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Pattern selection in rotating convection with experimental boundary conditions
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Small-amplitude Boussinesq convection in a plane layer with rigid, conducting boundaries rotating
uniformly about a vertical axis is studied. A horizontally unbounded layer is modeled by periodic
boundary conditions and the effect of mean-flow suppression by distant sidewalls is considered, An
exact linear stability calculation partitions parameter space into regions of stationary and oscillatory
convective onset. In the stationary regime, the critical Taylor number and critical angle for the onset
of the Kuppers-Lortz instability are determined as a function of the Prandtl number cr. Of the two
competing two-dimensional patterns in the oscillatory regime, traveling waves are the preferred
planform for 0.442 ( a. ( 0.677. For o. ( 0.442 standing waves are preferred at onset for small
rotation rates while traveling waves are preferred for larger rotation rates.

PACS number(s): 47.27.—i, 47.20.Ky

I. INTRODUCTION

Convection in a rotating plane layer heated from be-
low is of interest for two fundamental reasons. First, for
suKciently small Prandtl numbers it can exhibit oversta-
bility, i.e. , a Hopf bifurcation from the conduction state,
that can be expected to lead to a variety of interesting dy-
namical phenomena, much like those studied extensively
in binary fluid mixtures [1,2]. In addition, however, the
presence of rotation breaks reflection symmetry in verti-
cal planes, thereby allowing new instabilities to occur as
well. Of particular interest in this context is the so-called
Kiippers-Lortz instability discovered in 1969 [3]. This is
an instability of a pattern of parallel rolls to a similar pat-
tern but rotated through an angle o. with respect to the
original one. Since the new pattern that is established
is itself unstable to the same instability, the instability
inevitably leads to interesting time-dependent behavior.
Kiippers and Lortz [3] showed that for sufficiently fast ro-
tation rates this instability sets in already at the thresh-
old of the pattern-forming instability, suggesting that in
this regime the conduction state loses stability directly
to a spatiotemporally complex state.

The present paper is motivated by recent experiments
[4, 5] on this system. Specifically we are interested in pro-
viding precise and detailed predictions from the linear
stability theory of the conduction state for experimen-
tally measurable quantities such as the critical Rayleigh
number, the wave number of the selected pattern, and
the Hopf frequency (if the instability is oscillatory). The
calculations are therefore carried out for the experimen-
tal boundary conditions and parameter values. The sta-
bility boundaries for the onset of both steady and os-
cillatory convection with no-slip and free-slip boundary
conditions are found to become indistinguishable for suf-
ficiently large rotation rates. This result, already well
known for the onset of steady convection, can be sup-
ported by an asymptotic expansion in a small parameter
(the Ekman or inverse Taylor number). In addition we

present the results of weakly nonlinear calculations that
enable us to compute accurately both the critical rotation
rate beyond which rolls are Kuppers-Lortz unstable as
well as the angle with which the instability sets in. These
quantities are a sensitive function of the Prandtl number,
and here the results differ considerably from those with
more idealized boundary conditions. The remainder of
the paper is concerned with weakly nonlinear oscillatory
convection. The calculations are restricted to two spa-
tial dimensions so that the nonlinear problem concerns
only traveling and standing waves. We determine the
relative stability between these two patterns and show
that either may be stable, depending on the system pa-
rameters. In this discussion we are careful to consider
the impact of distant sidewalls in preventing the appear-
ance of the mean flows that are associated with traveling
patterns in unbounded systems. As in the Kiippers-Lortz
calculation we consider stability only with respect to per-
turbations of the same wave number as the basic pattern.
Although this procedure excludes a large class of poten-
tially important perturbations, prior experience suggests
that the selected perturbations are the most dangerous.
In addition this restriction enables us to rely on results
obtained from equivariant bifurcation theory. This tech-
nique [6] allows us to classify the possible weakly non-
linear and spatially periodic states and establish their
relative stability. In addition it identifies precisely the
computations that have to be carried out on the partial
diiferential equations in order to discriminate among the
possible scenarios.

The paper is organized as follows. In the following
section we summarize the relevant bifurcation theory re-
sults. In Sec. III we formulate the hydrodynamical equa-
tions and describe the technique we use to solve them.
In Sec. IV we solve the linear stability problem for the
conduction solution and identify regions in parameter
space where oscillatory and steady-state convection takes
place. In Sec. V we restrict the region of stable small-
amplitude rolls by computing the location of the onset of
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the Kuppers-Lortz instability. In Sec. VI we determine
the relative stability of standing and traveling waves in
the oscillatory regime and thereby partition the parame-
ter space even further. The results are discussed in Sec.
VII.

