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Dynamic light scattering is applied to the glass phase of nonaqueous suspensions of sterically stabi-
lized colloidal spheres. The short-ranged steric repulsion ensures that the particle interactions are close
to hard sphere. This is supported by the observation that the equilibrium phase behavior of these sus-
pensions agrees with that predicted for the hard-sphere atomic system. We verify a model for a noner-
godic medium, which assumes that the particles are localized during an experiment and which allows the
intermediate scattering function to be calculated from a single measurement of the time-averaged inten-
sity autocorrelation function. Intermediate scattering functions are obtained for several concentrations
over a range of wave vectors around the main diffraction peak. The measured nonergodicity parameters
are in good agreement with the predictions of mode-coupling theory for the hard-sphere glass. The com-
parison involves no adjustable parameters. At long times the intermediate scattering functions can be
scaled to a single curve for over 2.5 decades in time. This, combined with the results that the nonergodi-
city parameters and critical amplitudes required for the scaling are in quantitative agreement with
mode-coupling theory, provides a convincing verification of the predicted factorization property of the 8
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process in the glass phase.

PACS number(s): 64.70.Pf, 61.20.Ne, 82.70.Dd

I. INTRODUCTION

Suspensions of near-micrometer-sized spheres are in-
teresting and extremely useful replicas of atomic fluids
and solids. They exhibit a transition from a fluidlike
phase to a crystalline phase evident by the irides-
cence caused by the Bragg reflections from lattice planes
with spacing comparable to the wavelength of visible
light [1]. Importantly, due to their slow structural relax-
ation times, colloidal suspensions are also easily concen-
trated to dense metastable states without crystallization
occurring [1-3]. Suspensions of identical spherical parti-
cles are therefore valuable materials for studying funda-
mental aspects of the glass transition.

The significant upsurge of interest in the glass transi-
tion, witnessed in the past few years [4], has been ca-
talyzed by the predictions of mode-coupling theory. This
theory provides a detailed description of the microscopic
dynamics of supercooled liquids around the glass transi-
tion [5S—8]. Its key feature is the inclusion, in the equa-
tions of motion, of a delayed nonlinear coupling between
density fluctuations. Increase of this coupling by continu-
ously varying the parameters that control the static prop-
erties produces a sharp crossover of the dynamics from
fluidlike to solidlike, i.e., an ergodic to nonergodic transi-
tion at which a fraction of the fluid structure is arrested.
On approaching the transition two slow structural relaxa-
tion processes are predicted with critically diverging time
scales. The slower a process arrests at the transition
while the faster decay, the 3 process, describes a localized
motion that persists into the nonergodic glass phase.
Mode-coupling theory applies to the so-called ““fragile”
glass formers [9] where the slowing of structural relaxa-
tion and ultimate structural arrest on supercooling are
purported to be the mechanism for the strong non-
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Arrhenius temperature or density dependence of the
viscosity. However, the sharp transition is only predicted
when phonon-activated hopping motions, the usual
mechanism for the restoration of ergodicity in molecular
glasses, are excluded. Their inclusion will round and
perhaps obscure the sharp transition predicted by the
basic version of the theory.

The picture that has emerged of the particle motion in
a dense fluid is one of a sequence of temporary entrap-
ments in ephemeral neighbor cages. Small-scale motion
within the cage may be relatively easy but a larger-scale
excursion requires the cooperative motion of a larger
number of particles. Since a caged particle is itself a con-
stituent of another cage, small- and large-scale concentra-
tion fluctuations are inextricably coupled. With increas-
ing concentration, increasingly large structural adjust-
ments are required for a given particle to escape from its
cage. The coupling leads to an increase and ultimate
divergence of the structural relaxation time, the per-
manent trapping of particles, and the arrest of concentra-
tion fluctuations of all spatial scales.

