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Hydrodynamic effects in polydisperse charged colloidal suspensions at short times
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The effect of combined intrinsic size and charge polydispersity and hydrodynamic interaction on the
short-time dynamics in unimodal and bimodal suspensions of charged macroparticles is investigated.
The first cumulant of the dynamic-scattering function is calculated based on a birnodal Schulz distribu-
tion for the particle sizes and charges. The inAuence of the solvent-mediated hydrodynamic interaction
between the macroparticles is approximately described by a far-field expansion in terms of reciprocal dis-
tance r ', including terms up to order r ". The partial static-structure functions, which are required as
an input, are obtained using the multicomponent-hypernetted-chain approximation. Our results are
compared with data from dynamic-light-scattering experiments on binary mixtures of polystyrene
spheres and on unimodal suspensions of charged silica particles. It is shown that both the intrinsic po-
lydispersity and the hydrodynamic interaction significantly affect the measured first cumulant.

PACS number(s): 82.70.Dd, 61.20.Gy, 61.20.Lc

I. INTRODUCTION

A considerable amount of work has been done to inves-
tigate the microstructure and diffusion in one-component
colloidal suspensions of spherical macroions [1,2]. Static
light scattering (SLS) and dynamic light scattering (DLS)
have been the main tools to obtain information about the
static and dynamic properties of model suspensions, such
as polystyrene spheres dispersed in water and silica parti-
cles dispersed in an organic solvent. As a result, there is
an essentially quantitative understanding of mono-
disperse colloids, except for the effects of hydrodynamic
interaction in the case of concentrated suspensions of
particles with short-range potential interactions.

Much less is known, however, about colloidal mixtures
and polydisperse suspensions due to their larger complex-
ity. Colloidal mixtures show additional phenomena, e.g. ,
a variety of microstructures and phase behavior, tracer
diffusion, and interdiffusion, which do not exist in purely
monodisperse systems.

In fact, in the process of synthesizing one-component
suspensions, a certain amount of intrinsic polydispersity
in the particle size is often unavoidable. If the particles
are charged, it is expected that the size distribution gives
rise to a corresponding charge distribution. The intrinsic
size and charge polydispersity will affect the local order-
ing and the diffusion in the system.

Very recently, both static and dynamic properties of
charged, two-component mixtures have been investigated
experimentally by a variety of techniques [3—9]. Each
component usually shows a combined intrinsic size and
charge polydispersity and is more accurately represented
by a multicomponent mixture characterized by an ap-
propriate unimodal size distribution function.

The main objective of this work is to study the effect of
the combined intrinsic size and charge polydispersity on
the short-time dynamics in charged one- and two-
component mixtures, as measured by the first cumulant
of the dynamic scattering function. The first cumulant is

affected both by static correlations, expressed by the mea-
sured static-structure factor SM(q) and by the solvent-
mediated hydrodynamic interaction, which enters into
the so-called apparent hydrodynamic function HM(q).
Our present treatment is limited to an investigation of
moderately highly charged suspensions with an overall
volume fraction less than O. l. The hydrodynamic func-
tion HM(q) is calculated approximately by considering
only a two-particle stationary hydrodynamic interaction
and by using a far-field expansion of the hydrodynamic
mobility tensors of two unequal spheres, as provided by
Jeffrey and Onishi [10]. The only additional input needed
to obtain H~(q) and SM(q) is the knowledge of the par-
tial radial distribution functions g &(r ) and of the partial
static structure factors S &(q). These static correlation
functions are calculated by means of the hypernetted-
chain approximation for colloidal mixtures. The ma-
croions are described as charged hard spheres, interact-
ing by a repulsive screened Coulomb potential of
Derjaguin-Landau-Verwey-Overbeek (DLVO) type. The
intrinsic size polydispersity in the one- and two-
component systems is mimicked for each component re-
spectively, by an optimized discretized representation of
the unimodal continuous Schulz distribution of particle
sizes, and the macroions are assumed to have constant
surface charge density.

It will be shown that intrinsic polydispersity strongly
affects the first cumulant. We also find that hydrodynam-
ic interaction has a measurable effect on the first cumu-
lant at small wave numbers, as compared to the position
q,„ofthe main maximum of S~(q), even for moderately
and highly charged particles at surprisingly low volume
fractions.

The paper is organized as follows: In Sec. II, we de-
scribe our model of binary suspensions with intrinsic po-
lydispersity. Pertinent dynamic-light-scattering relations
for mixtures, relevant for obtaining the first cumulant of
the dynamic-scattering function, are summarized in Sec.
III. In Sec. IV, we give the details of our calculation of
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the first cumulant in mixtures including hydrodynamic
interaction. Section V contains our results which are
compared with experimental data and with theoretical
findings by Genz and Klein [ll]. Our conclusions are
summarized in Sec. VI.

with m =N&+X&&. The weights xz and diameters 0.
&,

where y=1, . . . , N, refers to the N, subcomponents
which constitute component I are determined from the
2N& moment conditions

II. MODEL SYSTEM
OF INTRINSIC POLYDISPKRSITY

N,

r ~ (2.6)

p(o ) =x,ps(o;o.„s,)+(1—x, )ps(cr; o „,s„),
where

(2.1)

ps ( cr; o,s )=.t+1
r(r+1) "p t+1

(t )0) (2.2)

is the unimodal Schulz distribution function with relative
standard deviation

(2.3)

The molar fraction of component I is given as
x, =p, /(p, +p„) and p, and p„are the number densities
of component I and II, respectively. It is the volume
fractions P, and P„ that can be determined experimental-
ly, but not the number densities. Thus we express the
number densities as

64t, n
PI, »

~&cr )t,n
(2.4)

where (cr ), and (o )„are the third moments taken
with respect to the unweighted unimodal distribution
functions p, (o;o„s,) and p, (o",o„,s») of the pure com-
ponent I and II, respectively. Thus the molar fraction xi
and the number densities p& and p&& depend on the volume
fractions and the relative standard deviations of both
components.