II. PREDICTIONS FROM ABSTRACT THEORY

zi =(p+alzil'+b I»l')zi
z~ = (v+ alz21'+ b-lzil')zz

(2a)
(2b)

where p, = (R —R,)/R, (( 1 and the coefficients a, b
and 6—are real. Here R is the Rayleigh number and
B, its critical value at onset of convection. Note that
the presence of rotation distinguishes between clockwise
and counterclockwise directions; consequently the stabil-
ity properties of rolls in the kq direction with respect to
perturbations in the k2 direction are not necessarily the
same as those of rolls in the k2 direction with respect
to perturbations in the kq direction. Mathematically
this fact manifests itself in the absence of the symme-
try zi &—& z2 characteristic of nonrotating systems. As
a result the coefFicients b~ and b—are not forced to be
identical; it is this fact that allows the Kuppers-Lortz
instability to take place. Note, however, that the coef-
ficients a are identical. This fact is not forced by the

The Kuppers-Lortz instability has a simple formula-
tion. Since we are interested in the stability properties of
a pattern of parallel rolls with respect to oblique roLl-like
disturbances we formulate the problem on a rhombic lat-
tice whose angle o. is to be specified. The lattice is defined
by two wave vectors kq and k2, each of magnitude k„se-
lected from the circle of marginally stable modes together
with their negatives, and satisfying kq k2 ——A:, cos o, . On
such a lattice any weakly nonlinear pattern can be writ-
ten in the form

ur(x, z, t) = Re[(zie'"'"+ z2e'"'")fi, (z) + . ]. (1)
Here m is the vertical velocity, zq and z2 are com-
plex amplitudes specifying the amplitudes and phases
of rolls with wave vectors ki and k2, respectively, and
fl,.(z) is the appropriate vertical eigenfunction. The form
of the amplitude equations governing the evolution of
these modes for slightly supercritical Rayleigh numbers
is greatly restricted by the spatial symmetries of the sys-
tern. These are the translations in the two directions
together with the inversion symmetry w ~ —x., as dis-
cussed by Knobloch and Silber [7]. The resulting equa-
tions truncated at third order are

symmetry of the rotating rhombic lattice but is a con-
sequence of the SE(2) symmetry of the full unbounded
problem. In particular the amplitudes of rolls in the kq
and k2 directions are the same.

Bifurcation theory tells us that for sufIiciently small z~
and z2 Eqs. (2a) and (2b) capture all possible behavior
of the system, provided a g 0, b —a g 0, b~ a—g 0, and
b b ——a g 0. In terms of the real variables z~—:p~e's',
j = 1, 2, Eqs. (2a) and (2b) become

pi=(p+api+b p2)pi, (3a)
p2 = (~+ ap2+ b-pi) p2, (sb)

together with the two trivial equations 8~ ——82 ——0. The
spatial phases thus decouple and the system is described
by a pair of real ordinary differential equations. The
equations admit up to four fixed points for the dynamics:

Trivial T pq ——p2 ——0
Rolls R pq = 0 or p2
Bimodal B pz g p2, prp2 g 0.

In the following we refer to the two sets of rolls as R~
(p2 = 0) and R2 (pi ——0). The branching equations and
stability properties of the fixed points are summarized
in Table I. Note in particular that the bimodal pattern
exists only when the two sets of rolls are either both
stable or both unstable, and that in the former case the
pattern is necessarily unstable.

In Sec. V we shall see that with increasing rotation
rate the coefBcients b, 6—begin to differ and that at
large enough rotation rate 6——a passes through zero.
As this happens the bimodal fixed point collides with R~
and disappears forming a heteroclinic orbit connecting
Ri to R2 (see Fig. 1). This is the mechanism by which
rolls in one direction lose stability with respect to rolls
at an angle o, in the direction of rotation of the system.
The angle o. is chosen as that angle for which the bimodal
pattern first disappears and is therefore the angle with
which the Kuppers-Lortz instability first manifests itself
as the rotation rate is increased. We denote the criti-
cal Taylor number by 7; and the corresponding angle by

Note that in rotating convection the bimodal pat-
tern never disappears by colliding with R2, consequently
0 ( a., ( ir j2. In Sec. V we calculate the coefficients a,6, and 6—from appropriate solvability conditions arising
at third order in an amplitude expansion.

The competition between standing and travehng
waves, hereafter denoted by SW and TW, respectively, is
described by a very similar set of equations. In this case
the initial instability is oscillatory with a Hopf frequency
u, . The amplitude equations are [8]

TABLE I. The steady-state bifurcation on the rhombic lattice. A solution is stable if all of the
signed quantities are negative. The bimodal pattern (B) exists only when both sets of rolls are
stable or both are unstable.

Pattern Branching equation

p+ap = 0

Stability

sgn(a), sgn(b ——a)

@+ap = 0

p(2a —b——b ) + (a' —b b )p' = 0—
sgn(a), sgn(b„—a)

sgn(a), sgn(b b——a2)
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FIG. 1. Typical phase portraits showing the formation of
the heteroclinic orbit responsible for the onset of the Kuppers-
Lortz instability. (a) The (p&, p2) plane for the nonrotating
case (b = b &—a & 0). (b) The rotating case with no
Kiippers-Lortz instability (b~ & b—& a & 0), and (c) the
rotating case with a Kuppers-Lortz instability from Rq to R2
(b~ & a & b~, a & 0). The mixed mode no longer exists.