The predictions of mode-coupling theory have led to a
reappraisal of experimental data on supercooled fluids [8]
and have provoked a spate of light scattering and neutron
scattering experiments in systems of mixed ions [10], po-
lymers [11], and van der Waals molecules [12] around the
glass transition. The results are generally consistent with
the theory; experimental evidence for a two-step decay of
the density fluctuations at long times, beyond those cor-
responding to microscopic or vibrational motions, pro-
vides strong support for the theory. However, as possible
consequences of hopping motions [4,13] or the complex
nature of the materials, necessarily chosen to prevent cry-
stallization on supercooling, the comparisons between ex-
periment and mode-coupling theory are not without am-
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biguity. Difficulties also arise in unambiguously discrim-
inating the two predicted relaxation processes [13]. Com-
puter simulation, the standard recourse for testing
theories of condensed matter, has the added problem of
limited accuracy due to the restricted sampling of phase
space associated with the very slow structural rearrange-
ments in fluids near the glass transition [14]: It is
effectively impossible to obtain proper canonical averages
in the nonergodic glass phase.

Nonaqueous suspensions of spherical particles, with
narrow size distributions, stabilized by thin steric barriers
can be prepared so that the particle interaction is close to
that of hard spheres. Their phase behavior [1,15,16] is in
accord with computer simulation and theory for the hy-
pothetical hard-sphere atomic system. The size disparity
(about 10°) between near-micrometer-sized colloidal par-
ticles and atoms has two significant consequences: First,
the shear moduli of crystals of colloidal particles are
about 10 orders of magnitude smaller than those of atom-
ic crystals. Thus the shear stresses imposed by simply
tumbling a sample are sufficient to destroy or “melt” a
crytallized suspension to a metastable phase. Second, the
motions of colloidal particles are slower than those of
atoms by a similar margin so that, with the possible ex-
ception of those states very close to the (equilibrium)
melting concentration, structural recovery (of the meta-
stable fluid to crystal) takes long enough to allow the
study of the structure and dynamics of the metastable
phases. Importantly, a fluidlike suspension can easily be
concentrated to a dense long-lived amorphous phase
without the intervention of crystallization [2,3]. By con-
trast simple atomic systems cannot be cooled or
compressed rapidly enough to by-pass crystallization and
still attain controllable glass phases. These characteris-
tics suggest that suspensions, comprising identical spheri-
cally interacting units, constitute the simplest systems to
show a glass transition. Moreover, since the diffusive
motions of suspended particles are strongly overdamped,
phonon-induced hopping motions are suppressed and
could possibly be absent. Thus these suspensions may
well exhibit the best experimental illustration of the sharp
transition from an ergodic fluid to an ideal glass predict-
ed by the basic version of mode-coupling theory [7].

The particle dynamics of colloidal suspensions, as ex-
pressed by the intermediate scattering function (the auto-
correlation function of the particle number density fluc-
tuations), can be measured by dynamic light scattering
(DLS). This technique is ideally suited to probe the
structure and dynamics on the spatial [0 (10”7 m)] and
temporal [0 (10™* s)] scales of the microscopic diffusive
motions of suspended particles [17]. The longest delay
time (exceeding 1000 s) attainable with modern purpose-
built correlators, is limited only by the long-term stability
of the samples, optical equipment, and, of course, the pa-
tience of the experimentalist; a dynamic range of over
eight decades is readily obtained in a single experiment.
In this sense DLS applied to colloidal suspensions is more
straightforward than, although analogous to, neutron
scattering applied to molecular fluids. In the latter the
results of two different spectrometers must be combined
in order to obtain a dynamic range of more than four de-

cades [18]. We mention in passing that, like dynamic
neutron scattering [19], DLS allows measurement of the
coherent intermediate scattering function (collective par-
ticle concentration fluctuations) and also, by using sus-
pensions of dynamically identical but optically contrast-
ing particles, the incoherent intermediate scattering func-
tion (single-particle motion) [20].

The feature that distinguishes DLS from other spectro-
scopic techniques is that it follows, through the measure-
ment of the time-averaged time autocorrelation function
(I(q,0)(q,t)) of the scattered intensity, the temporal
evolution of the squared amplitude of a single spatial
Fourier component of the particle number density fluc-
tuations [21,22]. Special procedures must therefore be
adopted when the dynamic properties of a nonergodic
sample, such as a colloidal glass, are measured by DLS.
One approach is to construct the ensemble average by a
“brute force” procedure that entails accumulating data
for a large number of independent scattering volumes in
the sample. This procedure was used in the first DLS
measurements on glasses of hard-sphere suspensions
[2,3]. It is, however, extremely tedious and prone to
significant systematic statistical uncertainties. Since then
Pusey and van Megen [21] have proposed a model for a
nonergodic medium in which the particles are con-
strained to move about an amorphous distribution of
fixed average positions. This model effectively allows the
calculation of the (ensemble-averaged) intermediate
scattering function from a single measurement of the
time-averaged intensity autocorrelation function.

