],
i.e., over the Gaussian random force f6, and also over in-
itial particle positions RG(to) [namely, (1/N)g, ]. We
have assumed a uniform distribution of particles in space,
as is appropriate to the spatially linear incompressible
ffows we consider (a uniform distribution is unchanged by
such ffows). Other distributions are of course experimen-
tally accessible. Note that in the solution for RG(t), Eq.
(8), RG(to) is a giuen initial condition and the noise fz in
the integral is assumed to refer to times greater than to,
i.e. , is independent of RG(to) (thus is one were to discre-
tize time into units of size At, the lower limit of the sum
would be to+A, t rather than t()) Hence .we are able to
factorize the two averages over fG and RG(to) in Eq.
(38). The statistical independence of the N particles in
the system and the vanishing of (exp(ik. RG)) for k&0
have also been used. We emphasize the role of the 6

I

I

function which selects times such that I,=I, ; conse-

quently the scattering function ends up being exponential
in the time difference t —to. The 5 function selects k(t)
which is the wave vector a plane-wave density distur-
bance, initially of wave vector k, would have after time t
if it evolved under the ffow alone (i.e., no thermal ffuctua-
tions), i.e., according to the deterministic propagator
I tl t

'. The determinant of this propagator equals unity
0

in our incompressible ffows ( A is traceless).
In the relatively simple extensional and shear cases,

Eq. (38) gives, respectively,

2 3

SG(k, t ) = 5(k —k(t))

Xexp —— g k (I, ) D (t to)—
2 a=x, y, z

(39)

where the elements D correspond to the extensional
case, Eq. (23), and

SG(k, t)= 5(k —k(t))exp, —(2~) t —
tO

2
(k )2D +k D A f dug(u) +2k k D A f dug(u)

(40)

where D in shear is given by Eq. (35).
Figure 1 illustrates SG(k, t ) for extensional sinusoidal ffow and the choice k=(k, 0,0) in which case one has from

Eq. (39)

~0 2k sinu
(2m )

SG(cork, A, , co(t to), Po) = 5(k —k(—t))exp co(t —
t() ) (41)

where rk ——1/(kDk)=gG/k is the scattering decay time
in the absence of ffow [rk =gG/k in Eq. (41)] and ttto is
the initial ffow phase $0 =ceto. We have expressed S—

G in
terms of the physically relevant dimensionless variables.
In Fig. 1, co~& =100, A, =1, and the maximum value of

I

co(t —to) equals 400. Note that for SG to have the above
form one requires co(t —to) )) 1 since the long-time form
for the ffuctuation in displacement (coarse-grained dy-
namics characterized by D) has been used; thus cork »1
is also required, i.e., the width of the decay curve must be
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sufficient to allow for many fiow cycles. (For a choice of
k such that co~i, & 1 a single Aow cycle would be probed
for which the long-time forms above would be invalid. )

Thus k must be small enough to probe a scale greater
than the distance diffused in one cycle. (Note, however,
that the scale probed by a given k vector is enhanced rel-
ative to the no-Aow value of order 1/k; this results from
k vectors being stretched and rotated in the fiow. ) In Fig.
1(a) the complete scattering function is shown, consisting
of a large number of 6 functions [each 5 function comes
with a factor (2') /V and so is of finite height] whose
peaks trace out a smooth exponentially decaying curve.
There are two 5 functions per flow cycle at times (n in-
teger) t —to =2nm/co and t+to =(2n+ 1)m/ni which are
the two times at which I, =I, . The decay rate,
modified from the no-Aow case, is 1/~1, where
rk ——1/(kI, D I, k) [see Eq. (38)]. Evidently, ~k de-

pends both on the fiow strength parameter A, (exponen-
tially for this extensional case) and on the initial phase; in
Fig. 1(b) curves for five different initial phases are shown

where, for clarity, only the envelopes are plotted. The
dashed curve is the no-fiow case (A, =o) for comparison;
note that the effective decay rate is sometimes increased
and sometimes decreased by the fIow depending on the
initial phase value. The initial phase value is just a mac-
roscopic property of the Aow and so is under the control
of the experimentalist; it simply refers to the reference
time against which to compare subsequent light intensi-
ties in, say, a photon correlation spectroscopy experi-
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FICx. 1. (a) Center-of-gravity scattering function
SG(cg)Ty Aco(t —to), $0) vs .dimensionless time cu(t —to) in the
case of extensional sinusoidal flow [Q(t)=Sic toto]s. Dimen-
sionless parameter values are co~k =100, A, = 1, $„=0, and
k=(k, 0,0) where the How matrix A is diagonalized in this
coordinate system. (b) Solid black curves are the envelopes of
center-of-gravity scattering functions as in (a) but for a range of
different initial phases $0: Po=nvr/5, n =0, 1,2, 3,4. The dot-
dashed curve is the average of these five, and for comparison the
scattering function without Row is plotted (dashed curve).

10M (t — tp ) (g)

FICx. 2. (a) As Fig. 1(a) but for sinusoidal shear Aow

[Q(t)=Qcoscot] and k=(k„,0,0) where flow is in the x direc-
tion. (b) As Fig. 1(b) but for sinusoidal shear Aow. (c) Repeat of
the dot-dashed curve of (b), but now the complete averaged
function is exhibited, including the 5 functions. After five initial
phase averages the second family of 6 functions is reduced in
amplitude and spread out. The dot-dashed curve of (b) is the
envelope of the taller family.
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ment. If that initial phase is kept fixed, the observed
curves are of the type shown in Figs. 1(a) and 1(b) (the
solid curves). The experimentalist may choose instead to
average uniformly over initial phases; also shown in Fig.
1(b) (the dot-dashed curve) is an average over the initial
phases represented by the solid curves. This gives anoth-
er (nonexponentially) decaying curve; averaging over a
larger number of initial phases in fact has little effect on

I

this curve. This would be the experimentally observed
relation if measurements were taken at random initial
times. On average, the Aow enhances the decay rate
which is essentially the same as the statement that
diffusivity is always enhanced.

Figures 2(a) and 2(b) are a repeat of Figs. 1(a) and 1(b)
for sinusoidal shear Bow, with the same values for the di-
mensionless parameters and for k:

(2~) 1+A, /2+ A, sin Po
SG(~xi„k,, co(t to)—, PO) = 5(k —k(t))exp co(t —to) (42)

Note that the effect of A, on 7&
—= ~& /

(1+A, /2+A, sin $0) is now quadratic rather than ex-
ponential. Figure 2(c) is a repeat of the dot-dashed curve
in Fig. 2(b), i.e. , an average over the initial phases, but
now the full structure including 5 functions is exhibited.
Under averaging only the t —t0=2nn/co family of
5 functions survives untouched, since their posi-
tioning "resonates" with the Bow. The t + to
=(2n+1)~/co family is further reduced in amplitude
after each bout of averaging, being "out of phase" with
the Aow. In the limit of a continuous average over initial
conditions this family disappears altogether, i.e., the total
area becomes spread over the entire t —to interval.

Enhanced diffusivity effects have been observed and
measured in this way by Xia et al. [9] who employed
forced Rayleigh scattering on a colloidal solution subject-
ed to oscillatory shear (low. They measured SG(k, t), ob-
taining a profile of the type illustrated in Fig. 2(a).

An important experimental issue is the extent to which
the total time-integrated scattering intensity is reduced
by the Aow. In the presence of the oscillatory Aow,
coherent contributions can only occur twice a cycle when
the Aow brings back a scattering center to within 1/k of
its original position. Consequently, one anticipates a con-
siderable reduction in intensity. Each 5 function, taken

I

with its (2~) /V factor, is of height unity. The width as a
function of its full argument is of order L '= V ' in
each Cartesian direction, ' thus for a given k the order of
magnitude of the width in t —to is obtained by equating
the change in the argument, for a given change A(t —to),
to 1/L: 6[ ~k(I, I, ' I)~]

—1—/L This. change is evalu-

ated by differentiating the argument with respect to time
subject to the condition 1,=I, which pertains at any

peak. Thus one gets b, ( t —to ) —1/(k QL ) using
d I /dt =Q(t) A I and using the fact that the elements of
A are of order unity. Since there are of order ~~& peaks
in total the net area is of order r&/kL A, which should be
compared to the area of order ~& without Aow. The frac-
tional reduction in total intensity is thus of order 1/kLA,
(this reduction is modified by the fact that rz diff'ers from
~& in a to-dependent manner, but the 1/kL factor is dom-
inant). This is a considerable reduction and complicates
experimentation; summing over many initial times to may
be required to amass sufficient total intensity.

To conclude this section, let us treat the center-of-
gravity displacement for short times compared to the
Aow period. Consider the case where X is of order unity.
Then the deterministic (i.e., liow only) propagator may be
expanded as

I,I, '=exp[ A f 0] =exp[ A [Q(t o)(t to)+ ,'g'(ceto)Ace(t ——to) + . ]]—
0

=1+A [A(t, )(t t, )+ ,'g'(~t—, )A~(t ——t, )']+(A '/2)[Q(t —t, )]'+ .

B(t t, ), co(t t, ) «—1 . (43—)

We can use this directly in the deterministic part of Eq. (14), and in the Iluctuation part in Eq. (14) one gets from Eq.
(11)

2D I,I,, ' I,I,,
' =2D 1+ A+2 0 t t —t +

0 0

=2D(t to)[1+O(Q(t to—))] . — (44)

The total displacement is therefore given by

([RG(t)—RG(to)][RG(t) —RG(to)]) =[A(to)(t —to)] ARG(to)R (tG)A0+2D(t to), Q(t —to), co(t —to)((—1 .

(45)
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The relative corrections are of order Q(t t—o),co(t to—).
For short times the Auctuations are as without Aow to
leading order, i.e., the equilibrium diffusivity is
recovered. The deterministic part is linear in time (on
these time scales the Bow gradient is effectively unchang-
ing). Note that the squared displacement is quadratic in
the small parameter Q(t —to); it is of course quite wrong
to discard it as a higher-order term since it multiples the
"infinite" RG(to). It will prove interesting in Sec. V to
compare the above small-time result with that for the dis-
placement of a polymer chain unit.