Re(a)

v = [p+ i~+ blwl'+ ~(lvl'+ Iwl') + ")v

w = [S
—i~+ blvl'+ ~(lvl'+ [wl') +" ]w

(4a)

(4b)

p+ Re(a)[ATg [2+ = 0,

while stationary SW are described by (v, w)
(Asw, Aside's)/~2, where

p, + Re(a+ zib)]Asw] + = 0.

Equations (4a) and (4b) also show that a stable solution
will be present if and only if both TW and SW bifurcate
supercritically, and that the stable one is the one with the
larger mean-square amplitude [8]. In Table II we summa-
rize the branching equations and the stability properties
of each type of solution in terms of the coefficients Re(a)
and Re(b). The resulting bifurcation diagrams are shown
in I ig. 2.

where (v, w) are complex amplitudes of left- and right-
traveling waves, p = (R —R,)/R„w —u, = O(p), and
a, b are now complex coefficients. In terms of (v, w) the
vertical velocity of the fIuid takes the form

w(x, z, t) = Re[{ve'" + we '" )fg. (z) + ], (5)

where fA. (z) is again the vertical eigenfunction. Here R,
is the critical Rayleigh number at which the Hopf bifur-
cation first takes place and A:, is the wave number of the
resulting waves. From Eqs. (4a) and (4b) it follows that
stationary left TW are described by (v, w) = (AT~, O),
where

2Re(a)+Re(b) =0

FIG. 2. Stability of traveling (TW) and standing (SW)
waves in the (Re(a), Re(b)) plane. Solid (dashed) lines indi-
cate stability (instability). Note that among the supercritical
planforms the one with the largest amplitude is the stable
one.

In Sec. VI these coeKcients are computed for various
values of the parameters. Two cases are considered, re-
ferred to as the unconstrained and constrained problems.
The former is the formally unbounded problem with spa-
tially periodic boundary conditions on all fields. This
formulation allows the presence of constant mean flows
that are associated with the TW. To model the efFect of
distant sidewalls in suppressing such mean flows we su-
perpose in the constrained problem a constant pressure
gradient just large enough to cancel the mean fiow. Con-
sequently while the pressure gradient remains periodic in
space the pressure itself is no longer spatially periodic.
This approach has been used before to study the efFects
of distant sidewalls on the oscillatory instability of rolls
[9] and on TW convection in binary fiuid mixtures [10],
as well as the efFects of distant ends on spiral vortices in
the Taylor-Couette system [ll]. Note that by suppress-
ing the mean Bow, the sidewalls or endwalls alter the
values of the critical coefFicients Re(a), Re(b) and hence
alter the location in parameter space of stable TW and
SW. In the following we deduce the coefficients Re(a)
and Re(b) from the quantities r2 specifying the direction
of branching of both TW and SW. These are defined, as
usual, by the expansion R = R,(l + rz]A]2+ ) where
~A~ is the amplitude of each pattern. In view of the the-
ory this calculation also determines the relative stability
of the TW and SW (see Table II).

TABLE II. The Hopf bifurcation with O(2) symmetry. A solution is stable if the signed quan-
tities are all negative.

Pattern Branching equation Stability

p+ Re(a)~A[ = 0

p, + [Re(a) + —,'Re(b)]~A[ = 0

sgn[Re(a) ], sgn[Re(b)]

sgn[2Re(a) + Re(b)], —sgn[Re(b)]
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III. FORMULATION AND METHOD
OF SOLUTION

B,u+ (u V)u = —V'p+ crez+ crru x z+ oV u,
(8a)
(8b)BiO+ (u. V)O = Rzu+ V'zO

together with the incompressibility condition

(8c)

Boussinesq convection in a plane horizontal layer
heated uniformly from below and rotating about the ver-
tical with constant angular velocity A~i,~, is described by
the nondimensionalized equations

Mug = LP+ N(P, P),
where M and L are given by

/1 O

M = 0 V'zV'z~

(0 0

( Vz
L = CT+—H

and

o
0

)
(12)

and appropriate boundary conditions at z = +zi. Here
u = (u, v, vi) is the velocity field in (x, y, z) coordinates,
while p and 0 denote the departures of the effective pres-
sure and the temperature from their conduction profiles.
Consequently the solution u = 0 = p = 0 corresponds to
the pure conduction solution. The equations have been
nondimensionalized with respect to the thermal diffusion
time in the vertical. The system is specified by three
dimensionless parameters: the Rayleigh number B, the
Prandtl number o, and the Taylor number r2 . The Tay-
lor number is simply (20), where A = A~g~sh /v is the
dimensionless angular velocity, h is the separation of the
top and bottom plates, and v is the kinematic viscosity.
Note that results from the above formulation only ap-
ply to systems for which the Froude number dA &„,/g is
small so that centrifugal acceleration is small compared
with gravity, and the buoyancy force continues to act in
the z direction. Here d is the characteristic horizontal
dimension of the system. This is the ease in the recent
experiments on large aspect ratio rotating convection in
which the Froude number is typically at most 1% [5].
These experiments also motivate our choice of boundary
conditions, no-slip, thermally conducting boundaries at
top and bottom:

u=e=Oatz=+1.2'

As already explained in the preceding section we
choose two types of boundary conditions in the horizon-
tal. In the unconstrained case all fields are assumed to
be spatially periodic functions in the ki z directions with
spatial period 27r/k„where k, is the wave number of
the mode that first becomes unstable as the Rayleigh
number is increased. In the second, constrained, case we
suppose that a mean pressure gradient (—:V'p is present
and is determined by the requirement that no mean flow
is present orthogonal to a sidewall. The difFerence be-
tween these two sets of boundary conditions manifests
itself only for propagating patterns.