Previous work [2,3] on colloidal suspensions of hard
spherical particles has established a close connection be-
tween the concentration at which homogeneously nu-
cleated crystallization is first suppressed and that at
which the intermediate scattering function, measured by
DLS in the amorphous phase, no longer decays fully.
Moreover, the arrest of concentration fluctuations, indi-
cated by DLS, occurs over a very narrow range of con-
centration. Significantly, there is no qualitative change in
the static structure factor of the metastable fluids over
this concentration range. The intermediate scattering
functions obtained in these experiments, particularly on
the fluid side of the glass transition, could be scaled to the
master functions of the a and 8 processes calculated by
mode-coupling theory for the hard-sphere system [23,24].
In addition, the scaling times and amplitudes of these
processes satisfied the predicted scaling laws.

In this paper we present a detailed account of DLS
measurements on colloidal glasses, concentrating particu-
larly on the wave-vector dependence of the intermediate
scattering functions. A preliminary account of aspects of
this work has already been published [25]. The objectives
here are (i) to verify the model and DLS theory for noner-
godic media, thereby demonstrating that the particles in
a colloidal glass are effectively localized over the duration
of an experiment, and (ii) to use the model to determine
the intermediate scattering functions of colloidal glasses
over a range of scattering vectors and particle concentra-
tions and compare the results with the predictions of
mode-coupling theory.

In the following section of this paper we outline the
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theory of DLS by nonergodic media and give a brief ac-
count of the relevant aspects of mode-coupling theory.
In Sec. III the experimental procedures are summarized.
Experimental results are presented and discussed in Sec.
IV which includes a description of the visual behavior of
the suspensions, verification of the model for a nonergod-
ic medium, and comparison of DLS results on colloidal
glasses with mode-coupling theory. Concluding remarks
are presented in Sec. V.

II. THEORY

A. Dynamic light scattering

Dynamic light scattering [17,22] measures the normal-
ized time-averaged time autocorrelation function of the
scattered intensity

g¥(g,7)=(1(g,0)I(q,7)) 7 /{I(q))3 . (1)

The magnitude of the scattering vector, q is
g =(4mn /\)sin(68/2), where A is the vacuum wavelength
of the radiation, n the refractive index of the medium,
and 6 the scattering angle. For an ergodic medium the
scattered intensity, I (g,¢), undergoes, in the course of an
experiment of duration 7, the full range of fluctuations
consistent with the full ensemble of spatial configurations
accessible to the N particles in the scattering volume V.
In this case the measured time-averaged intensity auto-
correlation function, denoted by the brackets { ) in Eq.
(1), is equivalent to its ensemble average { ), i.e.,

g (g, )=g(q,T) . )

Since the scattered light field has Gaussian statistical
properties, the measured intensity autocorrelation func-
tion is related to the normalized ensemble-averaged auto-
correlation function of the scattered light field, f (g, 7), or
intermediate scattering function (ISF), by the usual
Siegert relationship [17,22],

g, ) =1+c[f(g,D]*. 3)

Here, c is an experimental constant proportional to the
ratio of the coherence area, or speckle size, to the detec-
tor area. The ISF is given by

flq,7)=F(q,7)/F(q,0), 4)
where
F(q,7)=(E(q,0)E*(q,7)) g , (5)

and F(q,0)=S(q) is the static structure factor. For N
identical spherical particles located at r;(¢) and suspend-
ed in an optically homogeneous background the instan-
taneous amplitude of the scattered light field is (in the
far-field limit)

N
E(g,t)= 3 expliq-r;(1)] . (6)
i=1

This quantity represents the spatial Fourier component,
of wave vector g, of particle concentration fluctuations
Sp, i.e., apart from constants which are canceled through
normalization [as in Eq. (4)],

E(q,t)=38pl(q,t)
= [ 8p(r,t)expliq-r(r)]dr . 7)

We reiterate that in the ergodic case the particles have
sufficient freedom that in an experiment of “reasonable”
duration all values, between O and 2, of the phase fac-
tors, q-1;(7), are effectively sampled. Then E(g,t) consti-
tutes a zero-mean complex random Gaussian variable.