In a second step, the bimodal continuous distribution
(2.1) is discretized by a (N, +N„)-component histogram-
matic representation

p(cr) g xr5(cr cry) (2.5)

We consider two-component colloidal suspensions of
charged spheres. The two macroion components are la-
beled by the indices I and II, respectively. The com-
ponents I and II are characterized by the volume frac-
tions P, and P», the mean eff'ective valences Z, and Z„,
and the mean diameters o.

&
and cr».

Each component has a certain size distribution around
its mean diameter, depending on the chemical particle
synthesis. It is well known that the measurable size dis-
tribution in one-component suspensions of polystyrene
spheres can be well fitted using the two-parametric uni-
modal Schulz distribution, characterized by the mean di-
ameter cr and the relative standard deviation s [12,13].

Therefore, the intrinsic size polydispersity of binary
suspensions can be described by a continuous bimodal
Schulz distribution of the form

with I =0, 1, . . . , 2N, —1. Similarly, the corresponding
parameters describing the X» subcomponents of com-
ponent II are obtained from

(2.7)

u Is(r)

k, T

r(a +a
Z Zpexp[ic(a +aII)] exp[ —icr]I.

( I+@a )(1+aa&) r

r)a +a,

(2.8)

Sample 2

2 103 " compon. l: 'l0%--- compon. ll: 10%

O

~
0-3

o
I

4I
I

I

I

I

j i
I

I
I
I

I

0
50 100 150

diameter (nm)
200

FIG. 1. Histo grammatic representation of the bimodal
Schulz distribution describing the intrinsic size polydispersity of
a binary macroion mixture (sample 2). [1,2, 3 j H I and
[4,5, 6] & II.

with /=0, 1, . . . , 2N« —l. Instead of solving the non-
linear equations (2.5) and (2.6), we have used the
equivalent Gauss-Laguerre method [13]. The numbers
N& and N&I have to be chosen appropriately, depending
on the values for the relative standard deviations s, and
s„. In this work we consider samples with s, =s» 0.3.
Then, it is sufficient to use a histogrammatic distribution
with six subcomponents, i.e., X,=N» =3. This has been
checked by varying the number of subcomponents. Fig-
ure 1 shows the histogrammatic representation of a typi-
cal binary mixture with s, » =0.1.

In our further analysis we assume constant surface
charge density for both components I and II.
Explicitly, Z =ZI [err lcr, ] for y = I, . . . , N, and
Zz =Z»[o. Icr»] for y=NI+ I, . . . , m.

The eA'ective pair potential between the macroions is
modeled as a hard-sphere potential plus a screened
Coulomb potential of the form
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which is the repulsive part of the well-known DLVO po-
tential for mixtures. Here, a =o. /2 is the radius of a
a t-ype macroion (et=1, . . . , m), Lii=e /ekiiT is the
Bjerrum length, and

4rrLspT g x~ lz~ +irggii ~

a=1
(2.9)

where ~ is the Debye-Hiickel screening constant due to
monovalent counterions and possible excess salt ions.
The overall number density is pT=pi+p».

The partial radial distribution functions g ti(r) and
their Fourier transforms, the partial static structure fac-
tors S ti(q), are calculated in this work using the
multicomponent-hypernetted-chain (HNC) approxima-
tion. The HNC has been found to be quite useful as a
fitting device for strongly coupled macroion mixtures [5].

3 A(qa )f (q)=3(n n, —)a
qa

(3.6)

for the scattering amplitude of a homogeneous spherical
macroparticle of radius a and refractive index n is val-
id. The refractive index of the solvent is denoted by n, .

The short-time dynamics obtained from DLS is usually
characterized by an exponential decay of SM(q, t), ex-
pressed by the first cumulant I ~("(q), with

ponent 0.'and the bracket indicates an equilibrium ensem-
ble average. The magnitude of the scattering wave vector
q is denoted as q, and R; (t) is the position vector at time
t of the center of the ith macroion of component a. For
the systems under study, the macroions or the refractive-
index differences are small enough such that the
Rayleigh-Gans-Debye approximation

III. DYNAMIC SCATTERING RELATIONS I M'(q) = —lim lnS~(q, —t) .
a

t~o Bt
(3.7)

In this section we brieAy summarize some pertinent re-
lations of the theory of dynamic light scattering in col-
loidal mixtures, which are required for our further dis-
cussion.

DLS experiments are often performed in the homodyne
mode. Then the Siegert relation is used to deduce from
the intensity auto correlation function the normalized
field autocorrelation function g'"(q, t). The normalized
field autocorrelation function is related to the so-called
measured structure factor SM (q, t ) by

SM(q, t )
g(i)(q t)—

M
(3.1)

Hence S~(q, t) is a superposition of m(m+1)/2 partial
dynamic structure factors S ii(q, t ), weighted by the par-
tial molar fractions x and the scattering amplitudes
f (q) of a-type spheres. Here

where SM(q) =SM(q, t =0). The measured dynamic
structure factor of a rn-component suspension is defined
as [14]

m

SM(q, t)= g (x xt3)' f (q)fp(q)S ti(q, t) .
f'(q) a, p=i

(3.2)