III. ENHANCED DIFFUSIVITY:
DYNAMICS OF A CHAIN UNIT

We now specialize to a dilute polymer solution. The
internal polymer degrees of freedom are excited by the
fiow field when A, co)) I/~0 where wo is the longest poly-
mer relaxation time. This inequality is assumed
throughout this and the following two sections (see Fig.
5). In the following we will see that the rms displacement
of one unit of the polymer chain is characterized by an
enhanced effective diffusivity in a similar fashion to the
center of gravity; however, several important differences
arise from the fact that the motion of a monomer, unlike
that of a Brownian particle, is influenced by its neighbor-
ing monomers. This monomer segment is attached to a
polymer chain undergoing periodic deformation.

The Rouse dynamics of our polymer in the Aow field

v(r, t ) of Eq. (1) are [3]

Br( st) 1 B r(s, t) +Qg(cot ) Ar(s, t )+ f(s, t ),
dt ps 2

(46)

( f(s, t ) f(s', t') ) =—i5(s —s')5(t t') . —=2 (47)

Equation (46) is solved with free end boundary condi-
tions, i.e. , Br(s, t)/Os=0 at s =0 and N. We define the
displacement vector of the sth chain unit during the in-
terval [to, t] to be d(s, to, t)—:r(s, t) —r(s, to). Our objec-

where [r(s, t)]', :o denotes the conformation at time t of
a chain of N units, I/g is the monomer mobility, and the
correlation of the Gaussian random force of zero mean is

d(s, to, t ) = [RG(t) —RG(to )]+[u(s, t )
—u(s, to )], (49)

where RG(t) = (1/N ) fods'r (s', t ) =(1/&2N )ro(t) is the
center of gravity of the polymer, and u(s, t ) is the posi-
tion of the sth chain unit relative to the center of gravity,

r

u(s, t)=&2/N g r~(t)cos
p=1

Integrating Eq. (46) with respect to s from s =0 to s =N,
and using the free end boundary conditions and Eq. (47),
one establishes immediately that R& obeys the dynamics
studied in Sec. II, Eq. (6), with random force correlations
given by Eq. (7) provided one identifies $6

—=Ng (the stan-
dard result [19]). Thus we are already equipped with a
full understanding of the behavior of the zeroth mode.
The behavior of the internal modes, q&0, which are the
basis for u(s, t), is qualitatively diA'erent. From Eq. (46)
their dynamics are

rp
+A(t)Ar +f

Tp

(51)

where the random force correlations are

( f, (t ) f, ,(t') ) = I5„,,5(t—t')—=2 (52)

and r~=gN Ivr p is the mode relaxation time. Equa-
tion (52) together with the linearity of the mode dynam-
ics, Eq. (51), implies that the modes are statistically in-

dependent of one another (which is of course the essence
of the Rouse model and is unspoiled by our linear Aow

field). Thus from Eq. (49) the correlation function of the
displacement may be expressed as

tive in this section is to calculate the basic correlation
function characterizing the statistics of d(s, to, t ).
d(s, to, t ) can be expressed in terms of the Rouse modes

r (t)=&2/N f ds r(s, t)cos, p =0, 1,2, 3, . . .
o

' X '

(48)

( d(s, to, t )d(s, to, t ) ) = ( [RG ( t) RG ( to ) ][RG—( t) RG ( to ) ] ) + ( [u—(s, t )
—u(s, to ) ][u(s, t ) —u(s, to ) ] )

= ( [RG(t) —RG(to)][RG(t) —RG(to)])

+ — g cos p ([r (t) —r (to)][r„(t) r(to)])—.
p=1

(53)

Evidently the correlation function we seek is determined
by the mode displacement correlation function
( [r„(t)—r~(to)][r~(t) —r~(to)] ) whose evaluation we
now address. Begin by defining [3] r (t)—=I,x (t); the
motivation is to factor out the deterministic part of the
mode evolution. From Eq. (51) the dynamics of xz are
easily obtained:

Xp

Tp
(54)

These are the dynamics of an oscillator, of natural fre-
quency ~, additively perturbed by a random force multi-

plying an "envelope" of period 2m. /co. When this period
is very small compared to ~ the oscillator is unable to
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respond to the systematic part of the time dependence of
I, 'f„and is affected by only the time average, i.e., a new

effective 5-correlated random force when coarse grained
over the time scale 1/co. In order to explicitly demon-
strate this, we first solve Eq. (54) for large times (relative
to the instant at which the flow is "switched on"),

x„(t)=I dt'e "I,, 'f (t') . (55)

Note that any initial state is forgotten after a time of or-
der ~, in contrast to the zeroth mode for which keeping
track of the initial condition was essential [see Eq. (8)].
The x correlation function is thus

(x (t)x (to)) =5~ ~e
—

(, I —~0)/~ P

X f dt'e 1 '(I ') (56)

where the random force correlation Eq. (52) was used.
For those modes such that ~ ))1/~, the exponential fac-
tor in the integrand in Eq. (56) decays much more slowly
than the 1, '(I, ') factor which can thus to a good ap-
proximation be replaced by its time average. Using Eq.
(13) this leads to

=E e
&p —(t—t )/~

(r (t)r (to)) =I E I, e ' ', p ((po —' ——'o
g

Here E is the enhancement matrix which characterized
the center-of-gravity Aow dynamics and

COZEN
= 1

( )1/2
(58)

where ~o is the longest relaxation time of the Rouse
chain. The mode p=p is that mode whose relaxation
time just matches the period of the Aow. It defines the "co
blob" of Ref. [3], namely, a collection of s,„-X/p„chain
units whose relaxation time equals m '. Portions of the
polymer which are large compared to this blob deform
affinely in the fiow without slip as if they were passive
Auid elements, their relaxation rates being too small to
respond to the changing field (see Fig. 5). Corresponding-
ly, small p modes relative to p also deform affinely; Eq.
(57) exhibits an affine form since y, y, =I, Iyoyo]1, is the
evolution of a Auid element y, in the pure velocity-
gradient field, i.e., 1, I ]I, is the affine operator. This
operator acts on an enhanced "reference" Auctuation in
the mode extension as represented by the mode dyad tak-
en at times equal to integral multiples of the Aow period
when (rr) =E(r /g). This enhancement is the long-
time effect of the flow.

Now recall that the original specification of the Aow
gradient field included the vanishing of its time average

[see Eq. (3)]. This was required in order that the center
of gravity D exist. The derivation of Eq. (57) in fact
remains valid provided this time average is less the Rouse
chain relaxation frequency I/7p (a somewhat milder re-
striction). If this condition were not to be satisfied, then
there would exist p (p modes such that Q, )~ '. For
such modes the integrand in Eq. (56) would, in the case of
a "generic" Aow matrix A with a nonzero symmetric part
(see Appendix A), suffer net exponential growth in time
(the exponential mode decay being insufficient to beat the
exponential ffow growth multiplying its oscillatory part)
and the (xx) correlation function would not exist. Phys-
ically this means that such modes "run away, " i.e., con-
tinue to grow without bound as does the chain size [3]. A
small (relative to 1/ro) but finite time average yields small
corrections to Eq. (57). In the special case where the ei-
genvalues of 3 all vanish (case 1 in Appendix A) the
correlation function still exists since the effect of the flow
terms in the integrand in Eq. (56) is not exponential but
polynomial. Thus the exponential mode decay still wins.
Shear Aow is an important example of this type.

The x correlation function for small p, Eq. (57), is of
the form of the correlation function for the pth Rouse
mode in the absence of fiow, namely,
(r /g)expI —(t to)/r—), but with an enhanced and ten-
sorial Auctuation. Just as the fluctuations in the center-
of-gravity displacement are enhanced by the Aow, D ~D,
so the mode Auctuations are identically enhanced by the
"factor" E. As for the center of gravity the Aow induces
inequality in the diagonal elements of the Auctuation ten-
sor as well as off-diagonal correlations.

It is instructive to compare the Auctuation in center-
of-gravity displacement, 21, I D(t —to ) ] 1, , Eq. (16), with
the mode correlation which from Eq. (57) is given by
( rz ( t )r~ ( t 0 ) ) =I, [XD w exp [ —( t —t 0 ) /r ] ] 1, . The

operator 1, I ]I, appears in the former, I, [ ]I,
in the latter. The center of gravity loses all memory of
the state of the Aow at to; on the contrary, a mode never
loses such memory. This derives from the fact that the
steady-state distribution for each mode is time dependent
(periodic) so that any correlation relative to the state of
the mode at some reference time to depends on the state
of the Aow at that time.

The essence of the Aow problem is the time dependence
induced in the probability distribution for r (t); we have
now established that the dynamics of x (t) (for small p)
are the underlying stationary process. According to Eq.
(57) the mean-square amplitude (and indeed the probabili-
ty distribution) is independent of time and the two-time
correlation depends only on the difference, i.e., time
translational invariance is recovered for this process.
Moreover, Eq. (S7) implies that (x (t)x (to) ) is a sym-

metric matrix [since D is symmetric —see comments fol-
lowing Eq. (15)], i.e., the properties of a reversible process
are recovered. These essential properties of the statistics
of xz enable us to express the desired mode displacement
correlation function in the most rational manner as fol-
lows. First we separate out the deterministic part of the
evolution of r, which is given by (recall that I,I, is

0

the deterministic propagator)



47 NONLINEAR FLUCTUATION EFFECTS IN DILUTE POLYMER. . . 2627

& [r (t) —r (to)][r (t) r—(to)])""=&(I,I, ' I—)r (to)(1,I, ' I)—r (to))

=(r, —r, )&x, (t )x (t ))(r, —r, )'. (59)

Thus

& [rp(t) rp—(to)][rp(t) r—p(to)]) =
& [1,x (t) —I, x (to)][x (t)I, —x (to)I, ])

=(r, —I, )&x,(t)x, (t))(r, —r, )'

+r, &x, (t)x, (t))r,'+r, &x, (t)x, (t))r,'
—r, &x, (t)x„(t,))r,' —r, &x,(t, )x,(t))r,', p &p. , (60)

where we have added and subtracted the deterministic part, Eq. (59), and the time independence of & x (t)x (t) ) has led
to the cancellation of four terms above. Using the symmetricity property &x„(t)x (to)) =&x (to)x (t)) we have