For computational convenience, we introduce poloidal
and toroidal stream functions y and Q, respectively, such
that

u = V' x V' x yz + V' x @z. (10)
Equations (8a) and (8b) can then be expressed in the
abstract form

We omit the explicit form of the nonlinear terms N(P, P).
Care must be taken when translating the boundary

conditions on u into boundary conditions on y and @.
The no-slip requirement

B,y+ B„g = B„,y —B @ = 0 at z = 6 z (14)

becomes B,y = 0 at z = +z, but the introduction of
the streamfunctions necessitates an additional boundary
condition for y and @ on each surface. Gauge freedom
allows us to specify y = Q = 0 at z = z. It remains
to specify the boundary conditions at z = —2. This is
done in terms of (U, V), the components of the horizontal
mean flow (if any). In view of the relations

1/2

1/2

1/2

(B,y+ By/)dz
1/2

1/2

= (B*x)I",q', + B,

1/2

1/2

1/2
@dz, (15a)

1/2
vdz= (B„,y —B g)dz

1/2

= (B,x)l",",, —B.
1/2

1/2
Qdz (15b)

we may, without loss of generality, take the final two
boundary conditions to be

g = —xU at z = —
z and1

1/2

1/2
Qdz = —xV.

ikxe(sg+iurg)t, f ( ) (17)

The condition sI, = 0 defines the neutral stability curve,
and the critical Rayleigh number R, is found by mini-
mizing R over all k. This procedure yields A:, and hence
~,. To find the coeKcients of the nonlinear terms in the
amplitude equations (2a) and (2b) and (4a) and (4b) we
expand P in powers of the (real) amplitude A of the mo-
tion,

To determine the critical values R„k„and cu, when
the conduction solution loses stability to overstable con-
vection (w, g 0) or steady convection (cu, = 0), we look
for solutions to the linearized equations of the form
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y = Ay(') + A'y(') + ".,

normalizing P( ) such that

(( '"')) =2

where Pt is any solution to the adjoint linear problem

gtyt p

(19) Here

R = R,(1+r2A'+ ),
~=a, (1+~2A +. ),

g(o) + g( )A

(20a)
(20b)

(20c)

and grouping like powers of A in Eq. (11) we obtain the
hierarchy of equations

Al . +(0)y(1) p

g(0) y(2) ~(y(1) y(1))
(2ia)
(21b)

where (()) denotes a time average over the period 2x/w,
of the oscillation, and a spatial average over a unit cell
of the pattern. Here tu is the vertical component of the
velocity, and is given by 10 = —T2Hy = k2y. The weakly
nonlinear theory is most easily summarized in terms of
the operator l:—:Mc)q —I representing the entire linear
portion of the basic equations. Expanding R, w, and 2
in powers of A,

Z~ = —MOg —L*, (25)

where *denotes the transpose of L followed by changing
the sign of z. The adjoint problem is to be solved subject
to appropriate boundary conditions. These are the same
as those for p but applied at z = p 2 instead of z = 6 2.
Since the layer is symmetric about the midplane z = 0 it
is possible, therefore, to find the adjoint eigenfunctions
in terms of the solutions P(1) by suitable reflections in
z = 0, scalings and time reversals. Consequently the
solution of the adjoint problem requires no further com-
putation. Substituting for Z(2) into Eq. (23), we obtain
two equations (real and imaginary parts) determining r2
and 4)2.

With the boundary conditions (9) the above calcula-
tions must be carried out numerically. The linear sta-
bility problem is solved as in [12]; the remainder of the
calculations were done using the package PATTERN SE-
LECTION written in MATHEMATICA, the details of which
will be presented elsewhere [13].

3 g(0)p(3) g(2)y(1) + ~(y(1) y(2))

+ ~(y(2) y(1)) (21c)
IV. LINEAR STABILITY RESULTS

Equation (21a) is the linear stability problem and de-
termines the various critical values k„R„and w, . The
resulting eigenfunction P(1), normalized as in (19), is used
to evaluate the nonlinear terms in (21b) and compute

For TW traveling in the x direction terms of the
form (y, Q) = (xf1(z), xf2(z)) must be admitted in the
solution at second order. These terms can be related to
the mean gradients of P by averaging the x and y compo-
nents of the original fluid equations over the width 2vr/k,
of a cell. Denoting such averages by overbars, one finds

c),u(2) + (u( ) V')u( ) = —( + o.~v(') + o.V' u( )

(22a)

c)gv( ) + (u( ) . 7')v( ) = —( —era u( ) + o V' v( )

(22b)

where ((~, („)= (8 p(2), c)„p(2)). The unconstrained case
corresponds to ((~, („)= (0, 0) so that the TW is accom-
panied by mean flows in both the x and y directions. The
experiments serve as a guide for choosing the boundary
conditions for the constrained case. These are carried out
in large aspect ratio cylindrical containers. In such con-
tainers the predicted TW travel in the radial direction.
The container walls suppress the radial mean flow but
the azimuthal mean flow remains unaffected. Thus the
constrained problem is characterized by the requirements
U = 0 and („=0.