The short-time limit t ~0 means that ~~ && t &&~i, where
we distinguish the momentum relaxation time rs =m /g
from the structural relaxation time xi=a /D, which is
the time scale on which a macroion of mass m diffuses a
distance equal to its radius a. Here g =6vrg, a is the ma-
croion friction coefficient, D =kii T/g is the free-
particle dift'usion coefficient, and g, denotes the solvent
shear viscosity. For a typical macroion radius of 100 nm,
~~ is of order 10 sec whereas ~, is of order 10 sec,
i.e., the short-time scale ~z && t && z, is usually well
separated from the long-time scale t ))r, [1]. There is an
additional time scale related to the unsteady viscous sol-
vent Aow around the moving macroion. This time scale
is characterized by the viscous relaxation time
7H —a p, /g„where p, is the mass density of the solvent.
For typical colloidal suspensions we find ~H =~~. Most
of the recent DLS experiments are confined to delay
times t)&~&=~~. Then, solvent inertia effects can be
neglected and the relaxation of only the macr oion
configuration is observed. This is referred to as Smolu-
chowski dynamics, in which the hydrodynamic interac-
tion is described by the steady-state low Reynolds num-
ber creeping flow equation for an incompressible Quid
[15].

f (q)= g xrf (q) (3.3)
IV. CALCULATION OF THE

HYDRODYNAMIC FUNCTIONS

S &(q, t)=(c (0)c~(t)),
where

(3.4)

is the second moment of the distribution of form ampli-
tudes. The partial dynamic structure factors are defined
as

For delay times t )&~z, the N-particle Smoluchowski
equation [16] is used to calculate equilibrium-
configuration space-time correlation functions such as
e.g. , S ti(q, t) The time . evolution operator of any
configuration space function is given by exp[Ost ], where

N
q R( (3.5)

is the Fourier component of density fluctuations of com-
ponent 0.. N denotes the number of macroions of com-

1 BU(R ) p ~ 8

BR, " BR~

(4.1)
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is the backward or adjoint Smoluchowski operator [16].
Here U(R ) is the potential energy of the suspension for
the particle configuration R =(R„.. . , RN) of the total
number of N=gr, Nr macroions. The partial dynamic
structure factor can be expressed as [16]

S p(q, t)=(c „(0)e cP(0)) . (4.2)

where the short-time apparent diffusion coeScient only
depends on quantities, which can be entirely determined
from static-light-scattering experiments.

It is quite interesting to note that a part of H p(q) is
related to the short-time tracer diffusion coefticientD""'"of a particle of component a. To see this, H p(q)
is split into self- and distinct contributions, i.e.,

From this equation and from Eqs. (3.2) and (3.7) we find
for rM (q)

1I ( )(q)—
(q)f (q)
m

X g (x xp)' 'f (q)fp(q)(c qOticPq) .
a, P=1

(4.3)

H p(q)=6 pD""'"+H p(q),
with

s shor't ( q Daa. q )

(4.9)

(4.10)

(4. 1 1)

In analogy to the case of monodisperse systems, we define
an apparent q-dependent short-time diffusion coefficient
DM(q) as

I'M'(q) H~(q)
( )=

q
(4 4)

a' P
H p(q)= g (q D~P(R ) q

V NaNp i j=i
X exp[iq (R; —RP)] ), (4.6)

where q=q/q, and D;~p(R ) denotes the translational
diffusion tensors, relating the average velocity V, of rna-
croion i of component a and the force F~, on rnacroion j
of component y, i.e.,

where the apparent hydrodynamic function HM(q) is
given by

m

HM(q)= g (x xp)' f (q)fp(q)H p(q) . (4.5)f (q) a p=i

The partial hydrodynamic functions H p(q) contain the
effect of hydrodynamic interaction. The attribute "ap-
parent" is used in order to emphasize that in mixtures
HM(q) also depends on the single-particle scattering am-
plitudes f (q).

The H p(q) can be expressed by means of the back-
ward operator Oz as

In the expression for H p(q), a distinct representative
pair of macroions 1 Ea and 2Ef3 has been chosen arbi-
trarily.

It can easily be shown from Eq. (4.10) that

Ds, short lim ( [Ra( t ) Ra(0)]2 )
1

o 6t
(4.12)

i.e., D""'" is essentially the initial slope of the mean-
squared displacement (MSD) of an a-type macroion.
Without hydrodynamic interaction, D"""" trivially
reduces to D""'"=D, which can be understood from
noting that at short times ~z &&t &«&, the MSD is not
affected by the direct forces, since the configuration of
the dynamic cage of next-neighbor macroions has not
changed appreciably during the short time interval t.
With hydrodynamic interaction, however, it is found thatD""'"&D due to the instantaneous hydrodynamic in-
teraction of a macroion with its present neighbors.

In purely monodisperse systems, the initial decay of
long-wavelength density Auctuations is described in
terms of the short-time collective diffusion coefficient
D ""'", defined as D ""'"= lim DD 'i'('(

q ). Here
D'~~(q) =DM(q), provided the system is monodisperse.

In mixtures, however, all the possibly different scatter-
ing amplitudes f (q) enter into the expressions (4.4) and
(4.5) for DM(q). Therefore, it is not DM(q) which de-
scribes the initial decay of fiuctuations c =g =ix'~ ci'
of the total number density. Instead of D~(q), this decay
is described by the q-dependent so-called number-number
diffusion coefficient

V;= g gD;,r(R )F]'.
kg T =11=1

(4.7)

The diffusion tensors depend in general on the positions
of all N macroions, which explains the great complexity
of the many-body hydrodynamic effects [17].

Without hydrodynamic interaction, D; ~ reduces to
D, P=D 5 g; I; in "this case, H. p(q)=5 pD, where
D =kiiT/(6m', a ) is the Stokesian diff'usion coefficient
of a macroion of component a and j. denotes the unit ten-
sor. Then, DM(q) simplifies considerably to

1 a
DNN(q) =——lim

z lnSNN(q, t )
t~O q2 Bt

m

(x xp)' H p(q),
NN q aP=i

where

SNN(q, t)= g (x xp)' S p(q, t)
a, /3= 1

(4.13)

(4.14)

1 m

D~(q)= g x~f~(q)D
SM(q)f (q) y=i

(4.8)
is the dynamic overall number-number structure factor,
as defined by Bathia and Thornton [18]. SNN(q, t) and
S~(q, t) are equal to each other only for mixtures with
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pure charge polydispersity. For monodisperse systems
S»(q, t )=S~(q, t) =S—(q, t) as well as H»(q, t)
=HM(q, t)=H—(q, t). The short-time collective diffusion
coefficient D""'"of monodisperse systems, has, in prin-
ciple, to be distinguished from the long-time collective
diffusion coefficient

D'"" = —lim lim lnS(q, t)1

p~ oo &~O q Bt
(4.15)

(with q t fixed), which can be measured from macroscop-
ic gradient diffusion experiments or from DLS in the hy-
drodynamic limit. Notice that t ~~ means t ))~&.