& [rp(t) —r p(t 0)][r„(t)—rp(to)]) =(I,—1, )&x (t)x (t))(l, —1, )

+ ,' I r, & [x,(t) —x, (t, )][x,(t) —x, (t, )] )r,' ]

+ -,
'

I r, & [x, ( t) —x, ( t, ) ][x ( t) —x ( t )] )I, I , p &p„ . (61)

This is the desired form best elucidating the various physical effects for small p modes. In Appendix B it is demonstrat-
ed that for long times those modes corresponding to scales within the "co blob, " i.e., p )p„, have negligible effect on the
chain unit displacement d(s, to, t ); that is, we may use the above small p form in Eq. (53) as if it were appropriate to all
p, to within a small correction factor of order [co(t —to)] '~ . Now all terms in Eq. (61) are quadratic in x and so, via
Eq. (57), are equal to the corresponding expressions for a Rouse mode without flow (for which E is replaced by I) multi-
plied by the "enhancement operator" E. Therefore on substituting the first term on the right-hand side of Eq. (61) into
Eq. (53), the &x (t)x„(t)) part will yield E operating on the equilibrium value of &u(s, t )u(s, t) ), as may be seen by
squaring u in Eq. (50). Similarly, the & [x„(t)—x„(to)][x„(t)—x (to)]) factors in Eq. (61) will yield Dgo operating on
the equilibrium value of the displacement correlation function for a chain unit (the center-of-gravity motion subtracted
off). Thus for large times t —to ))co

' we have

&d(s, t, t)d(s, t, t)) =
& [R (t) —R (t )][R (t) —R (t )])+(I,—I', )E&u(s, t)u(s, t))'q(I, —I, )

+[r,E r,']s& [u(s, t) —u(s, t, )][u(s, t) —u(s, t )])'q, (62)

where superscript S denotes the symmetric part. & u(s, t )u(s, t ) ) q denotes the well-known equilibrium (no flow) corre-
lation of the position of the sth unit relative to the center of gravity:

2 P
2 P~s

& u(s, t )u(s, t ) )' =—g cos & x (t)x (t) )'"
N

p =1

2
$ $1+—I

N 3
(63)

We have used &xx)'q=ND~ =N(I/gz)(gN /vr p )=IN /vr p and the identity QP=i (1/p )cos (p~s/N)
=(vr /2)[(s/N) —(s/N)+ —,

' ]. The equilibrium u displacement correlation function is

4 p —oo

& [u(s, t) —u(s, to)][u(s, t) —u(s, to)])'"=—g cos &x (t)x (t))'q(1 —e
p =1

—(t —t ) /7-0 p)

4N P+ 2 pcs 1 —(& —t )l~P)I . (64)

For short times (relative to the relaxation time of the section of polymer joining the sth segment to the nearest chain
end) the sum can be approximated by an integral and gives the well-known (t —to)'~ dependence for the mean-square
displacement [18]. For such small times then our final result reads
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(d(s, to, t)d(s, to, t ) ) = ( [RG(t) —RG(to)][RG(t) —RG(to)] )
2

1/2

s j+
N 3

tp
+[IrtE I, ] C co ((t —tp ((7p, (65)

where ro:gX—/~ is the longest relaxation time of the
Rouse chain and C is a constant equal to 2/(~)' for an
inner unit and twice this value for end units, s =0 or X.

The physics of the time development of the displace-
ment of a chain unit is now very clear from Eq. (65). The
curly brackets in the second and third terms enclose equi-
librium (no-flow) quantities. In the second term the equi-
librium quantity is operated on by the "enhancement
operator" E, giving the t =0 correlation of the position of
the sth chain unit relative to the center of gravity. In
steady state this latter quantity is expanded by the Aow.
The outer I,—I, operators represent the effect of the

Aow as it varies over one period; the expanded chain at
r =0 suffers affine periodic deformation. The physics of
this term is rather like that of an elastic band; the time-
averaged size of the band is enhanced by the Aow, and in
addition the band is periodically elongated and
compressed in the continuing Aow field. This term then
corresponds to the motion of the material element at a
position s on the band in the frame of reference embed-
ded in the center of gravity of the band. Notice that in
the absence of Aow this term disappears entirely.

The last term in Eq. (65) describes the effect of certain
Auctuations missing from the "elastic band" picture and
embodies what we mean by the short-time enhanced
diffusivity of a monomer. Now the length of the elastic
band represents (enhanced and periodic) spatial fluctua-
tions in the configuration of the entire polymer, i.e., a
property of the instantaneous chain probability distribu-
tion; the Aow enhances the length of the band relative to
the no-Aow length (equilibrium rms size of the polymer)
and moreover modulates it periodically. In contrast this
last term describes a Auctuation in the position of a unit
relative to its initial position which continues to grow in
time beyond a scale co '. The no-Aow displacement in
the curly brackets is enhanced by the same tensorial fac-
tor as in the previous term. The outer operators again
effect the continuing deformation of the Aow. Noticeable
is the fact that the initial time tp is never forgotten by
this correlation function; the Auctuation in the displace-
ment of a chain unit depends both on the Auctuation in
the destination position (at t) and in the initial position (at
to). These depend on the state of the chain at the times t
and tp, respectively, i.e., on the Auctuations in monomer
positions at those times. This state is periodic.

Define this growing Auctuation term to be
TC[(t —to)/g]'», where T=lr, E I, , such that T=I
without Aow. Then in the specific case of sinusoidal
elongational (low Eq. (33) implies that
T„=exp [A(sincot —sincoto ) ] ( exp [

—2A sinu J ) „. For
sinusoidal shear [see Eq. (36)] T„=T „=(A, /2)(singlet
+sincoro), T, = I+X (1/2 +sinter sine@to), T»= T„=1,
and all other elements vanish.

In summary, the diffusion of a single chain unit (and
the size of the chain as we will see in the next section) are
enhanced by the same factor as that for the center of
gravity studied in the preceding section where it was
demonstrated that trD exceeds its no-Aow value. Thus
we may conclude that the rms distance diffused by a
chain unit (and the rms size of the polymer chain) are
greater in the presence of a periodic Aow. The large-
time-scale ( t —to ) I /(tt) and large-length-scale (com-
pared to the co blob size) behavior is characterized by
pseudoequilibrium forms. Large polymer scales move
affinely with the Aow and (see Ref. [3] and Sec. III) are
characterized by random walk statistics just as in equilib-
rium, albeit with an enhanced step length and cross
correlations between components of each step. The
diffusive fluctuations superimposed on this affine deter-
ministic motion grow for large times just as in equilibri-
um, albeit with an enhanced diffusivity. The enhance-
ments of step length and diffusivity are identical.

IV. POLYMER SCATTERING FUNCTIONS

The dynamical effects described in the preceding sec-
tion are accessible in scattering experiments on dilute
Aowing polymer solutions. In this section the measured
scattering functions are calculated, assuming sufficient di-
lution that different polymer chains sum identical contri-
butions incoherently. The total signal therefore equals
the number of chains in the scattering region times the
single chain scattering function.

In an incoherent experiment, a single monomer per
chain is labeled:

(66)

Splitting r into its center-of-gravity and internal mode
parts as before, r:—RG+u, one obtains

ik (RG(t) —RG(to)+u(s, t) —u(s, to)]
)sincoh

ik [RG(t) —R&(to ) ]-k, —(1/2)k ( [u(s, t ) —u(s, to ) ][u(s, t ) —u(s, to ) ] ) k
(67)
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Figures 3 and 4 depict S;„„hfor the same Aows as Figs.
1 and 2, respectively, for the center of gravity. The
relevant parameter values are rvrf" =20 and A, = 1. As for
the center of gravity, the form in Eq. (69) is valid only on
time scales large compared to the How period, i.e.,
co~k' &)1. Similar remarks as in the case of the SG

curves apply here, with the important difference that the
decay is now the exponential of a square root of the time
difference.

Next we consider experiments in which every chain
unit is labeled, in which case the coherent scattering
function is measured:

S&S

—(( /2)k. ( [u(s+s', t ) —u(s', to)][u(s+s', t )
—u(s', to)] ) k

(71)

The dyad in the exponent is conveniently expressed in terms of the Fourier modes I r ] as

( [u(s+s', t )
—u(s', to)][u(s+s', t )

—u(s', to)] )

r (t)cos —r (to)cos
pir(s+s') prrs'

x
pir(s+s') P ITSr (t)cosp N

—r (r )cos ), (72)

where the mutual independence of the modes was used. We demonstrate in Appendix B that when t —t0 &)co ', s &)s
all modes may be replaced with the small p affine form [r =I,x with x given by Eq. (57)] with small corrections. Ap-
proximating thus and exploiting the equilibrium nature of the x dynamics [namely, the time translational invariance
and symmetry properties of the ( x (t)x (to) ) correlation function as discussed in Sec. II] one obtains

( [u(s+s', t) —u(s', to)][u(s+s', t) —u(s', to)])

rp 2 p~(s+s')=2Y I EI . cos +I EI cos'
N

p =1

7 I I—Ir Zr'+r Er'] ' cosp
—

(, t —t )/7-0 p

r, =r,
0

:2I EI
0 to

p =1

pir(s+s') p&rs'
Cos COS

2
per(s+s'} pirs' —(t —to)r~+2 cos cos

N
1 —e (73)

The last expression in Eq. (73) is the form of the correlation function at the relevant times which are dictated by the r&

functions of SG. This expression is simply I, E I, operating on the no-How value which was first evaluated by de
0 0

Gennes [48]. Evidently the first term in the no-liow part is the equilibrium mean-square separation between chain units
(distant s from one another along the backbone) and equals s. Considering times t to ((ro we th—us have

([u(s+s', t) —u(s', t, )][u(s+s', t) —u(s', t, )]), , =r, Z r,' ~s~+
2

—t —ro 0 0 'rr

tp
1/2

s g
4(t t,)—(74)

where the curly brackets enclose de Gennes' equilibrium
expression in which [48] g is a dimensionless function of
the dimensionless parameter s g/( t —

to ) and
g(u):—f,"dx e "" /x such that g(0)=1 and g(~)=0.
(The parameters 8' and o in de Gennes' formulas are
identified as W= 1/g and o. =3.) Note that two limits
are correctly recovered. First, when s =0 one obtains the
chain unit displacement correlation function Eq. (65)
evaluated at I,=I, and with the constant C as ap-

propriate to an internal chain unit (when we integrate
below over all units the chain ends will have negligible
weighting for large N). Secondly, when t =to the expres-
sion yields the steady-state equal time separation between
two chain units separated by s along the backbone as cal-