In a nonergodic medium, such as the colloidal glass
considered in this paper, the particles are partly con-
strained. Consequently, the scattered field is no longer a
zero-mean random Gaussian variable and the ensemble-
averaged intensity autocorrelation function is not real-
ized in a single measurement (i.e., { }77¢{ ). A corol-
lary to this is that the (ensemble-averaged) ISF cannot be
obtained from the measured time-averaged intensity au-

- tocorrelation function with the use of Eq. (3).

One approach to DLS by a nonergodic medium is to
determine the ensemble average, gi*)(g,7), by accumulat-
ing data for a very large number of independent scatter-
ing volumes in the sample [2,3]. An alternative, proposed
by Pusey and van Megen [21], to this tedious procedure is
to model a nonergodic medium by writing

r;()=R;+A1), (®)

where R; is the fixed average position of particle j and
A ;(2) is its (time-dependent) displacement about this posi-
tion. This assumption allows the scattered field to be ex-
pressed as the sum of fluctuating, Ex, and constant, E,

components,

E(q,t)=Ep(q,t)+Ec(q,t) , (9a)

N
Ep= Y expliq-R;){exp[iq-A;(?)]
i=1

—(expliq-;(0]) 7}, (9b)

N
Ec=3 exp(iq-Rj)<exp[iq'Aj(t)])T . (9¢)
ji=1

In contrast to the ergodic case considered above, the time
average ) here indicates an average over the suben-
semble of configurations accessible to the particles in a
particular volume of the sample. Particles in different
volumes in the sample have different fixed average
configurations {R;} and yield different constant com-
ponents in the scattered field [Eq. (9¢)]. However, the
fluctuating component is a zero-mean complex random
Gaussian variable whose average properties are the same
for all scattering volumes.

As shown in Ref. [21], these considerations of a noner-
godic medium lead to the following relationship between
the measured time-averaged intensity autocorrelation
function, g{*(g,7), and the normalized (ensemble-
averaged) ISF, f (g, 7) [defined by Eq. (4) to (6)];
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g (g, T)=1+Y?[f(g,7)—f(q,0)*+2Y{1—Y[1—f (g, )]}[flg,7)—f(g, )],

Y=I./I,

where I7=(I(q,t)) is the time-averaged total scattered
intensity for the particular scattering volume under study
and I, =(I(g,t))y is the total scattered intensity aver-
aged over an ensemble of different scattering volumes.
Equation (10) can be solved to give

flgr)=1+Y Y[g®¥(g,7)
—g¥(q,00+11"2—1} . (11)

Taking the limit 7—> o in Eq. (11), and using the fact
that intensity fluctuations become totally decorrelated at
long times [i.e., gi?)(g, 0 )=1], gives

flg0)=1+Y {[2—g{*(g,0)]'*—1} . (12)

In addition to the usual experimental requirements in
DLS [17,22] the derivation of Eq. (10) assumes a detector
area much smaller than one coherence area or speckle.

Two limiting cases of the above results can be con-
sidered. The first is an ergodic medium where the parti-
cles are able to execute large excursions {A;(#)} so that
(exp[iq-A;(#)]) =0 and the constant component in the
scattered field vanishes. The net scattered field, E (g,?), is
now a zero-mean random Gaussian variable with the
consequences that I;=1I;, gi*(q,0)=2, and Eq. (10)
reduces to the familiar result for an ergodic medium, Eq.
(3) (with ¢ =1 due to the assumed point detector). Fur-
ther, as may be seen from Eq. (12), f(q, ©)=0, i.e., con-
centration fluctuations ultimately decay completely. The
second case is the nonergodic extreme, such as a fully
compressed glass, in which the randomly positioned par-
ticles are completely immobilized so that A;(¢)=0 for all
j. Now the fluctuating component of the scattered field
vanishes and the scattered intensity is independent of
time. The result is that g(Tz)(q,T)Zl for all 7 and one
sees, from Egs. (11) and (12), that f(g,7)=f (g, 0 )=1,
i.e., the ISF is constant in time indicating that particle
concentration fluctuations are completely frozen.