However, D""'"=D'"" is strictly valid, provided that
the direct forces and the hydrodynamic interaction are
pairwise additive [2]. One might expect a similar equality
to hold in mixtures with vanishing hydrodynamic in-
t«action between Dxf~»mq ODNN(q) and DNN
where D~g~s is defined by the right-hand side of Eq. (4.15)
with S(q, t) replaced by S»(q, t). This equality
D~~g=D~~", however, does not hold in general. In-
stead, we consider the following linear combination:

Sff(q, t)= g (x xti)' g @S tt(q, t) (4.16)

Sff (q, t) =exp[ qDff t ]Sff—(q) +0 (q ),
with

m

Dff = lim g xrgr .
q 0Sff

(4.17)

(4.18)

The dynamic function Sff (q, t) can be rewritten as
O~t

Sff(q, t) =(c e c ), where cq=gr ixr gcqr is the
Fourier component correspondinqto the center of fric-
tion Rf, defined as Rf=gr, g&Z, gRI'/(g, N g ).
The center of friction is a space point with respect to
which the overall torque on all macroions due to the hy-
drodynamic friction forces g V vanishes, i.e.,

Ngr, g&Z, [RY' —Rf] X@V=0, provided that all ma-
croions move with the same velocity V. It follows from
Eq. (4.17) that Df'f =Dff'" = Dff . Obviously,
D~~ WDff unless the friction coefficients of all com-
ponents are equal to each other, which does only apply
for charge polydispersity.

We now address the difficult task of calculating ap-
proximately the diffusion tensors D;.~ and the hydro-
dynamic functions H &(q) as defined in Eq. (4.6). The
diffusion tensors can be obtained in principle by solving
the low-Reynolds-number creeping-Aow equation for X
spheres with appropriate boundary conditions on the sur-
faces. This is, however, an extremely difficult task. Not
surprisingly, most theoretical work so far has been con-
centrated on dilute suspension, especially on model sus-

of partial dynamic structure factors, where g =k~ T/Do.
We denote this linear combination as the dynamic
friction-friction structure factor Sff(q, t). Then, for van-
ishing hydrodynamic interaction, it can easily be shown
that the memory function, corresponding to Sff(q, t),
vanishes faster than q, which leads to an exponential
behavior of Sff(q, t) at small wave numbers for all times,
i.e.,

pensions of monodisperse [19—24] and also polydisperse
[16,25] hard spheres, where two-particle hydrodynamics
is sufficient to first order in the overall volume fraction P.
At larger volume fractions (e.g. , P ~ 0.05 for hard
spheres), many-body interactions become important.
Beenakker and Mazur [22—24] have provided an exact
formal expression of the hydrodynamic function H (q) in
monodisperse suspensions of hard spheres, which is valid
at arbitrary volume fractions. They have evaluated this
expression approximately by using a renormalized densi-
ty fiuctuation expansion and their approximate H(q) has
been found to be an adequate description for moderately
concentrated hard-sphere suspensions. More recently,
Genz and Klein [11] have applied the renormalization
approach of Beenakker and Mazur to monodisperse sus-
pensions of moderately charged spheres, interacting by a
screened coulomb potential of DLVO type. Their com-
parison with DLS data by Philipse and Vrij [26] on sus-
pensions of charged silica spheres gives satisfactory
agreement.

In contrast to monodisperse suspensions, much less is
known about the effects of hydrodynamic interaction in
polydisperse suspensions of charged spheres. Here, it be-
comes quite important to study the combined effects of
intrinsic size and charge polydispersity and hydrodynam-
ic interaction on the first cumulant 1 ~'(q) of the mea-
sured field auto-correlation function. As we already em-
phasized in the Introduction, we restrict ourselves in our
analysis to colloidal mixtures of strongly to moderately
charged spheres with low to moderate salinity and overall
volume fractions less than 0.1. Then, the probability of
two spheres getting close to each other is very small, due
to the strong repulsion of the electric double layers. This
can be seen from our HNC calculations of the partial ra-
dial distribution functions g &(r) of two spheres of type a
and p, which are a distance r apart from each other.
Therefore, we anticipate that the two-particle diffusion
tensors give the dominant contribution.

Then, following the notations of Jones and Burfield
[16] and assuming pairwise additivity, the translational
diffusion tensors can be approximated as

m y

D, ~(R )=5, ~ D 1+ g g 'A r(R, R]')—
y=1 l=1

+ ( 1 —5;,~)B ~( R; —R~), (4.19)

where 6;~=0, whenever the indices i Ea and jap refer
to different spheres, and 6,, =1. The prime on the dou-
ble sum excludes the terms o.=y and i =I. The hydro-
dynamic tensors A ~(r) and B ~(r) can be expressed in
terms of an expansion in the inverse distance r ' between
spheres of type a and p, by using the method of
reflections [27—29]. Felderhof [27], e.g. , has provided ex-
plicit expressions up to order r . In our calculations,
analytical expressions for A ~ and B ~ have been used up
to order r ", as provided by Jeffrey and Onishi [10] for
two freely rotating spheres of different radii a and a&
with stick boundary conditions on their surfaces. The ex-
pressions are rather lengthy and are collected in the Ap-
pendix.