S„„(k,t ) = 5(k —k(t)}S„„(k,t(), t() )0
(2ir )

V

X j dv e ()['+''r+ )s' ']
0

where

(75)

I

culated in Ref. [3]. This latter quantity is just (one-third
of) the equilibrium separation s multiplying the liow
operator I, E I, . Since the correlation function decays

0 0

as a function of s on a scale far less than N, we can ex-
press the sum in Eq. (71) as an integral,

g, +,, ~2N Jo"ds, where s denotes a positive separation
between two chain units. Changing the integration vari-
able to v —=s [ g/[4( t —

to ) ] ]
' one obtains
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1/2

(76)
k

and the equal time coherent scattering function is

k[1, EI, ]k
(77)

The final expression is identical to the corresponding ex-
pression without flow, with two important modifications.
Analogously to the no-flow expression, S„h(k, t )/
S h(k tp tp ) depends on k via only a single parameter,
namely, 0. However, the flow significantly modifies the
form of 0 which now depends on the enhancement tensor
E and the initial time of observation tp' 7 k is replaced by
~~k', Eq. (70). As for the coherent case, the flow also frac-
tures the smooth curve into a set of 5 functions whose en-
velope is smooth.

The equal time scattering function, Eq. (77), is the
Fourier transform of the chain density at tp and thus
directly reflects the instantaneous chain conformation.
Let us use Eq. (74) to obtain an expression for the most
basic conformational property, the mean size of a poly-
mer segment comprising s units. When s))s„, we can
use Eq. (74) in the special case t=tp. Calling the spatial
separation between two chain units R(s, t)=—u(s+s', t)

u(s', t ), we ha—ve (s )0)

(R(s, t)R(s, t)) =I,E I,s, (78)

where s' is taken far from chain ends (and so drops out)
and we have used g( ~ ) =0 in Eq. (74). This is the gen-
eralization to arbitrary flow of the derivation in Ref. [3]
of the trace of the above quantity in the cases of shear
and extensional flow. It describes affine deformation of
the polymer chain in the flow, i.e., a time variation which
is the same as that of a fluid element. As anticipated at
the end of the preceding section, the size of a blob of s
units is the random walk result but with an enhancement
factor. At t=0 this factor equals trE) 1, and at other
times this enhancement is further acted on by the affine
flow operator I, I

.
I I, . Thus on long scales we recov-

er equilibriumlike statistics, i.e., a generalized random
walk each step of which obeys modified statistics with
nonvanishing correlations between different Cartesian
components (the step correlation matrix being I,E I,).
The end-to-end distance of this random walk is always
greater than that in equilibrium regardless of the particu-
lar form of the flow.

As remarked in the Introduction, Lindner and
Oberthur [42,43] have measured the equal time coherent
scattering function S„h for dilute polymer solutions in
constant shear flows of strengths extending into the non-
linear region, Qzp ~ l. Anisotropy of the polymer
configuration was observed, chains being stretched in a
certain direction (whose orientation is shear dependent)
but not in other directions. Since [42,43] a polymer
"tumbles" of order one time per relaxation time in the
presence of constant shear, we may, very crudely speak-

ing, compare the constant shear flows used in these ex-
periments with the situations studied here by substituting
co 1 /vp X Q7 p. These authors deduced, using their
data in conjunction with the light-scattering data of Cot-
trell, Merill, and Smith [41], that the polymer coil
volume, calculated on the basis of the end-to-end vector,
was reduced by the flow. This is reminiscent, of course,
of the situation in the present work: in proving that
detE ~ 1 [Eq. (27)] we have proved that the coil volume is
reduced by our oscillatory flow. The observed chain
stretching and coil volume reduction match (to within
constant prefactors) our results if one uses the appropri-
ate value for A, . At large wave vectors, corresponding to
small scales within the polymer, it was observed [42,43]
that the perturbation away from equilibrium was much
reduced compared with the large scales. Indeed, in the
following section such small scales are considered and we
will see that scales within the so-called "0blob" are very
close to equilibrium in our time-dependent flows.

V. SMALL-SCALE BEHAVIOR

Up to this point we have concentrated on the long-
wavelength behavior in time and space where the behav-
ior is "affine. " These scales are more easily accessed ex-
perimentally and possess, moreover, more universal
features than the small scales (see below). In this section
we will investigate both equal time quantities (the separa-
tion between two nearby chain units) and the displace-
ment of a single chain unit for small times. By "nearby"
and "small" here we mean scales within the "co blob" size
and less than the blob relaxation time 1/co. Recall [see
Eq. (58)] that the definition of this "blob" was that its re-
laxation time just matches the flow period. Let us define
in a similar manner the "0, blob" to be a portion of poly-
mer containing s& units with relaxation time equal to
1/A:

(79)

where r, —:gs /~ denotes the relaxation time of a por-
tion of polymer containing s units. Now w, itself defines a
"1/~, blob. " Then if we seek the behavior on polymer
scales s or time scales t —t p, the situation is fully charac-
terized by the relative positions of the 0, co, ~, , and
(t —tp) blobs as illustrated in Fig. 5. We are assuming
the ~p

' blob is far outside any of these, i.e., the Rouse
time is effectively infinite.

Now the only requirement for validity of our analysis
of large-scale behavior was that the scales involved be
"outside" the co blob; the size of 0 is not a criterion in
this respect. Though the results depended on 0, since
they turned out to be governed by A, —:A/co, their validity
does not. For small scales the story is very different. De-
pending on whether the 0 blob lies within or outside the
co blob we will see that the behavior is different, i.e., the
value of A, is the determinant of the nature of the behav-
ior. We now consider the small-scale behavior for the
three cases illustrated schematically in Fig. 5, namely,
k = 1, A, « 1, and A, ))1.
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A. A, of order unity

For short times and scales this situation is depicted in
Fig. 5(b), where the 0 blob and co blob are shown coin-

cident (in an order-of-magnitude sense). Consider first
the spatial separation at time t between two points on the
polymer which are s( ((s&,s„) chain units apart. The
relative position vector is conveniently expressed in terms
of the real-space Green's function (i.e., s):

g f n(t ) g f n(g ) l exP[ vq/8(t t )]
( R(s, t) R(s, t)) =— dt'e t' e

[2~(t t—')g ']'"

l —exp( —d'or, !8u )
dp e rut —tt e cc)t lt

VQ) 0 &2~u
2r, —=s g, (80)

FIG. 5. (a) Each blob defines a scale within the polymer whose relaxation rate equals its frequency label. Polymer modes are excit-
ed when the 0 blob and co blob lie within the ~o

' blob. The shaded region outside the co blob represents all those scales which
respond affinely to the Aow; their relaxation times are too great to respond to changes in the Aow field (which occur on a time scale
—1/co). The band outside the cu blob (s )5 ) is always affine regardless of the value of A,:—Q/co, i.e., regardless of the relative posi-
tions of the Q blob and co blob. (b) The physical behavior on a certain polymer scale involving -s chain units, or on a certain time
scale t —to, is characterized by the relative positions of the ~ blob, 0 blob, ~, ' blob, and (t —to) ' blob. Illustrated here is the case
when A. =O(1) (so the 0 blob and cu blob coincide in an order-of-magnitude sense) and the scales of interest lie in the inner gray re-
gion, i.e., s &s,sz. For X=0(1)all scales in this gray band are quasistatic, having static and dynamic behavior close to that in equi-
librium. The shaded band is affine. (c) The linear regime, k « 1. The shaded and gray bands are affine and quasistatic, respectively.
The position of the 0 blob relative to the ro blob is in fact irrelevant. (d) The strongly nonlinear regime, A, &) 1. Equilibrium behav-
ior applies only for scales exponentially smaller than the 0 blob (the gray region). The band between the gray band and the shaded
affine band is a complex crossover region.
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where we have used A(t) =Ag(cot ). The above expression can be obtained from the Rouse equation, Eq. (46), by substi-
tuting r(s, t ):1—,x(s, t ) and solving the resultant equation for x [which is another Rouse equation with a modified ran-
dom force f(t)~ I, f(t) and with no fiow term] in terms of the s-space Rouse Green s function G. This gives an ex-
pression for ( R(s, t )R(s, t ) ) involving the expression in square brackets above operating on I, 'I, ' on which

I, I, acts from the outside since r =I,x. Bringing these outer operators inside the integrand one obtains the above
expression. In the cases of pure extensional and shear fiows, this calculation was explicitly performed in Ref. [3]; the
reader is referred there for details.

Now consider the case sn &s (the aim being to leave our results adaptable to the case of A, ))1 to be treated in the

next section). Then the smallest scales are always defined by s «sn, ' for these scales it is in fact easier to deal with the

modes, so we rewrite Eq. (80)

(R(s, t) R(s, t)) = Re f dq(l —e'&) J dX exp PPJ
'

g exp p p f g
S S

(81)

Let us split up the q integral as

( )1/2 ]1/2

f dq=f '
dq+f '

dq+ f", dq—:f+f+J
S S

The dominant part is f 3, in which fdX has width bX- I/q «1 (s «so) so the matrix exponentials can be expand-
ed. The leading term from fdX is f dX exp[ —2q X] =1/2q which gives s (the equilibrium result) after integrating
over q plus relative errors of order (co~, )' and A, (Ar, )' . Then both f, and f ~ give relative corrections of order
I,E I, (cur, )'~ (in f &

the affine result applies and one preaverages the oscillatory term). Thus

(R(s, t)R(s, t)) =sI[1+O(A(II&,)',1,E I, (cur, )' )], col„Ar, « I . (82)

This result tells us that on small scales equilibrium statistics are recovered to within small corrections. On such scales
the dimensionless Aow strength A~, is weak; the strength is the appropriate parameter for "quasistatic" scales, namely,
polymer scales which have sufficient time to relax before the Aow has substantially changed. This should be compared
with the a%ne scales which deform with the Quid; there A, is the appropriate measure of the effect of the Aow. When
X=O(1), this means the scales on which equilibrium statistics are recovered are identified with the II blob [see Fig.
5(b)].