Generally the light scattered by a glass, such as the
glass phase of hard spheres at concentrations below ran-
dom close packing, comprises both a constant com-
ponent, associated with the arrested structure, and a fluc-
tuating component, associated with the restricted particle
excursions about their fixed average positions. The frac-
tion of the frozen structure (or nonergodicity parameter),
f (g, o), can be obtained, by using Eq. (12), from the
measured mean-squared value, o2 [0?2=g{?)(¢,0)—1], of
the intensity fluctuations.

We emphasize that I and f(q,7) are ensemble-
averaged properties of the system and, as such, are in-
dependent of the particular volume being studied. How-
ever, the time-averaged measured quantities, I, and
g(Tz)( g,7) will, in general, be different for different scatter-
ing volumes in the sample. In particular, a large value
for Iy (or bright speckle) implies a large value for the

constant component of the scattered intensity and hence -

(10a)
(10b)

a small value for the mean-squared intensity fluctuation
[see Eq. (12)].

Furthermore, for a nonergodic medium the apparent
short-time diffusion coefficient,

D,,,(g)=—g %lim iln[g}”(q,r)—l]“z, (13)
70 OT

calculated directly from a first cumulant analysis of the

measured time-averaged intensity correlation function,

depends on the particular scattering volume and is,

therefore, incorrect. The correct short-time diffusion

coefficient, D (q), must be calculated from the ISF:

D(g)=—q 2 lim-In[f(g,7)] . (14)
7—0 0T
As shown in Ref. [21], D (q) is related to D,;,(q) by
D(g)=D,,,(q)0*/Y . (15)

From Eq. (14) it follows that the short-time result for the
ISF is

f(g,7—0)=exp[ —D(q)q*r], (16)

where, in analogy to the generalized Einstein equation,
the wave-vector-dependent short-time diffusion
coefficient can be expressed as a ratio of hydrodynamic
and thermodynamic terms as follows [26]:

D(q)=H(q)/S(q) . (17)

The hydrodynamic term, H(q), is essentially a
configurational average over the mobility tensor [26,27].

"~ The latter couples the particle velocities with the forces

exerted on them. Without hydrodynamic interactions
H(g)=1 and Eq. (17) expresses the analog, in colloidal
suspensions [28], of the de Gennes narrowing [29], the
slowing of concentration fluctuations in the region of the
diffraction maximum. For concentrated hard-sphere sus-
pensions H (q) is strongly concentration dependent [for
example, near the freezing concentration H (¢ —0)=~0.02
and H(q >gq,,)=0.3, g, is the position of the main peak
in S(g)] and it has a q dependence qualitatively similar to
the static structure factor [27,30]. Hence the compressi-
bility, S(g), that drives the concentration fluctuations is
partly offset by hydrodynamic effects. For a hypothetical
hard-sphere suspension at freezing with no hydrodynam-
ic interactions the ratio D(g,,)/D(0)=S(0)/S(q,,) has
a value of about 0.007, whereas with the inclusion of the
hydrodynamic interactions the corresponding ratio
D(g,)/D(0)=H(q,)S(0)/H(0)S(q,,) is around 0.15.
Thus the hydrodynamic interactions cause considerable
smearing of the wave-vector dependence of the decay
rates of concentration fluctuations at short times.

B. Mode-coupling theory

The central aspect of recent application of mode-
coupling theory to very dense supercooled fluids is the ex-
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pression of the memory kernel, or autocorrelation func-
tion of the random force, in terms of products of con-
served variables [7,8]. This kernel, M (g, 7), is essentially
defined by the generalized Langevin equation. The latter
is derived from either the Liouville [31] or Smoluchowski
[32] equations through the application of projection
operator formalism. The basic version of the theory in-
cludes only density fluctuations, i.e.,

M(gm)= 3 V(g;q',a")f (¢, 7)f(g",7) . (18)
q.q9"