The short-time dynamics obtained from DLS is usually
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the distinct part H"&(q) are expressed in terms of the hy-
drodynamic tensors as [16]

m

D""'"=D„+pTg xr Jd r[q A r(r) q]g (r),
y=1

mple
Fracti 12

TABLE I. Partial volume fractions P, ,&={4m/3)p, „a,'„
(units of 10 ) of the samples 2, 3, 9, and 12 under study. The
values are taken from Ref. [5].

H &(q)=pT(x x&)' Jd r[q B ~(r) q]

(4.20) 0.53
4.05

0.95
3.6

3.85
1.35

6.2
0

Xcos(q r)g &(r) . (4.21)

Substituting the far-field expansion of A ~ and B ~ into
Eqs. (4.20) and (4.21) and performing the angular in-
tegrals leads to rather lengthy expressions involving one-
dimensional integrals which contain the radial- distribu-
tion functions g &(r). These expressions are given in the
Appendix, too. Jones and Schmitz [29] have provided
similar results for D""'"and, up to order q, also for
H "~(q), including terms up to r

In performing the integrals in Eqs. (4.20) and (4.21),
one obtains rapid convergence, since in contrast to un-
charged spheres, where the g &(r) are large at contact,
these functions are practically zero for small separations
due to the electrostatic repulsion. Therefore, it seems un-
necessary to consider lubrication theory [10] of nearly
touching spheres.

For completeness, we finally give the results for' D""'"
and D""'" obtained from the reAection method for
monodisperse hard-sphere suspensions to first order in P.
It is found that D"""=D [1—a'P] andD"""'=D [I+a'P] with a'=1.73, a'=1.56 including
terms up to order r, and 0.'=1.79, cx'=1.44 including
terms up to order r ". Recent calculations of Cichocki
and Felderhof [21], taking into account a large number of
reAections, lead to a'= 1.831 and a'= 1.454.

V. RESULTS

In the first part of this section we discuss our theoreti-
cal and experimental findings on the first cumulant of the
measured dynamic structure factor S~(q, t) as applied to
dilute binary suspensions of strongly charged spheres.

DLS and SLS experiments have been performed on
twelve different binary suspensions of charged poly-
styrene spheres, mixed together from two well-
characterized one-component batches I and II, with aver-
age diameters 2a, =84 nm and 2a&, =130 nm, respective-
ly. The total volume fraction PT=P&+P„of all twelve
samples has been kept approximately constant and the
binary suspensions are located within the homogeneous
liquid phase. The samples have been treated by mixed-
bed ion exchange resins, such that essentially all excess
ions have been removed. In a recent publication by
Krause et al. [5], the static properties of all twelve sam-
ples have been characterized in great detail by SLS data
of SM(q), as well as by Monte Carlo computer simula-
tions and the results of integral equation theories, using
the extended rescaled mean spherical and the
hypernetted-chain approximations and the Rogers-
Young closure scheme. The values of the mean effective
valences Z&, Z» entering the effective pair potential, Eq.

TABLE II. Parameters characterizing macroions of the pure
components I and II. The values are taken from Ref. [5]. The—HNC
effective valences Z«& are used in our calculations of S~(q)
and D~(q).

Component 2a (nm)

84
130

ZHNc

438
323

330
280

(2.7), were determined by fitting the static structure fac-
tor of the pure components I and II, and they were kept
constant for the mixtures. It was shown that it is neces-
sary to take intrinsic polydispersity into account in order
to get an optimal description of the SLS data.

The latter have been supplemented quite recently by
DLS data of the first cumulant of S~(q, t). As a selec-
tion, we will only discuss the data of samples 2, 3, 9, and
12. The system parameters characterizing these samples
are listed in Tables I and II. Notice that samples 2, 3,
and 9 are binary mixtures whereas sample 12 consists
only of type-I spheres. (for a complete parameter list of
all twelve samples, see Tables 1 and 2 in Ref. [5]).

We describe the intrinsic polydispersity in sizes and
charges by an optimized histogrammatic bimodal Schulz
distribution, as explained in Sec. II. Here, each com-
ponent I and II is replaced by a histogram of three sub-
components, respectively (i.e., N, =N» =3;m =6) and
the standard deviations s„s» are varied from 0 to 0.3.
The radial distribution functions g &(r), which are re-
quired as a static input in Eqs. (4.20) and (4.21), are ob-
tained by numerically solving the HNC integral equation.

Our experimental and theoretical results for samples 3
and 9 are shown in Figs. 2(a) and 2(b), where the ap-
parent short-time diffusion coefficient DM(q) is compared
to the one calculated without hydrodynamic interaction,
D~'(q). The major difference between the two is seen to
be a reduction or retardation of the diffusion due to the
presence of hydrodynamic interaction for wave numbers
q (q „,where q,„ is the position of the main peak of
S~(q) [S~(q,„)=1.6 and 1.75 for samples 3 and 9, re-
spectively]. The effect is most pronounced at q =0,
where the reduction is more than 10%. Both figures con-
tain the theoretical results for DM(q) and DM(q) for van-
ishing intrinsic polydispersity and for a rather modest
amount of intrinsic polydispersity with s, » =0. 1.

It is seen that the inclusion of intrinsic polydispersity
further decreases D~(q) for q (q,„. For q

)q,„, the
differences between DM(q) and D~(q) become negligibly
small for the systems under study. In order to make
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these features more transparent, the normalized hydro-
dynamic function DM(q)/D~(q) calculated for the pa-
rameters of sample 12 is shown in Fig. 3 for different de-
grees of polydispersity s, =0—0.3. Notice that the con-
tribution due to SM(q) is divided out here. At large wave
numbers, where S~(q) =1, it follows from Eqs. (4.4) and
(4.8) that

1.2

Sample 12

y2 ( )Ds, short
r r y

y=1
m

g x~f~(q)D
@=1

(5.1)

1.0-
OP
C5

C3

C5

0.9-

1.5
u (a)

E

E
O

C3

CT

C)
0.5—

Sample 3

0%-0%:without
: with H. l.