Finally, at third order, the existence of a solution re-
quires the solvability condition

((yt. [ g(2)y(1)+~(y(1) y(2))+pqy(2) y(1))])) —()

(23)

The linear stability problem with no-slip boundary
conditions has been considered before by Chandrasekhar
[14], Clever and Busse [15], and most recently by Ardron,
Lucas, and Stein [16]. Chandrasekhar's results were ob-
tained using mostly variational techniques, while Clever
and Busse employed a Galerkin expansion. The tech-
nique employed by Ardron, Lucas, and Stein relies on
the resummation of a series representation of the solu-
tion and is in principle exact. This paper focuses, how-
ever, on rotating binary mixtures and does not present
detailed results for pure fluids. In the following we obtain
exact solutions of the linear stability problem following
the work of Knobloch and Moore [12]. We employ the
parameters from the recent experiments on water [4, 5],
compressed CO2 gas [17], and liquid 4He above the A

point [18, 19]. These systems are primarily distinguished
by their Prandtl numbers, these being o = 6.8, 0.80, and
0.49, respectively. In addition we examine o = 0.40, 0.30,
and 0.025, the latter being of interest to earlier experi-
ments on mercury [20]. This section is divided into three
parts. In the first we describe the construction of the so-
lution. The second is devoted to the large rotation rate
limit and demonstrates that in this limit the linear sta-
bility results with no-slip boundary conditions approach
asymptotically those for stress-free boundary conditions.
The results, presented in Sec. IVC, have been checked
using a variant of the numerical code used in Ref. [12]
provided by Dr. D. R. Moore.

A. Construction of the solution

The stability of the conduction state is governed by
Eq. (21a). Translational symmetry allows us to seek so-
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lutions of this system in the form (17), with f~(z)
(fP, fz~, fI, ) B. ecause of rotational symmetry f~, sf„and
wA; can only depend on k = ~k~. Since the linearized
equations are homogeneous in z, the two-point bound-
ary problem in the vertical specifying f& can be solved
exactly. This problem is of eighth order but in view of
the reBection symmetry about z = 0 the eight eigenval-
ues take the form +A~, j = 0, ..., 3. The general solution
thus takes the form

+ &~ —
A~ cosh A~ z

Rk2 cosh A~/2
'

roA~(Az —kz —i~) sinhA z
Rk (o (A —k ) —i~) cosh A~/2

(26b)

(26c)

3

cos}1A2/2
(26a)

Substituting these expressions into the boundary condi-
tions, we find that the condition for the existence of a
nontrivial solution takes the form

( 1

(Ao —k —i~)
p (A' —k' —~~)

l
' '(.-"--)
~0 o (Ao2 —k2) —i(u

1

(A, —k —i~)
pi (A2i —k2 —~u))

(X —k —i~)
&& ~(X2 —k2) —i~

1
(Az2—k2 —i~)

p2(A22 —k2 —iu))
(A~-k -i~)

Q2 ~(P2 k2) —i

1
(A2s —k~ —i~)

ps(As2 —k2 —iu))
(A3 —k —iu))

7s o (A3~—k~) —ice )
(27)

where

p~
—= A~ tanhA~/2. (28)

B. Large-7 limit

In this section, we extend earlier work of Niiler and
Bisshopp [21] to show that, in the limit of large Tay-
lor numbers, the linear stability properties of the con-
duction solution for stress-free and rigid boundaries are
asymptotically indistinguishable. In particular, we gen-
eralize the previous analysis to include the possibility of
overstable convection and show that the effects of the no-
slip boundary conditions are compressed into thinner and
thinner boundary layers as the Taylor number increases.
For stress-free boundaries, one finds that the minimum
Taylor number for overstable convection diverges as the
Prandtl number approaches a critical Prandtl number
o*, above which there can be no oscillatory convection.
The following arguments show that one expects the same
behavior for rigid boundaries, and in particular that the
critical Prandtl number o.* remains unchanged.

The characteristic polynomial P(A) determining the
eigenvalues A describing the vertical structure follows
from Eq. (21a). With the scaling

These results reduce to those for steady convection when
w = 0; they can also be used to compute the growth rates
for supercritical values of R by replacing iu by s + ia,
where s is the growth rate.