Now we consider the displacement of a chain unit for times much less than the Aow period. Now as for the affine
scales we must carefully separate off the center of gravity and "elastic band" contributions to the motion; these are
eff'ectively infinite (i.e., of the order of the polymer size and the size of the entire system) even at small times. Consider
the basic expression for the displacement correlation function, Eq. (53):

(d(s, to, t)d(s, to, t)) =([R (Gt)
—RG(to)][RG(t) —RG(to)])+ — g cos ([r (t) r(to)][r (t) —r—(to)]) .

(83)

Writing the result for the mode correlation function, Eq. (56), in the form

(r (t)r (to) ) = I, Yf1, e

(84)

27-

0

we can express the mode average appearing in Eq. (83) as

( [r (t) —r (to)][r (t) —r (to)]) =I, Y, I, +I, Y~ I, —[I,Y, I, +I, Y,"I, ]e (85)

Now the deterministic part of the evolution (i.e., the evolution without random force) is given in Eq. (59). Substituting
for the mode correlations from Eq. (84) we have

([r (t) —r (to)][r (t) —r (to)])""=(I,I, ' —1)I, Y, I, (I,I, ' —1) . (86)

Thus the random part of the evolution is given by

=I, ( Y~—Y~ )I, +2[1,Y~ I, ] (1 —e

([r (t) —r (to)][r (t) —r (to)])""—:([r (t) —r (to)][r (t) —r (to)])—([r (t) —r (to)][r (t) —r (to)]) "
—(r —t )/~0 p) (87)
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As we will see in a moment, this random part is a "good"
local quantity, in that it does not depend on the size of
the polymer which diverges as X~ oo; all such divergent
N dependence occurs in the deterministic and center-of-
gravity terms.

In Sec. III we considered affine modes for which we
can preaverage the time-dependent Aow operators in the
integral defining Yf, leading to YtP =Esp /g
=E(r (t)r (t))' independent of time. Then Eq. (87)
reduces to

7
[r, YP r,']'= r, r ' Il+W'n(t, )r, +

Nwp, Qwp « 1 (89)

r, ( Yp —Yp )r,'= '
[ I+ W 'n(t)r, ]

Using Eq. (88) the first term appearing on the right-hand
side of Eq. (87) approximates

( )""=2[Ir,E I T ]~(r,(t)r (t) )'q

X Il —exp[ (t ——t Q) /r]]

which is just the equilibrium result operated on by
[1,E I, ] . Summing over modes then led to the equilib-

rium result times this same operator, Eq. (65).
For "quasistatic" modes, since co~ &&1 we can expand

the I factors in the u integrand defining Ytp in Eq. (84) for
small u~; this is so because the integrand has width
b, u —1 so ur -r which is much less than the time I/cQ
in which I, „, changes. Thus we expand I, '„

P P= r —ur, r + . = r (1 + u~n(t)r,
+ ). For the correction term to be small, note that
we need A~ (& 1. This point will be discussed further in
the next section. Expanding thus for I, „, in Eq. (84)

P
one finds to leading order

—r, r ' [1+~ 'n(t, )r, ](r )'r,',
comp) Qwp « 1 (90)

So far we have not exploited the smallness of t —t0.
When n(t —tQ), co(t —tQ) ((1 we can further expand the
deterministic propagator according to Eq. (43). Using
this in Eqs. (89) and (90) yields

[r, Yp r,']'= ' [1+a 'n(t, )(t t, )+~ 'n—(t, )r, ],

1-, (Yt' Yf' )—I, = '
[
—2n(t, )(t —t, )],
n(t —tQ), cQ(t —t, ) «1 . (91)

We have used the fact that n(t ) and n(tQ) are the same
as one another to within a higher-order term:

r, [n(t) —n(t, ) ]
7

Ytp=I, '
I 1+A n(t)r + ](I, ')

cow )Qw (&1

Thus

(88)

=nr [g( Cot Q) +Co(t —tQ)g'(CotQ) —g(CotQ)]

=nrpco(t tQ )g (cotQ )

The above results enable us to express the random part of
the mode evolution, Eq. (87), as

2

([r (t) —r (tQ)][r„(t) r(tQ)])"'—"=2 [1—e p]+23 n(tQ) [1—e p]

(92)s ~~ —['—'o—2A n(t, )(t —t, ) e ' ', coq-, nr„n(t tQ), cQ(t t, ) «—1 . —

The first term above is just the result one obtains when
there is no Aow. The other two terms are higher order.
In the following we will assume nr ) cow (i.e., A, ) 1). If
we assume we can use the above form for all modes, in-
cluding a%ne modes, then we deduce that the random
part of the correlation function, after mode summation,
just gives the equilibrium result C[(t tQ)/g]' —plus
correctiori, :,. Consider first the correction term arising
from using the equilibrium leading term belonging to the
above quasistatic form in the band 0&q &q where it
does not actually apply (we convert to q

—=prr/K for con-
venience). This is of order

[I,E I, ] f [1 exp I
—(—t —

tQ )/rq ] ]
0

1/2
(t t,)—[r,E r,']'[~(t —t, )]'" (93)

I

where we used rq =g/q and we expanded the exponen-
tial since r ))(t—tQ) in the domain of integration for
small co(t —tQ). Therefore the correction relative to the
leading-order term [(t —tQ)/g]'~ is of order
[co( t —t Q ) ]

' (( 1. Another correction arises from
neglecting the affine modes' contribution and is of order

f Irq/g] [1—exp[ —(t tQ)/r ]]—
=[(t—tQ)/g]q =[(t tQ)lg](Cog)'~', —

Note that the elements of the I, factors are all of order
unity in the case k= l. One sees from Eq. (93) that this
correction is then of the same order as that we considered
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first, i.e., of order [co(t to—)]' « 1.
Now consider the correction due to the A(t t—o)r /g term in Eq. (92). The latter of these two contributes

[g/( & ~o )]
-Q(t t—o)f q exp[ q—(t to—)/g] =Q(t t—o)f q =Q(t to—)/qn

&n &n

(the exponential selects the band qn & q & [g/(t to )—]'~ ) which gives a correction relative to the no-flow result of order
[A(t to)—]' which is of order [A(t to—)]'~ .

Lastly consider the Ar /g term in Eq. (92) which after mode summation gives

Qg f (1/q )[ I —exp[ q(t——to)/g]] =Qg[(t to)/—g] f [1—exp( —u )]/u
[A(t —to)]'

This last integral is dominated by the lower limit which is much less than unity, giving —1/[Il(t to)] ~ —. The net
contribution is thus [(t —to)/g]'~ $1(t to)/[—A(t —to))'~ and so the relative correction is of order A[A(t —to)]'

Having determined the effect of the correction terms, Eq. (92) in Eq. (83) gives

(d(s, to, t )d(s, to, t ) ) = ( [RG(t) —Rc., (to) ][RG(t)—RG(to)] )

+ —g cos' ([r (t) r(t —o)][r~(t)—r~(to)]) "
p=1

1/2
to+ C [1+0(Af~(t —t, )]'")j, co(t t, ) «—1, A, =O(l), (94)

where the deterministic part of the mode evolution is given in Eq. (86). Using the small-time form in Eq. (43) one has

([r (t) —r (t, )][r (t) —r (t, )])"'=[AQ(t, )(t t, )+O(Q—~(t —to)', [A(t t, )]')]I,—1; 1,
X [ 3 TA(t, )(t t, )+O(Qco—(t t, )', [A(t t,—)]')—]

=[A(t —t, )]'A (r„(t,)r (t, )) A r

X [I+O(A(t to), co(t ——to))], co(t to), A.(t t—o) «1, — (95)

where we used Eq. (84) to obtain the equal time mode
correlation. Now if we used the affine mode form, Eq.
(57), which is I,E I, times the equilibrium value, then
from Eqs. (62) and (63) the mode summation would pro-
duce I~,E I, times the correlation of the position of the
sth chain unit relative to the center of gravity for a chain
in equilibrium, Eq. (63). This of course is precisely what
we obtained for long times. For these small times we
must check that this factor is still dominated by the affine
modes. To estimate the quasistatic modes' contribution
for these small times, the factor I, Y~ I, can be expand-

ed as in Eq. (89) which on summing over modes gives a
contribution bounded by (set the cosine to unity)J" (r /g) —(Ag)' from the r leading term in the ex-

pansion. In fact the correction term of order Qw /g con-
tributes by an amount of the same order as does the
correction term from the summation of the affine mode
form in the quasistatic band (-Ef ~ /g). But these

corrections should be compared to the affine result which
is of order X; the relative contribution is O(Aro)' « 1.
The final result therefore reads

(d(s, to, t )d(s, to, t ) ) = ( [RG(t) —RG(to) ][RG(t)—RG(to)] )
2

s s a to+— + 'C
N N 3

'1/2 '

cur„A,(t t, ), co(t —t, ) «—1, A, =O(1), (96)

with relative corrections of the order of ri)zo, Q(t —to),
and co(t —to). We see that the fluctuation term is as in
equilibrium, characterized by the unenhanced diffusivity.
Thus in this sense for small times the chain unit displace-
ment is as without Aow. However, there is an important
Aow effect which survives even at these small times; it is

I

very important that one does not discard the [Q(t —to)]'
term as being of higher order, since it multiplies an
"infinite" term of order N; A similar issue arose when we
considered the small-time center-of-gravity dynamics Eq.
(45) where a second-order quantity is multiplied by an
"infinite" initial position. The "infinite" term in Eq. (96)
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is the "elastic band" term; the entire polymer is stretched
and undergoes periodic elongation and contraction from
the Aow which moves the sth chain unit by amounts of
the order of the chain size.

B. The linear regime: A, &(1

Here the 0 blob lies well outside the ~ blob as shown
in Fig. 5(c); clearly linearity applies on all scales since
small X implies small aSne deformation of the polymer

I

on long scales which in turn means the small scales can-
not be strongly deformed relative to equilibrium. There-
fore all quantities will be close to equilibrium and we seek
the form of leading-order corrections. In addition to
linear small-scale forms, in this section we will include
some first-order truncations of affine results in order to
present a complete picture of the linear regime.