]0'&. without
: with H. I,

0
0 tQ 20 30

q(10 'nm ')

Sample 9

CD

E
1

E
O

CD

C3

—~ 0.5
C3

I

10
I I

20 3Q

q (10 3 nm")

FIG. 2. (a) Apparent short-time diffusion coefficient D~(q) of
sample 3, for standard deviations s = =0 1 C

&

—s» = . . omparison of
experimental data (open circles) with pairwise additivity theory
(with and without hydrodynamic interaction). (b) Same as in
(a), but for sample 9.

It is important to observe from Fig. 3 in the case fcase o sam-

p e (and this applies to all other samples) that
lim „DM(q)/D~(q) =1, i.e., that D""'"'=D Thusa c'
the self-part of H (q), which is the short-time tracer
diffusion coefficient D""'", is practically unchanged by
the hy rodynamic interaction which is in contrast t th

0
o e

ehavtor of DM(q)/DM at small wave numbers. The
reason for this behavior follows from the structure of

0.8
0

I I

10 20

q (10 'nm')

t

30

FIG. 3.G. 3. Normalized hydrodynamic function DM(q)/D~(q)
of sample 12, with polydispersities s, =0.0, 0.1, 0.2, and 0.3.

M(q) is the apparent diffusion coefficient without hydrodynam-
ic interaction.

Eqs. (4.4), (4.5), (4.20), and (4.21) and our explicit far-field
expressions for the hydrodynamic tensors A ~ and B ~.
The radial distribution functions g &(r) are practically

the leading contribution of order r ' in the far-field
series, which is the so-called Oseen part, contributes

only into B & and H ~(q). The leading contribution to""'"is of order r and therefore negligibly small for
the systems under study.

As a conclusion, it has to be emphasized that the fre-
quently used argument, according to which hydrodynam-
ic interaction is negligible for very dilute suspensions of
strongly charged particles, holds only for the self-part
which represents short-time diffusion. For the same sys-
tems, hydrodynamic interaction leads, however, to a
significant effect on the first cumulant for small wave
numbers (q q „. A precise measurements of these
effects is difficult because of large uncertainties in deter-
mining the first cumulant at very small wave numbve num ers.

e consideration of higher-order cluster contributions
to the hydrodynamic interaction does not alter these
statements since, e.g. , according to Mazur and van Saar-
loos [28], three-body terms in D and D fir t

d ~ 7
~& an «rst appear in

order r and r, respectively, and are therefore expect-
ed for the dilute systems under consideration to be negli-
gibly small. Figures 2(a) and 2(b) indicate that the agree-
ment between theory and DLS data deteriorates with in-
creasing polydispersity. However, as discussed in detail
in Ref. [5], polydispersity reduces the value of the peak
height and shifts the peak position to lower q. In order to
recover and even to improve the good fit of the experi-
mental SM(q) using HNC, we have to increase the values
of the partial volume fractions as we11 as the values of the
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s(q)

1.0

CT

C5

0.9-

08-
0

I

10 20 30

3 4 5
q (10 ' rn " )

q( IO 3nrn-' )

FIG. 7. Normalized number-number diffusion coefficient
D»(q)/D»(q) of sample 12, corresponding to Fig. 3. Dz~(q)
is the q-dependent number-number diffusion coefficient without
hydrodynamic interaction.

FIG. 8. Static structure factor of a monodisperse suspension
of charged silica spheres. Open circles indicate the experimen-
tal results of Philipse and Vrij [26], the full line is the HNC fit.
The" system parameters used in the HNC calculation are
/=0. 101, Z =107, a =80 nm, ~a =1.7, and a=10.

tions of D»(q)/D~~(q) are reduced with growing po-
lydispersity. Furthermore, D»(q)/Dgz(q) exhibits a
somewhat stronger variation with q than DM(q)/DM(q)
in Fig. 3. It can also be seen that D»(q)/Dz~(q) is
more sensitive to polydispersity at small q, but the shift of
its main peak to smaller q is less pronounced. The main
features of D»(q)/Dg~(q), as compared to those of
DM(q)/DM(q), are therefore similar to those of S»(q) as
compared to S~(q).

Up to this point we have investigated the short-time
dynamics of polydisperse dilute charged suspensions. We
will now compare our theoretical results with recent mea-
surements of the hydrodynamic function H(q) in mono-
disperse systems of coated charged silica spheres with ra-
dius of 80 nm, immersed in an optically matching mix-
ture of ethanol and toluene [26]. The volume fraction P
of these samples is inside the range 0.009—0.101, which is
much larger than the total volume fraction PT =10 of
the dilute deionized suspensions discussed before.

Figures 8 and 9 show a comparison of the SLS data for
the static structure factor S(q) for the most concentrated
samples with /=0. 101 and 0.079, and the structure fac-
tor calculated from the HNC closure. The parameters
are Z =107, @=10, and ~a =1.7, where ~ has been
kept fixed to this value independent of P. Genz and
Klein [11] used the thermodynamically self-consistent
Rogers-Young (RY) closure to calculate S(q) for the
most concentrated system with /=0. 101. Their result
for S(q) is identical to ours by using a slightly smaller
valency of Z =100, all other parameters being the
same.

The fit of the experimental S(q) is seen from Figs. 8
and 9 to be quite satisfactory. The differences between

2.5

s(q) 4 =0.079

1.5-

3 4 5

q ( 10 ' m ')

FIG. 9. Same as in Fig. 8, but with /=0. 079.

experimental data and the HNC result at small q may be
due to slight polydispersity.