The above condition thus determines R(k) for steady
convection, as well as R(k) and u(k) for oscillatory con-
vection. Minimization of R(k) with respect to k deter-
mines B, and u„as well as k, . If the overstable crit-
ical Rayleigh number B, P is less than the stationary
Rayleigh number R, convection is overstable; otherwise
it is stationary.

the polynomial takes the form

P(A) = 'cA +sBsAs+B&A'+BiA'+B„
where

(29a)

(29b)

(29c)

(30)

Bo = r ask (ok +i~)[ok + +uk (1+0.) —~ —or],
(31a)

Bi = —r [ 4cr k + 3icik cr(2+o.)
—2k (3 (1+2cr) —i~ —o k r]

—r ic7 (k +us),
(3lb)
(31c)

B2 = -r'~'[ -6~'k' —3iuk'~(2+ ~)
+w (1+2o)] + r cr,

Bs = r~ a[i~(2 + c7—) + 4o..k ). (31e)

The roots of this polynomial have the asymptotic form

Ao ——(k +i~)r ~ [1+0(r ~ )], (32a)

k~(crk~ + i~) [crk4 + icuk2(1 + cr) —~ —or)
cr2(k2 + i~)

x [1+O(r ~s)], (32b)

A', = ir[1+0(r '~s)], (32c)

A', = —ir[1 + O(r-'~')]. (32d)

Substituting these expressions into (27) we obtain, to
leading order in v. , the condition
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1

lo( -"')

1
, +o(~"')
)s/2 + O(7'/')

('.1" + o(~'/')

,~+ o(~"')
~)s/2 + o(~'/6)

(-'-~'" + o(~"') )

(33)

~2(o k + i(d) g/6 (34)y a
in 28 . Since pi diverges w

'
s while Aq re-

of

iver.

The most unstable mo e corr
Thus

o ~2 ,/61 + 0( '/s)
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C. Results

The solid line in the (cr, r) plane shown in Fig. 3 sep-
arates the regions of overstable and steady convection.

jne is defined by ~HoPf (kHoPf) ~ss (kss) Sj
this point is a codimension-2 point we denote it in the
following by AoT and its locus in the (o, r) plane by
ro~(cr) [23]. The asymptote o = o* is indicated. The
general form of the CT curve resembles that for stress-
free boundaries [22], except that it is, as expected, shifted
to substantially higher values of 7.. Figure 3 illustrates
well the very slow approach to o.* with increasing 7 noted
above. For example, at o. = 0.49 ~g~ is already 3.44x10,
well beyond the highest Taylor number used in the ex-
periment of Ref. [19]. In Figs. 4 and 5 we look at the
linear stability results in more detail. Figure 4 shows
the r dependence of the linear stability results over a

substantial range of values of r. In view of the strong
dependence of the results on r we present in Fig. 4 the
critical Rayleigh number, wave number, and frequency
scaled as in Eq. (29). Thus Fig. 4(a) shows r, as a func-
tion of ~ for o. = 0.025, 0.30, 0.40, and 0.49. The solid
lines indicate the onset of overstability; the dashed line
is the critical Rayleigh number for steady convection and
is independent of o. The remaining panels show the crit-
ical wave numbers k, and the corresponding frequencies
u1, ; the final panel shows the phase velocity u, jk, and
the group velocity Ow/Bk evaluated at k = k, . Note that
the group velocity is typically in the direction opposite to
the phase velocity. Figure 5 describes the o dependence
of these quantities for ~ = 200, 1000, 4000, and 10000.
Panel (a) shows that the critical Rayleigh numbers for
oscillatory convection increase with ~; at the CT point
oscillatory convection is superseded by steady convection
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with R, independent of the Prandtl number. Panel (b)
shows the corresponding critical wave numbers, and indi-
cates the origin of the wave-number jumps that occur in
the transition from overstable to steady convection. The
o. or equivalently the w dependence of the wave-number
jump is shown on a logarithmic scale in Fig. 6 as is the
corresponding jump in frequency, from wcT at the CT
point to zero. Note that the Hopf frequency reaches a
maximum as a function of 0. before decreasing to its value

w~T at the codimension-2 point [Fig. 5(c)].
For comparison with a similar study of binary Quid

mixtures [12] we show in Fig. 7 the quantity AR
RCT —R~ll as a function of o.. Here (RTg, 7TIl(o.)) is the
Takens-Bogdanov point defined to be the point at which
the Hopf frequency vanishes, i.e. , w, = a(kH'P ) = 0.
Note that in contrast to the binary Huid mixtures AR
is relatively large. Consequently the dynamics associ-
ated with the Takens-Bogdanov point are much less likely

to be of interest for rotating convection. This conclu-
sion comes as no surprise, since unlike binary mixtures,
in rotating convection AR does not vanish even with
stress-free boundaries [22]. The Takens-Bogdanov point
is shown in Fig. 3 as the dotted line to the right of the
CT curve.