Thus a density or concentration fluctuation of wave vec-
tor g is coupled, via the consequential microscopic force
fluctuations, nonlinearly to concentration fluctuations of
all spatial scales. Alternative closures to Eq. (18) have
been explored [5,7]. However, in order to reproduce all
the qualitative features of the observed spectra of dense
supercooled fluids the closure of the generalized
Langevin equation must contain terms that are at least
quadratic in different correlation functions, e.g., the
correlation of concentration fluctuations of different wave
vectors as in Eq. (18). By increasing the coupling
through continuously varying the static properties (such
as the static structure factor appropriate to the concen-
tration of the metastable fluid) a dynamic instability is
crossed, at a concentration ¢,., beyond which the fluid
structure is partially arrested. The approach to the tran-
sition from the fluid side is accompanied by the emer-
gence of two distinct relaxation processes, the a and f3
processes, whose time scales 7, and 75 diverge algebrai-
cally with nonuniversal exponents. The slower a process
freezes in at the transition while the faster 3 process per-
sists into the nonergodic glass.

Close to the transition the theory makes general but
detailed predictions for the particle dynamics. For inter-
mediate times 7,>>7>>7, where 7, characterizes the
time scale of the local or microscopic particle motion (or
atomic vibrations), the dynamics are governed by the f3
process for which the predicted ISF has the form

@) =f@+h(gegs(r/15) , (19)

where f.(g), referred to as the critical nonergodicity pa-
rameter, represents the fraction of the structure that is
arrested at the concentration ¢,. The amplitude of the 3
process is 4 (g)c,, with c¢.=]|e|'’?, and g is a universal
master function for which the * subscript indicates the
sign of the separation parameter € defined by

e=cold—b,)/b, (20)

(¢ is a material-dependent constant). The scaling time of
the B process increases critically with €,

Tg=1o/ €1/ . (21)

In addition, the following limiting results are predicted:

gilr<<)=7"7, (22a)
gilr>1)=(1—1)"12, (22b)
g_(r>1)=—B7t, (22¢)

where B >0, and the exponents a and b, whose values lie
in the ranges 0<a <1/2 and 0<b <1, are specified by
the exponent parameter A. Equation (22a) indicates that
during the early part of the 8 process the dynamics in the
fluid (e <0) and glass (e >0) are identical. At long times
correlation functions saturate in the glass [Eq. (22b)] but
decay algebraically in the fluid [Eq. (22¢)]. On the mac-
roscopic time scale 7=7, the dynamics on the fluid side
of the transition are governed by the a process for which
the theory predicts another scaling law

flg,T)=f(q)G(g,7/7,) . (23)

The scaling time (which varies in proportion to the
viscosity) for this slower process is

To=7o/\€lY, y=1/2a+1/2b . (24)

This paper is concerned with the particle dynamics in the
glass phase where, according to the theory, the a process
is arrested and only the 8 process is relevant.

The quoted equations are asymptotic results of mode-
coupling theory valid to order |e|!/2. In this regime the
dependence on the microscopic frequency is lost; in the
generalized Langevin equation the microscopic frequency
is the only term that distinguishes the ballistic dynamics
of atoms from the diffusive dynamics of suspended parti-
cles. To this extent the above results are universal, i.e.,
they are independent of the nature of the material and its
thermal history. Details of the material, as specified by
the interaction potential, enter the theory implicitly via
the static structure factor S(q)=F(q,0) from which the
vertex function V(q;q’',q"') can be calculated [7,8]. This
specifies the parameter A which, in turn, determines the
functions g, and the exponents a and b. Detailed solu-
tion of the mode-coupling equations therefore, has only
been accomplished so far for simple systems, such as the
hard-sphere fluid [6,33,34], for which S(g) is known.
The critical concentration predicted for the hard-sphere
system is ¢, =0.52 which, as we shall see below, is some-
what lower than the experimental glass transition concen-
tration for hard-sphere colloids. For later reference we
mention that, in addition to the asymptotic results for
hard spheres, Bengtzelius, Gotze, and Sjolander [6] and
more recently Fuchs er al. [24] obtained explicit results
for the nonergodicity parameters, f(g, ), for hard-
sphere glasses for a range of values of €.