Consider first the equal time relative position vector of
two points on the chain separated by s units from each
other. Now from the expression in Eq. (80) it is clear that
for small k we can expand the matrix exponentials:

1 —exp( —co r, /8u )
(R(s, t)R(s, t)) =sI+ f du f g — +O(A)

VQ7 0 COt U +27ru
(97)

where the first term is just the equilibrium random walk result. Notice first that the square bracket term [ ] above be-
comes small when u ))cow, . Now if cow, )) 1 [i.e. , s belongs to affine scales much greater than the size of the co blob, see
Fig. 5(c)] then the [ ] factor decays very slowly relative to the integral of the g factor since the latter has period of order
unity [see Eq. (3)]. But the integral of the periodic g is also periodic since g has zero incan; therefore we may to a good
approximation replace this factor by its average over a period. Writing I ,'g = Jo'g —Jo' "g one obtains

(R(s, t)R(s, t ) ) =sI 1+A( 2 + 3 ) f g —f g(u)
0 0

=sI 1+A,(2+3 ) f g . , d'or, ))1 .
0

(98)

This result is characteristic of affine scales in that it de-
pends on A, , the degree of deformation of the chain which
on large scales moves with the Quid without relative slip.
The above result is simply the result for general A, in the
affine region, Eq. (78), expanded to leading order (i.e., the
expansion of the enhancement tensor). This refiects the
irrelevance of the value of 0, to the actual form of the re-
sult; no matter "where" the A blob is, behavior of all
scales outside the ~ blob is of the same form.

Now for small scales s which lie well inside the co blob,
cow, «1 [see Fig. 5(c)], (RR ) will be the same as for the
finite A, case, Eq. (82), since that result relied only on the

blob being inside the co blob and the Q blob; but the
latter is automatically implied by the former in the linear
regime. As remarked following Eq. (82), this is a "quasi-
static" result. Small scales have enough time to adjust to
the changing Aow field; if the Aow strength is less than

I

I

the natural restoring force of the blob of s monomers
(which is proportional to 1/r, ) then such a scale experi-
ences the Bow as if it were a time-independent one with
the instantaneous flow value. In an unchanging Aow it is
its strength which matters; A~, is the dimensionless mea-
sure of this. Note that for both the above quasistatic and
affine results there is no linear effect on the mean-square
separation which is the trace of (R(s, t)R(s, t) ); changes
in the size of the polymer are second order in X for affine
scales and second order in A~, for quasistatic scales.

Now in Sec. III we calculated the mean-square dis-
placement of a chain unit for large times relative to the
fiow period, Eq. (65). Before considering the small-time
behavior, it is helpful to specialize the result of Eq. (65) to
the linear case. Expanding that result for small A, (the
relevant parameter for "affine" scales) one immediately
finds

(d(s, to, t)d(s, to, t) ) = ([RG(t)—RG(to)][RG(t) —RG(to)])
'2

t T S s 1+X g 3 3 . N — — —+—
I,() N N 3

1/2

(99)

Notice that the "elastic band" term in Eq. (99) describing
the periodic deformation of the stretched polymer is of
second order in k but multiples a term of order N and so
must not be discarded. In fact there are other corrections

I

to the above expression of order 1 [/co(t —to)]'~ (see Ap-
pendix B) due to the error in the affine approximation it-
self.

Finally, for small times in the linear regime we can
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simply take the finite A, result Eq. (96) and expand for
small k. The result is unchanged, except for the replace-
ment in the "elastic band" term I,E I, —+1.

C. A, »1
This is a somewhat unphysical regime [see Fig. 5(d)] in

which the chain is highly extended when the absence of
finite extensibility effects in our model is crucial. Howev-
er, it is of theoretical interest and at least should be
amenable to computer experimentation.

Large A. in no ways upsets the affine calculations of
course. For the "smallest" scales, one recovers all the re-
sults for finite A, (i.e., essentially equilibrium fiuctuations
plus the "elastic band" term), but the definition of
"small" must be revised. Consider the equal time separa-
tion for small scales, Eq. (82); the criterion is that the r,
blob lie within the co blob and the 0 blob for A, =O(1).
For large k, however, the correction terms are evidently
small only when the elements of (Qr, )' I tE I, are
much less than unity. Roughly then we require

)1/2 « —const X i, « —const X 2i.
S e , s s&e (100)

q

1/2
t —to [r,Z r,']'X[n(r —r, )]'", (101)

where the exponential was expanded assuming
Q(t —to) «1. Similarly, expanding the first term on the
right-hand side of Eq. (87) for A(t —to) «1 at p =p
one obtains a correction term of the same order.

Looking back at the X=O(1) section, when A. ))1 the
dominant error term among those calculated arises in Eq.
(93): this is of order [(t —to)ig]' [I,E I, ] [co(t
—to)]'/ . In summary, for A, ))1 equilibrium forms for
chain unit displacement are recovered when times are so
small that

for equilibrium statics to prevail, where the value of the
positive constant depends on the largest positive real part
of the eigenvalues of A (for the special case of shear the A,

dependence is polynomial). For large A, this defines a
blob which is exponentially smaller than the 0 blob.
Note that the complex band of scales between this inner-
most blob and the co blob is neither of affine nor equilibri-
um character; rather it is a crossover regime [see Fig.
5(cl)].

A similar story is true for dynamics. When A, ))1 we
must consider all the correction terms evaluated in the
preceding section, but now there is an extra contribution
deriving from modes in the band between the 0 blob and

co blob [see Fig. 5(d)], namely, J~"dq ( [rz(t)
—r (to)][r (t) —r (to)])"'". Now in Eq. (87) the magni-
tudes of the elements of Y~~ are monotonic, decreasing
with increasing p [see Eq. (84)]. Thus for Xt~ in Eq. (84)
we can use the affine result at p =p„ to bound this correc-
tion. Then the second term on the right-hand side of Eq.
(87) gives a leading term of order

[~(r r ) ]
1/2 &&e

—constXA.
r r (( e

—const X2A.1
0 n

(102)

where all corrections were compared to the leading term
[(t—to)lg]' . These are time scales which for large A,

are exponentially smaller than 1/0 [see Fig. 5(d)].
The interesting physical feature peculiar to the large k

regime is the feeding down to small scales from the large
affine scales which are strongly stretched. The scale at
which equilibrium statistics are recovered, i.e., at which
the flow is a weak perturbation, is much less than the in-
verse of the first mode for which this is the case, namely,
attn (note one requires both q (q and q &q„ for "quasi-
static" to be a good label since for modes in between
these two scales "runaway" occurs). All modes q &qn
are quasistatic, being weakly perturbed by the flow which
changes slowly relative to their relaxation time scales;
however, when k)) 1 this is not true of all of the scales,
1/q, which one usually associates with that band of
modes. The usual real-space —reciprocal-space relation-
ship is upset in this strongly nonlinear regime. Loosely,
one can compare this to a situation in which a polymer
chain s ends are held apart a distance A, times the equilib-
rium rms end-to-end distance. For large A, the statistics
are linear down to a very small scale where random walk
statistics are recovered.

VI. CONCLUSIONS

In the present work the behavior of dilute solutions un-
der periodic flows has been considered. Our interest has
been in nonlinear effects resulting from interactions be-
tween the macroscopic flow and the microscopic fluctua-
tions of the solute rnolecules.

Generally, a single solute particle has internal degrees
of freedom with some longest relaxation time ro (for ex-

ample, in the case of dilute polymers ~o is the longest po-
lymer relaxation time). In Sec. II we considered fiows
whose characteristic time scales 1/co and 1/0 were both
far greater than ~o,

' the physical situation is symbolically
represented in Figs. 6(a) and 6(b). Then there is no in-

teraction between flow and internal particle time scales so
the particle is justifiably treated as pointlike, i.e., without
internal structure. This is the simple center-of-gravity
Langevin equation plus flow which was analyzed in Sec.
II and for these reasons is a good description of any di-
lute system, polymeric or not. Explicitly, the internal de-
grees of freedom are only very weakly excited since the
"~o ' blob" is far inside the co blob; this means the flow is
effectively constant for the internal degrees of freedom
whose response is quasistatic and is determined by the di-
mensionless flow strength A~o which is much less than
unity since the 0 blob is far outside the 'To blob. The
relative "position" of the co blob and the 0 blob (i.e., the
value of A, ) does not afFect this, i.e., for either of the situa-
tions in Figs. 6(a) and 6(b) the deformation of the particle
is very small, i.e., internal modes are very weakly excited.

It was found that in flows with vanishing time-
averaged velocity gradient the fluctuations in particle po-
sitions grow for large times as in equilibrium but with the
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(a)

FIG. 6. (a) The analysis of Sec. II is valid when the flow blobs
lie well outside the 7O blob; this guarantees that internal modes
are unexcited regardless of the value of A, . Here the case k)) 1

is illustrated. Scales outside the co blob are affine just as for the
polymer situations of Fig. 5. A new regime prevails when flow
blobs "enter" the longest relaxation wo

' blob. This is the situa-
tion dealt with in Fig. 5. (b) A, « 1.

diffusivity D replaced by D together with a periodic Aow
deformation via the operator I, [

. )1, . These two
effects are very different; the latter is an instantaneous
pure Aow effect, the former an accumulated long-time
Aow-Auctuation interactive effect. This means that the
growth in the size of a cloud of particles is anisotropic
and enhanced (relative to no flow) by such periodic flows
as described by the enhancement tensor E of Eq. (13).
Roughly, one can say that on time scales less than 1/0
diffusion wins over the Aow; on longer time scales the
resultant diffusive "cloud" gets stretched by the Aow.
This stretching continues for a time —1/co; the net
stretching thus produces a displacement (one step) which
depends on A~ '=A, . After 1/co the Aow changes and
the process repeats itself in an independent way. The end
result is a random walk of steps each lasting —1/co and
of size which is enhanced by an amount E. This is
equivalent to an enhanced diffusivity D which depends
only on k; this is an entirely nonlinear eff'ect (the linear
term in A. vanishes). Thus the flow need not be "strong"
in any sense to observe enhancement effects; all that is
needed is a large net strain in one cycle as parametrized
by A, . The microscopic-macroscopic interaction gives rise
to a pseudoequilibrium behavior in which position Auc-

tuations grow diffusively as without Aow but with a
modified diffusivity which is accessible in straightforward
experiments.