For many purposes it is also important to understand
the (slow) response of the system when subjected to large
scale modulation such as might arise from distant side-
walls. Such a response is described by evolution equa-
tions in slow spatial and temporal variables. For such
equations one needs to know the curvature of the curve
R(k) at k = k„and the derivatives of the frequency
with respect to both wave number and Rayleigh num-
ber [24]. In Fig. 8 we therefore show the 7 dependence
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I I I:I fore employed the method summarized in Sec. III to re-
exarnine the stability of small-amplitude rolls in the sta-
tionary regime. As discussed in Sec. II the stability of
rolls with respect to perturbations on a rhombic lattice
depends on the nonlinear coefFicients in the amplitude
equations (2a) and (2b). These coefFicients are in turn
directly related to the r2's of the competing planforms.
For the roll planform,
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P'I') = ARe[e'"'" fk. (z)],

we Find a = —rg, while for the bimodal planform,

(39)

p'~') = ARe[(cos p e'"'" + sin p '"'")f (z)], (40)
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latory convection, while Fig. 9 shows the corresponding o.

dependence. Finally Fig. 10 shows wo and $o for steady
convection as functions of ~.

V. THE KUPPERS-LORTZ INSTABILITY

The onset of the Kuppers-Lortz instability with no-
slip boundary conditions was studied for general Prandtl
numbers by Kiippers [25] but the results are not suffi-
ciently detailed for today's experiments. We have there-

10

101o

10

810

FIG. 6. (a) The jump in k, across the CT curve as a
function of 0.. (b) The corresponding jump in a, . The dotted
line indicates o. = ~*.

These relations determine a, 6, and 6—in terms of
rz, rz, and the arbitrary angle p 6 [O, vr]. Figure 3
shows the line r2R = 0. This line intersects the CT
line at a codimension-3 point with coordinates o = 0.30,
7. = 1833, and B = 1.6 x 105. The bifurcation to steady
rolls is generally supercritical (rg ) 0) except at small
Prandtl numbers where it is subcritical (r2 ( 0). The
occurrence of subcritical steady convection is well known
for free boundaries and agrees with the calculation of
Ref. [15] with rigid boundaries. Note, however, that
the region of subcritical steady convection lies entirely
in the Kiippers-Lortz unstable region (see below) so that
subcritical steady convection is not expected to be ob-
servable.

As already mentioned, the rolls Bq lose stability with
increasing r to R2 when b~ = a, i.e. , when P = 0 or
equivalently when rz ——r2 . To locate the onset of this
instability we vary ~ and solve

mm [a(o., 7.) —b~(o, 7.)] = 0. .
o.g [0,7t. j

The solution ~, and the corresponding angle o., are shown
as a function of the Prandtl number in Fig. 11, as are
the corresponding Rayleigh number and wave number.
Some particular examples are listed in Table III. The lo-
cation of the Kiippers-Lortz instability in the (cr, r) plane
is shown in Fig. 3 as the dashed-dotted line.

It is worth noting that the corresponding results for
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TABLE III. The onset of the Kuppers-Lortz instability as
a function of the Prandtl number.
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FIG. 7. Di8'erence in the Rayleigh numbers between the
CT and TB curves. The dotted line indicates o. = o.*.
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stress-free boundaries are qualitatively different. As ob-
served first by Swift [26], with stress-free boundaries the
rolls Rq are ahuays Kiippers-Lortz unstable against rolls
inclined at a suFiciently small angle o, with respect to
them. In Fig. 12(a) we show a —6 f—or cr = 100, as
a function of o. for 7. both below and above the corre-
sponding ~, = 46. Observe that for w ( w, this quantity
is indeed positive for most values of n, although it di-
verges to ~on for n near zero and vr, respectively. This
fact was apparently missed by Kiippers and Lortz [3] be-
cause of the assumption of infinite Prandtl number: the
singularities at small o. and near n = x disappear in
this limit [Fig. 12(b)]. For finite Prandtl numbers no-slip
boundary conditions are required to stabilize these small
angle instabilities. Only in this case is the instability as
described by Kuppers and Lortz in their original paper
[3].

VI. STANDING AND TRAVELING WAVES

The region of parameter space in which the onset of
convection is overstable can likewise be divided into re-
gions of distinct nonlinear behavior. In two dimensions
this behavior is described by Eqs. (4a) and (4b). The real
parts of the coefFicients in these equations are related to
the r2's by

(43a)

The traveling waves bifurcate supercritically if r2 ) 0,
the standing waves if r2s & 0.
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In the following we use the technique of Sec. III to
calculate r2 and r2, and use these results to deduceTw sw

Re(a) and Re(b), and hence the stability of each solu-
tion type (see Table II). The calculations are carried
out for the unconstrained and constrained problems as
discussed in Sec. III. In both treatments of the mean
Bows we End that throughout parameter space, TW
and SW bifurcate supercritically. The curve Re(b) = 0
separating stable standing waves from stable traveling
waves is found by varying ~ for each o. For the uncon-
strained case the result is shown as the dashed line in