Our purpose here, however, is not to obtain an optimal
fit of the experimental S(q) and H (q), but to test our cal-
culations of H(q), which are based on the pairwise addi-
tivity assumption of the hydrodynamic interaction and
the far-field expansion versus the more elaborate renor-
malization approach of Beenakker and Mazur [22—24],
as applied by Genz and Klein [11] to more concentrated
monodisperse charged suspensions. In Fig. 10, our result
for the normalized hydrodynamic function H(q)/D is
compared, for the most concentrated system, in which
case hydrodynamic interaction is most important, to the
experimental data and the result of Genz and Klein. The
shape of the experimental H(q) (open circles) is equally
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FIG. 10. Normalized hydrodynamic function H(q)/D . The
continuous line is the result of the pairwise additivity theory,
with static HNC input for g(r). The dashed line is the result for
the renormalized density Auctuation expansion of Beenakker
and Mazur, as calculated by Genz and Klein [11]. Open circles
show the experimental results of Philipse and Vrij [26].

well described by our pairwise additivity theory, includ-
ing terms up to order r " (full line) and the renormaliza-
tion approach (dashed line). The graphs resulting from
both methods lie below the experimental data at small
wave numbers. We note that the quantity H(q)/D,
plotted in Fig. 10, has the limiting values
S(0)(D"""/D ) for q~0 and D"""/D for q~oo.

The difference between the two theoretical approaches
and experiment at small q can be attributed to a similar
difference between the experimental and theoretical S(q).
The renormalization approach predicts somewhat smaller
values for D' '""' and D''"'" than pairwise additivity
theory does. Numerically, it is found thatD"""/D =Q. 778 and 0.860 by the renormalization
method and the pairwise additivity theory, respectively.
However, Genz and Klein mention that using the ad hoc
assumption that D""'"/D =0.853 in the renormaliza-
tion approach reproduces the experimental data very well
[11],and this value is quite close to our finding of 0.860.
We also note that, according to Cichocki and Felderhof
[21], a pure hard-sphere suspension with /=0. 101, re-
sults in D"""'/D = .0185 +(OP ), where use of the ex-
pression D"""/D = 1 —1.831/+ 0 ( P ) has been made.

By including terms up to order r within the two- and
three-body hydrodynamic interaction, Beenakker and
Mazur [22,24] obtained for hard-sphere suspensions an
expression for D ""'" to order P, namely
D""'"/D =1—1.73/+0. 88$ +O(P ). This givesD"""/D = . 0348O+(P ) (for /=0. 101). We thus see
that the short-time self-diffusion coefticient in the
charged suspension is roughly equal to that predicted for
the corresponding hard-sphere suspension. This has been
experimentally verified by van Veluwen et al. [32] by
comparing charged and uncharged silica suspensions.

In Fig. 11, the comparison between the pairwise addi-

FIG. 11. Same as in Fig. 10, but with / =0.079.

tivity theory and the experimental data is also quite satis-
factory for the suspension with / =0.079.

We have found the inclusion of terms up to order r
to be suKcient for the systems experimentally investigat-
ed by Philipse and Vrij. In fact, H(q) calculated by in-
cluding terms up to order r " is almost identical with
the one containing only terms up to seventh order, even
for a volume fraction as large as /=0. 101; the largest
difference between them is only 3%%uo, occurring at q =0.
This can be understood from Fig. 12, which shows the
HNC radial distribution function g(r) for several values
of P. The strong electrostatic repulsion keeps the parti-
cles apart from each other such that contact
configurations are highly unlikely. Hence g(r) is vanish-
ingly small at distances r ~ 2. 8a, which are large enough
to guarantee fast convergence of the far-field expansion.

VI. CONCLUSIONS

The objective of this work has been the investigation of
the combined effect of hydrodynamic interaction and po-

2.5

2-

1.5-

0
0

FIG. 12. HNC radial distribution function g(r) correspond-
ing to the charged silica suspensions of Philipse and Vrij.
Volume fractions P as given in the figure; all other parameters
are the same as indicated in Fig. 8.
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lydispersity on the short-time dynamics of charged sus-
pensions at low and intermediate concentrations. We
have used the multicomponent pairwise additivity theory
to calculate the apparent wave-number-dependent
diffusion coefficient DM(q), including terms up to order
r " in the two-particle hydrodynamic far-field expan-
sion. The intrinsic polydispersity in binary mixtures has
been modeled by a bimodal Schulz distribution and the
static correlation functions were calculated using the
HNC closure.

The predictions of this pairwise additivity theory have
been compared to DLS measurements of the first cumu-
lant for dilute salt-free binary suspensions of charged po-
lystyrene spheres. In this case only the leading term in
the expansion of the mobilities in powers of the recipro-
cal distance between spheres, i.e., the so-called Oseen
term of order r ' is relevant, since the radial distribution
functions are practically zero at distances r extending to
several particle diameters. lt was found that DM(q) was
not affected by hydrodynamic interaction for wave num-
bers q )q „.At small wave number q &q „,however,
a significant reduction of DM(q) by more than 10%%uo was
obtained as compared to D~(q), which is the apparent
diffusion coefficient calculated without hydrodynamic in-
teraction. This observation might explain the differences,
found for certain dilute systems [9],between the structure
factor SM (q) determined by ordinary static light scatter-
ing and a "structure factor" SM o (q), which is obtained
from a DLS experiment by assuming negligibly small hy-
drodynamic interaction. This latter structure factor is
determined by rewriting Eq. (4.4) as

HM(q )SDLs( )
— 2

M, o F(i)( )
(6.1)

where

I
H~(q) = g x f (q)Df (q) a=i

(6.2)

SDLs( )
—SDLs( )

DM(q)
(6.3)

As can be seen from Fig. 3, the additional factor

This corresponds to neglecting hydrodynamic interaction
in Eq. (4.5). From the DLS experiment one uses I'~(q)
in Eq. (6.1) so that SM o (q) is fully determined. Any de-
viation of Sg os(q) from S~s (q) is therefore an indication
for the importance of hydrodynamic effects. The obser-
vation of S~"o (q) )SM (q) for q &q,„ found in Ref. [9]
can now be understood, at least qualitatively. The
correct expression for S~"s(q) is

DM(q)/DM(q) (1 for q (q,„, which reduces the values
ofSMo (q) to S~" (q).