Superposed on these Auctuations in particle position
(which determine how a cloud disperses) is the pure
deterministic affine displacement (which is the true dis-
placement for a fluid element). In order of magnitude
this contribution equals the size of the system and de-
pends multiplicatively on the initial macroscopic posi-
tion. As far as the microscopic analysis is concerned this
is therefore an infinite term, depending on the particular
manner in which the system is set up, which must be sub-
tracted off to leave behind a well-defined system-
independent expression for the Auctuations. The small-
time (relative to the flow period) displacement is charac-
terized by equilibrium Auctuations plus a linear deter-
ministic term. This latter term is still "infinite. "

In Secs. III—V we asked what happens when the co blob
and 0 blob enter the ro

' blot, Fig. 6(c). Now the internal
degrees of freedom are excited and the results of course
depend on the specific internal properties of the particle;
we considered a simple polymer model, the Rouse model,
as an example of a particle with an infinite number of
such modes. For large polymer scales we found both the
polymer statics and dynamics are enhanced by the same
tensor E(k) which enhanced the center-of-gravity
motion. Now the affine flow operator I, ( j I, which
describes equal time separations and periodically deforms
the chain of enhanced size is the same as the afFine opera-
tor which appeared in the center-of-gravity problem.
This reAects the physical fact that the center-of-gravity
result describes a cloud of diffusing particles which gets
periodically deformed, just like the polymer. However,
the enhanced chain unit fluctuations [see Eq. (65)] are
operatored on by I, ( J I, which is subtly different

and drives from the fact that the initial state of the poly-
mer (as determined by the value of the phase ceto) is never
forgotten by the fluctuations in the displacernent of the
chain unit over some interval in time. The displacement
involves the state of the chain both at time t and at time
to and thus its statistical properties depend on the initial
phase no matter how large the time interval may be.
Thus the Auctuation in displacement will be quite
different if the initial state is, say, a compressed one (in
which fluctuations in chain unit position are relatively
small) as opposed to a strongly stretched one (fluctuations
in position spread out over a larger volume). This effect
is of course entirely absent when time translational in-
variance (broken here by the flow) pertains in which case
the probability distribution describing the chain at some
instant is independent of time after an initial transient
(while here it is periodic).

The essence of the polymer large scales was an underly-
ing reversible process (the x oscillators) which gave rise
to statistics and dynamical Auctuations as in equilibrium
but enhanced. For both center-of-gravity and internal
modes, large scales are in "pseudoequilibrium. " The How
breaks time translational and reversal invariance (which
is the characteristic of the equilibrium state); however, on
time scales large compared to the Aow period these are
recovered in an "enhanced form" where the nature of the
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enhancement depends on the details of what happens in
one flow cycle.

Similarly to the center of gravity motion there are, su-
perposed on the enhanced pseudoequilibrium Auctua-
tions, certain deterministic motions suffered by a chain
unit. There is the deterministic part of the center-of-
gravity motion with which the chain unit moves of
course; this is one "infinity. " But now there is another
interesting and "infinite" affine term (we called it the
"elastic band" term) which arises because the unit is at-
tached to a chain which oscillates deterministically in the
Aow. This produces motions of the order of the size of
the polymer chain itself. As for the center of gravity, one
must carefully subtract off both "infinite" terms when
dealing with the modes; only then does one recover
"good" finite system-independent expressions for the lo-
cal Auctuations. The process is somewhat reminiscent of
renormalization techniques used in various branches of
physics [49,50].

For short times relative to the Aow period, Auctuations
in chain unit position are as in equilibrium (D, not D).
However, the two kinds of deterministic terms mentioned
above are still important. Both are linear in time.

It is natural to ask, why are the enhancements charac-
terizing chain unit diffusivity D and the polymer size
identical? We can understand this as follows. D deter-
mines how Auctuations in chain unit position increase
with time, i.e., it dictates how quickly the polymer loses
memory of a configuration. Thus the usual relation still
holds for quantities with tildes: D =R /7 p where R and
~p are, respectively, the enhanced mean-square size and
relaxation time of the chain in the periodic Aow. But for
the Rouse model wp=~p, i.e., the relaxation time of the
chain is unchanged by the stretching effect of the Aow.
This is a pathology of Rouse dynamics and arises because
information is communicated along the backbone only so
relaxation times are dictated by numbers of chain units
alone. Therefore D =R /ro. But since D =R /ro, it
follows that the relation between D and D and that be-
tween R and R must be the same, i.e., the enhance-
ments of spatial extension and diffusivity must be identi-
cal.

Of course, the relation D =R /~p is another way of
saying that the center-of-gravity diffusivity and the
diffusivity characterizing a single chain unit (for large
times) are one and the same thing. Therefore the argu-
ment above explains why the center-of-gravity diffusivity
is enhanced identically to the polymer size when the co

blob and 0 blob lie inside the ~p blob. However, it does
not answer the following question: why does E(k) have
the same functional form for center-of-gravity diffusion
when the Aow blobs are far outside the polymer blob as it
has when the flow blobs are far inside the polymer blob?
The reason is the pathology of the Rouse model men-
tioned above; the center-of-gravity zeroth mode decou-
ples from the others and so always obeys the same equa-
tion regardless of what the internal modes may be doing.
In a more realistic model this feature will not survive of
course. The form of E(A, ) will remain as derived in this
paper for Aow blobs far outside the polymer blob, Figs.
6(a) and 6(b). However, as the fiow blobs pass into the

polymer blobs [as in Fig. 6(c)] the A, dependence of E will

cross over to some quite different form.
Experimentally, the results in this study are directly

relevant to dilute solutions when Aow frequencies are
much less than internal relaxation times. When these fre-
quencies are large compared to internal frequencies, our
analysis deals with the case when the particles are poly-
mer molecules. A number of important physical effects
are missing from our description of the polymer physics
in this regime: excluded volume and hydrodynamical in-
teractions [19] and, in some regimes, finite extensibility
effects. These latter result when a polymer becomes so
stretched in a flow that the rigidity of the backbone
comes into play, i.e., the restoring force ceases to be
quadratic (Gaussian model) and begins to saturate [27].
Such effects are important if k is very large compared to
unity. But if k is of order unity the Gaussian model is
still applicable since the total stretch (embodied in the
enhancement tensor) depends on A, only. In a more com-
plex model one expects a number of physical effects to
survive, in particular the existence of an enhancement E
albeit with a form which changes as one "enters" the 7 p

'

blob as discussed above.
The simplest and most interesting experiments suggest-

ed by the present work are therefore the measurements of
enhanced diffusivity as a function of k into the nonlinear
regime. The periodicity of ine Aow provides a number of
advantages for experiments on polymeric systems. In
periodic Aows there are none of the difficulties, which
plague time-independent Aow experiments, in contriving
that a polymer chain be subjected to shear for a
sufficiently long period to substantially affect it; a chain is
constantly and automatically reinjected into the stretch-
ing region when the Aow is periodic. Furthermore, one
now has the ability to observe nonlinear effects in a con-
trolled manner; since the Aow does not continue to
stretch a chain indefinitely, there are no "runaway"
effects which (while intrinsically interesting) complicate
interpretation since standard polymer models presumably
break down at that point. With the Aows considered here
one can have nonlinearity without runaway.
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APPENDIX A: THE CASE OF NONVANISHING
VELOCITY-GRADIENT TIME AVERAGE

In Sec. II it was stated that when the mean of Q(t) is
finite the limit defining D no longer exists and qualitative-
ly different behavior prevails. Here we justify this. The
new behavior depends on which of three classes of matrix

belongs to; we consider each class in turn below.
Define B:f(t) A where f(t) = —1—Q(Ot'), so the
enhancement tensor is written E = ( exp(B )exp(B ) ),.
Thus finite mean velocity gradient means that f(t) grows
like t for large times.

1. A has only vanishing eigenvalues

An example belonging to this class is shear fiow [Eq.
(5)]. Generally one can express A in Jordan canonical
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form [see the discussion following Eq. (36)] as
A =P(A+N)P ' where P is a nonsingular transforma-
tion into the canonical frame, A is the diagonal matrix of
the eigenvalues of A, and N is nilpotent (N =0 for someI less than or equal to the number of rows in 3, i.e., the
dimension of space). In the present case the diagonal ma-
trix A vanishes. Then exp(B ) =exp[f(t) A ]
=exp[f(t)I P NP ']=P e xp[f(t)N]P '. By expand-
ing in powers of f(t)N, it therefore follows that
tr[exp(B )exp(B )] is a polynomial in f (t), i.e., for large
times a polynomial in t if f(t) has a linear part in t. But
expanding exp(f A )exp(f A ) to second order in A one
sees that the trace must be at least second order in f since
trA 3 )0.

The conclusion for this case is that when the fIow field
has nonvanishing mean the time integral of
exp(8)exp(8 ) grows asymptotically at least quadrati-
cally in time in a manner completely determined by the
mean velocity gradient [i.e., the linear term in f(t)].
Thus E does not exist and the fluctuation in particle posi-
tion [see Eq. (11)] grows as a polynomial in time whose
leading behavior for large times is of quadratic or higher
order.

is real. The second inequality follows from the Cauchy-
Schwarz inequality. Expressing 8 in Jordan canonical
form, 8 =P(A+N)P ', we have
exp(8)=P(expAexpN)P ' since A and N commute.
Thus tr exp(8 ) =tr[exp(A)exp(N)] =tr[expA] since
exp(N), being a polynomial in N, has diagonal elements
equal to unity because any positive power of X has van-
ishing diagonal elements. Now since the eigenvalues of 8
equal f(t) times those of A, this latter expressions is a
sum of terms of the form exp[f(t)A, , ]. Therefore if f (t)
has a linear part this expression grows exponentially in
time for large t since at least one of the k, has positive
real part. From Eq. (Al) this implies that the same is
true of tr[exp(8)exp(8 )] and thus F is not defined.