Fig. 3. These results are qualitatively similar to those
for the stress-free boundaries [22]: the curve Re(b) = 0
originates on the curve separating stationary and over-
stable convection with traveling waves preferred above
and standing waves preferred below. In contrast to the
stress-free case, however, the curve Re(b) = 0 is not
monotonic with w. It starts on the CT curve at very
high ~ (~ = 7 x 10,o = 0.442), and then decreases,
reaching a minimum at ~ = 1010,o. = 0.20 before in-

creasing again. Notice that the minimum in ~ is suf-

ficiently low that it falls within the experimentally re-
alizable parameter range. Note also that in the range
0.442 & o. & o.* = 0.677 traveling waves are preferred
for all w ) &CT(a) For stress. -free boundaries the cor-
responding range is 0.53 & o & 0.677. However for the
no-slip boundary conditions the corresponding rotation
rates are so high that the governing equations [(8a)—(8c)]
are unlikely to remain valid. The results for the con-
strained case are very similar. This is because at high
Taylor numbers the mean flows in both the radial and
azimuthal directions become very weak; consequently the
suppression of the radial mean flow by the sidewalls plays
essentially no role at the Taylor numbers for which TW
are preferred. For example, at o = 0.20, the value cor-
responding to the minimum of the curve Re(b) = 0 in
Fig. 3, the suppression of the radial mean flow increases
the value of 7. for the transition from SW to TW by two
parts in 105. Consequently, the presence of the sidewalls

manifests itself primarily at the level of the linear stabil-
ity problem (cf. [10]). In general decreasing the Prandtl
number increases the importance of the mean flow [9,
10], but in the present problem this tendency is more
than offset by the rapid increase in the minimum Taylor
number at which the TW are preferred.
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PIG. 12. The quantity a —6—for o. = 100 as a function
of n for (a) stress-free boundaries (~ = 45, 50) and (b) no-
slip boundaries (w = 50, 65). For these cases w, = 46, 54,
respectively. Note that in the stress-free case a —6—is always
negative for suKciently small n even when ~ & ~ .
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VII. DISCUSSION

In this paper we have reexamined the linear stability
problem and weakly nonlinear theory for both oscilla-
tory and steady convection in a rotating layer. We have
focused on providing predictions for recent and ongoing
experiments on this system. These experiments use state
of the art measurement techniques and have focused on
low to moderate Prandtl number Quids (0.49 & o. ( 1.0),
a range that has hitherto been largely unexplored exper-
imentally. Consequently this range has not been greatly
emphasized in earlier theoretical treatments, in spite of
the fact that it contains the transition from steady to
overstable convection. In addition to computing the crit-
ical Rayleigh numbers, wave numbers, and Hopf frequen-
cies for the experimental parameter values and boundary
conditions, we have also determined the threshold values
of the Taylor number and the corresponding angle for the
Kuppers-Lortz instability. This instability has been the
focus of several of the recent experiments [4, 5, 17, 18]. For
the low Prandtl numbers relevant to the latter two ex-
periments substantial departures of 7; and o,, from their
large Prandtl number values have been revealed. How-
ever, at the present time any quantitative comparison
between the theory and the experiments appears to be
plagued by finite-size effects (cf. [4]).

In the overstable regime a two-dimensional calculation
has revealed in the experimentally accessible parameter
range a preference for standing waves near onset. This
result is perhaps not surprising, but suggests that in con-
trast to traveling waves that are characteristic of binary
fluid mixtures, standing waves might become accessible
to experiments in large-aspect-ratio rotating convection
with sufFiciently low Prandtl number. A recent theoreti-
cal study of three-dimensional overstable convection [27]
indicates that a much larger number of competing spa-
tially periodic patterns becomes available in three dimen-
sions, suggesting the possibility that the standing waves
that are stable in two dimensions might actually be un-
stable to other patterns in three dimensions. This is the
case, for example, for compressible convection in a ver-
tical magnetic field [30]. In addition, Ref. [27] discusses
in detail the character of possible Kuppers-Lortz-like in-

stabilities of the traveling and standing waves described
here. Such instabilities may become important with in-
creasing rotation rate, as in the case of steady rolls dis-
cussed in Sec. V. They are, however, beyond the scope of
the present paper.

It is important to relate the results obtained here to
the experiments in a little more detail. In a recent paper
Goldstein et al. [31] observe that in a rotating cylinder
the onset of convection can be either in the form of a
wall mode or a body mode, depending both on the rota-
tion rate and the cylinder aspect ratio. The former is a
mode confined to the periphery of the cylinder; the lat-
ter is a mode that fills the interior of the container but
has small amplitude near the wall. The wall modes al-
ways have a nonzero azimuthal wave number and hence
precess in the rotating frame. Only body modes with a
zero azimuthal wave number do not precess. It is these
modes that are to be identified directly with the modes
discussed in the present paper, a pattern of parallel rolls
forming a local approximation to a pattern of concen-
tric rolls. It is for this reason that the traveling waves
considered above propagate in the radial direction, and
hence always towards a sidewall. The present paper can
therefore be viewed as a contribution towards the study
of nonlinear oscillatory convection in rotating cylindrical
containers. In contrast the eEect of the container walls
on the Kuppers-Lortz instability remains uncertain. The
calculations of Goldstein et aL also show that the dif-
ferences in the critical Rayleigh numbers for stress-free
and no-slip boundary conditions disappear already for
~ = 400 even in containers of quite small aspect ratio.
However, in this case no asymptotic analysis analogous
to that presented in Sec. IV is available. There seems
little doubt, however, that the reason for this behavior is
identical to that for a plane layer.
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