The effect of polydispersity on DM(q) and on the
number-number diffusion coefficient D~~(q) was studied
for increasing polydispersity by varying the standard de-
viations s& I& of both components. It was observed that
both hydrodynamic interaction and polydispersity give
rise to a smaller value of D~(q) for q & q,„,and that the
oscillations in DM(q)/DM(q) and D~~(q)/Dg~(q) are
damped out with increasing polydispersity.

Our conclusions. are consistent with recent observa-
tions by Cichocki and Felderhof [33]. They have calcu-
lated to first order in P=(4~/3)pa the apparent short-
time diffusion coefficient D'»(q) of a fictitious mono-
disperse effective hard-sphere suspension (EHS), in which
the effective hard-core radius a' is assumed to be larger
than the hydrodynamic particle radius a. The effective
radius a' can be attributed to the strong repulsion be-
tween double layers in the case of charged suspensions.
Using the far-field expansion of the two-particle diffusion
tensors with stick boundary conditions, Cichocki and
Felderhof find, in the case of EHS, that hydrodynamic in-
teraction is negligibly small, provided that the effective
hard-core radius is appreciably larger than the hydro-
dynamic one and provided that the scattering angles are
not too small ~ They also find hydrodynamic corrections
to the collective diffusion coefficient D"""'=H(0)/S(0)
to be important, the dominant correction coming from
the Oseen part.

%'e have compared the pairwise additivity theory to re-
cent light-scattering data of H(q) for monodisperse
charged silica suspensions at volume fractions up to
/=0. 1. For these systems hydrodynamic interaction not
only affects D (q) at short wavelengths but also the
short-time self diffusion coefficient such that
D""'"/D (1. It was found that the additivity theory
could fit the experimental data equally well as the renor-
malization method developed by Beenakker and Mazur
does. Furthermore, it was sufficient for these systems to
include terms up to r in the expansions of the mobili-
ties in terms of the reciprocal distance.

In our analysis we have restricted ourselves to charged
suspensions with total volume fractions less than or equal
to 0.1, and with ionic strengths small enough such that
the radial distribution functions are practically zero at
contact. Many charged suspensions studied so far fall
into this regime. For these systems we anticipate the
pairwise additivity theory to provide a semiquantitative
description, albeit many-body effects have to be taken
into account for a complete quantitative treatment of the
problem.

At larger volume fractions however, many-body hydro-
dynamic effects are expected to be increasingly impor-
tant, and one has to resort to schemes as proposed by
Beenakker and Mazur. But an extension of their method
to charged colloidal mixtures has not yet been worked
out. Summarizing, we conclude that the "simple" pair-
wise additivity method proposed here is a useful tool to
describe semiquantitatively the short-time dynamics in
polydisperse charged suspensions at small to moderately
large volume fractions.
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APPENDIX

We first give the explicit expressions of the two particle
hydrodynamic tensors A ~(r) and B t (r) up to order
r ", as obtained from general results by Jeffrey and On-
ishi [10]:

A (3(r ) =D — P+ P — ( 171+15P )
4 r~ 2 r6 16 r6

5 a'ap' 3 a 'ap' 9 asap 35 a'ap
(1+2P)+ (121+163P)—— (1+P)—,(31+5P)

75P a ap 3 a ap 9 a ap'
P+—,(91+71P)——,(1+P) +O(r ' ),

k~ T
2 2 75 p 15 p 2 2B ~(r)= (1+P)+ [a +a&](1—3P)+ P — [a +a&]P

6m.g, 4r 4r' 4 r' 4 r'

5 asap a.'a p'

+ — „[a +ay](71+5P)— „(5531+13943P) +O(r '
) . (A2)

where the projector P is defined by P =rr. Note that A p contains only even and B p only odd powers in r '. Substi-
tuting these expressions into Eqs. (4.20) and (4.21) and performing the angular integrations leads to

Ds, short DO
y= 1 a y y 8 ~ Q +Q r

+ [ —200a +597a a z
—144a z ]f dr

32 Q +Q y

2

+ [ —245a" —750a az+294a a —36ar ] dra a y A r r Q +Q r8
(A3)

and H "p can be written as a sum of four contributions,

H"&(q)=pr(x xp)'~ [5~~(q)+5DP(q)+5&~(q)+5& ~(q)], (A4)

where 5op(q)= O(r '), 5 (Dq)=O(r ), +5~( q)= O(r ), and 5& I (q)=O(r, r "). The four terms in Eq. (A4) are
explicitly given by

1 /2

1 /2

pr(x x&)'~ 5o~(q) = ,'a D—
a ~a p

pT(x xp)'~ 5~~(q) =
—,'a D

a~ay

f OO j,(q ) rj&(2Q &)
dr r[g p(r) —1] j0(qr)— —2Q pQ +Qp qr q2

z(qr ) J'&(2 p)

a P r ap

(A5)

(A6)

gfjr Jt ql'
pT(x x&)' 5&~(q) =—',"a (a a&) ~ D (P P&)' f dr j 0(qr )

—2
Qa+Q~ y5 qy

(A7)

pz(xox&)' 5z (q)= —", a D (a a&) (P P&)' —(a +a&)f dr j0(qv) —2
Q +Q~ r qr

+ ,'a D (a a&) (P —P&)'~ f dr (60[a +a&]—906a a&)j 0(qr)
Q +Qp r

jt (qr )—(50[a +a ]—'""a a )p 8 a p

where Q &
——q[a +a&]/2, p =(4~/3)p&x a3, and j„denote the spherical Bessel functions of order n =0, 1, 2, .
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