In conclusion, for a "generic" Aow matrix 3, if the
flow field has nonvanishing mean the time integral of
exp(8 )exp(8 ) grows asymptotically exponentially in
time in a manner again completely determined by the
mean velocity gradient. The fluctuation in particle posi-
tion therefore also grows exponentially with time.

APPENDIX 8: SMALL CONTRIBUTIONS
TO AFFINE SCALES FROM LARGE p MODES

2. A has pure imaginary nonvanishing eigenvalues

Here 3 is antisymmetric and represents pure rotation-
al fiow. Since A + A =0, the commutator [B,B ] van-
ishes and thus exp(8)exp(B )=exp(B+8 )=I. There
is no enhancement, in fact no interesting fIow effects at all
as one would expect from the rotational symmetry of the
Langevin equation without How.

3. A has at least one eigenvalue
with nonvanishing real part

= [tr exp(B ) ] (A1)

where we have used the fact that the {u, ] are real since 8
I

This is the "generic" case if one picks matrices 3 at
random; 3 now has a nonzero symmetric part and its
Jordan canonical form involves nonvanishing A with at
least one element with positiue real part (since the sum of
the eigenvalues vanishes). Name the eigenvalues of A
and the diagonal elements of exp(8 ) to be {k, I and {u, ],
respectively, where i ranges from 1 to d (d being the di-
mension of space). Now since the trace of the product of
a matrix with its transpose is equal to the sum of the
squares of its elements one has

2

d tr[exp(8)exp(8 )])d g u, ) g u,

In Secs. III and IV we calculated dynamical and static
quantities pertaining to long times (relative to 1/cu) and
large length scales [relative to the size of the "~ blob"
comprising s„chain units introduced following Eq. (58)].
These are the scales where the behavior turns out to be
"affine" deformation in the flow plus fluctuations, and in

deriving our results the affine form of the mode correla-
tion functions, Eq. (S7), was used for al/ p values. But
p)p„[see Eq. (58)] modes do not actually obey this
a%ne result. To obtain the error following from the affine

assumption on these large p modes, let us assume that
A, =O(1). Then the exact mode correlation function and
the affine form for the same p value are of the same order
of magnitude (since the elements of I, are then of order
unity). Therefore if we can demonstrate that p )p is an

unimportant band in the calculations based on the as-
sumption that all modes are affine, we have justified our
procedure in Secs. III and IV. But the affine mode corre-
lation equals the equilibrium value operated on by
I,E I, ; thus the task reduces simply to examining the

role of p )p modes in the calculation of correlation
functions for a Rouse chain in the absence of How. The
relative corrections will be of the same order of magni-
tude as in our approximation scheme.

The most general quantity is that involved in the
coherent scattering function, which we express in terms
of modes as follows:

2p~(s+s'), p~s'
r (t+t')cos —r (t')cos

N ~ Ã

(rq(t)rq(0) )'"
=f dq(r )'q 1 —cosqs

1 /N ( 2)eq

=Re f dq [1—exp{iqs q t/g] ] . —
0 q

(B1)
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Here u(s, t ) is the position relative to the center of gravity, and the sum over p can be read off' from Eq. (72). We have
run the sum into an integral over q with q =ptr/X and ignored numerical prefactors in the above. The relative chain
coordinate s is finite, and absolute coordinate s' is "infinite" (i.e., well inside the polymer) such that qs')) l for almost
all of the q integration range which causes several rapidly oscillating cosines to vanish approximately.

We want to show that if we replace the upper q limit by 1/s:—X/p =X/(coro)'~ the error is small when s, t belong
to "a%ne" scales, i.e., s ))s, t ))1/cu. But when these last inequalities are true then in the correlation term, namely,
the integral form 1/s„ to oo, there is negligible contribution from the exponential term since t/( s„g)=cot )) 1 and
s /s ))1. Thus one has

Re f dq ( 1/q ) [ 1 —exp I iqs q t /g—I ]
n)

Rej dq( 1/q ) [ 1 —exp [iqs —
q t /g j ]

0
s+(tip)' f(s pit)

1 ((1
s/s„+(cot)' f(s g/t)

The denominator was obtained from Eq. (74) (with ffow
set to zero); f is of order unity in general, depending on
the ratio s g/t. Evidently the errors are very small pro-
vided we always deal with scales much larger than those
characterizing the "~ blob. " Note that the quantities re-
quired for the mean-square displacement of a chain unit
and for the mean separation of two chain units are special

cases in which s =0, t =0, respectively.
For larger values of A, the discussion is more complex

since one must compare the above small factors to large
elements of I~, . However, one may still say that for any
value of k there exists a value of X such that if the num-
ber of chain units exceeds this value then the a%ne ap-
proximation is valid.

[1]G. Taylor, Proc. R. Soc. London, Ser. A 219, 186 (1953).
[2] P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).
[3] B. O'Shaughnessy, C. Durning, and M. Tabor, J. Chem.

Phys. 92, 2637 (1989).
[4] J. L. Lumley, Annu. Rev. Fluid Mech. 1969, 367.
[5] J. L. Lumley, J. Polym. Sci. Macromol. Rev. 7, 263 (1973).
[6] M. Tabor and P. CJ. de Gennes, Europhys. Lett. 2, 9

(1986).
[7] P. G. de Gennes, Physica (The Hague) A 140, 9 (1986).
[8] G. Ryskin, Phys. Rev. Lett. 59, 2059 (1987).
[9] Q. Xia, H. D. Ou-Yang, D. J. Pine, and P. M. Chaikin,

Phys. Rev. Lett. 61, 2554 (1988).
[10] T. Hirosye, Y. Einaga, and H. Fujita, Polymer 11, 819

(1979).
[11]Y. Miyaki, Y. Einaga, T. Hirosye, and H. Fujita, Macro-

molecules 10, 1356 (1977).
[12] B. Zimm, Macromolecules 13, 592 (1980).
[13]J. G. de la Torre, A. Jimenez, and J. J. Freire, Macro-

molecules 15, 148 (1982).
[14] J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed.

(%'iley, New York, 1980).
[15] K. Osaki, Adv. Polym. Sci. 12, 1 (1973).
[16] D. W. Hair and E. J. Amis, Macromolecules 22, 4528

(1989}.
[17] D. W. Hair and E. J. Amis, Macromolecules 23, 1889

(1989).
[18] M. Doi and S. F. Edwards, The Theory of Polymer Dynam

ics (Clarendon, Oxford, 1986).
[19]P. G. de Gennes, Scaling Concepts in Polymer Physics

{Cornell University Press, Ithaca, NY, 1985).
[20] J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565

(1948).
[21] Y. Oono, J. Chem. Phys. 79, 4629 (4629).
[22] A. Jaganathan, Y. Oono, and B. Schaub, J. Chem. Phys.

86, 2276 (1987).
[23] F. C. Frank and M. R. Mackley, J. Polym. Sci. 14, 1121

(1976).
[24] CJ. G. Fuller and L. CJ. Leal, Rheol. Acta 19, 580 (1980).
[25] I. Noda, Y. Yamada, and M. Nagasawa, J. Phys. Chem.

72, 2890 (1968).
[26] P. R. Williams and R. W. Williams, J. Non-Newtonian

Fluid Mech. 19, 53 {1985).
[27] P. CJ. de Gennes, J. Chem. Phys. 60, 5030 (1979).
[28] M. Fixman, J. Chem. Phys. 45, 785 (1966);45, 793 (1966).
[29] H. C. Ottinger, J. Chem. Phys. 86, 3731 (1987).
[30] Y. Rabin and K. Kawasaki, Phys. Rev. Lett. 62, 2281

(1989).
[31]Y. Rabin, H. C. Ottinger, and K. Kawasaki, in Macro

molecular Liquids, edited by C. R. Safinya, S. A. Safran,
and P. A. Pincus MRS Symposia Proceedings No. 176
(Materials Research Society, Pittsburgh, 1990).

[32] Y. Rabin and H. C. Ottinger, Europhys. Lett. 13, 423
(1990),

[33] P. R. Baldwin and E. Helfand, Phys. Rev. A 41, 6772
(1990).

[34] C. C. Han and A. Z. Akcasu, Macromolecules 14, 1080
(1981).

[35] Y. Tsunashima, N. Nemoto, and M. Kurata, Macro-
molecules 16, 584 (1983).

[36] Y. Tsunashima, M. Hirata, N. Nemoto, K. Kajiwara, and
M. Kurata, Macromolecules 20, 2862 (1987).

[37] G. Allan, R. Ghosh, J. S. Higgins, J. P. Cotton, B. Far-
noux, G. Jannink, and G. %'eill, Chem. Phys. Lett. 38, 577
(1976).

[38] Z. Akcasu and J. S. Higgins, J. Polym. Sci. 15, 1745 (1977).
[39] D. Richter, J. B. Hayter, F. Mezei, and B. Ewen, Phys.

Rev. Lett. 41, 1484 (1978).
[40] L. K. Nicholson, J. S. Higgins, and J. B. Hayter, Macro-

molecules 14, 836 (1981).
[41] F. R. Cottrell, E. W. Merill, and K. A. Smith, J. Polym.

Sci. Part A 2 7, 1415 (1969).
[42] P. Lindner and R. C. Oberthur, Colloid Polym. Science



2642 MING J. HSIA AND BEN O'SHAUGHNESSY 47

263, 443 (1985).
[43] P. Lindner and R. C. Oberthur, Colloid Polym. Science

266, 866 (1988).
[44] A. W. Marshall and I. Olkin, Inequalities: Theory of Ma

jorization and Its Applications (Academic, New York,
1979).

[45] S. R. de Groot and P. Mazur, Non Equi-librium Thermo
dynamics (Dover, New York, 1984).

[46] Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun (Dover, New York, 1970).
[47] Seymour Lipchutz, Linear Algebra (McGraw-Hill, New

York, 1974).
[48] P. G. de Gennes, Physics (Long Island City, N.Y.) 3, 37

(1967).
[49] D. J. Amit, Field Theory, the Renormalization Group, and

Critical Phenomena (World Scientific, Singapore, 1984).
[50] G. K. Batchelor, J. Fluid. Mech. 52, 245 (1972).