We mention two further aspects that are relevant par-
ticularly when drawing comparisons between mode-
coupling theory and experiment. First, the above results,
apply only to the slow dynamic processes that emerge at
long times in very dense fluids in the vicinity of the glass
transition. The time scales of these processes lie well
beyond the microscopic time, 7, characteristic of atomic
vibrations or small-scale diffusive motions of suspended
particles. The time 7 is, in principle, the only parameter
in the theory; it connects the mathematical and experi-
mental time scales. Second, the sharp transition outlined
above is predicted by the theory when the coupling of
concentration fluctuations to particle currents is neglect-
ed. Its inclusion, to allow for the hopping motions that
result from collective excitations, rounds or obscures the
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sharp transition [35]. Since colloidal particles exchange
energy and momentum only with the suspending liquid
such hopping motions are likely to be significantly
suppressed in colloidal glasses.

III. EXPERIMENTAL DETAILS

A. Sample preparation

The particle suspensions used in this work are similar
to those described in a number of earlier studies
[1-3,20,30,36]. The particles comprise a poly-
(methylmethacrylate) (PMMA) core coated with a chemi-
cally grafted layer of poly-(12-hydroxystearic acid)
(PHSA) of approximately 10 nm thickness. Two prepara-
tions were used; their hydrodynamic radii, Ry, and po-
lydispersities (or coefficient of variation of the particle
size distribution) measured by DLS [37] on dilute samples
are listed in Table I. Concentrated suspensions of these
particles, of refractive index n=1.5, in a hydrocarbon
liquid, such as decalin (n =~1.48), are opaque and basical-
ly unsuitable for light scattering studies. However, the
addition of a high refractive index liquid, carbon disulfide
(n=1.63) in this case, gives control over the turbidity
and provides samples that, at least in the region of the
main maximum of the static structure factor, give ample
single but negligible multiple scattering of light. Follow-
ing this optical matching procedure, suspensions were
brought to the required concentration by centrifugation
of the samples, removal of an appropriate weight of su-
pernatant, careful sealing to minimize solvent evapora-
tion, and gentle tumbling for about 1 day to redisperse
the compact sediment. Each sample was prepared in an
optical cuvette (of l-cm square cross section) and
comprised approximately 2 cm® of suspension in which
the weight fraction of particles was known to an accuracy
of about 0.2%. From this the fractional volume, &, of the
“particle cores” was calculated using literature values for
the densities of the respective components.

B. Light scattering

The DLS measurements were performed with conven-
tional equipment which consisted of a home-built
goniometer, comprising a temperature controlled sample
holder and a horizontally rotating detector assembly. A
Spectra Physics 165 Kr*-ion laser, operated at the wave-
length A=647.1 nm, was sharply focused in the sample
(focal waist about 100 um). This optical equipment was
mounted on a mechanically isolated platform to ensure
long-term alignment. The latter, along with the intensity
and beam-pointing stability of the laser were checked

periodically by measuring the zero-time value or “inter-
cept,” gi¥)(q,0), of the light scattering from a piece of
frosted glass for a duration of 7"=1000 s; values obtained
were typically g(TZ’(q,O)S, 1.003. In most cases the nor-
malized, time-averaged, intensity correlation functions,
g4¥(q,7), were calculated from the digitized photon sig-
nal with Brookhaven Instruments BI2030 and BI8000
correlators. To capture the broad range of dynamic pro-
cesses in very concentrated metastable fluid and glass
phases these two correlators were operated in parallel in
a manner to ensure that each received the same photon
signal. Optimum selection of the sample times and chan-
nel spacing gave a combined dynamic range of just over 6
decades. In some of the most recent measurements re-
ported here we employed an ALV5000 correlator with
256 logarithmically spaced channels that span delay
times from 0.2 us to 3000 s.

The derivation of Eq. (11) assumes a point detector
which, as stated above, means that for an ergodic sample
g1¥(g,0)=2. In practice this requires a detector aperture
much smaller than one coherence area or speckle. This
was achieved by reducing the detector aperture until for
an ergodic sample (e.g., a suspension in an equilibrium
fluid phase) g\*/(¢,0)=1.98+0.02. Thus, for this ar-
rangement the constant ¢ appearing in Eq. (3) is ¢ =0.98.
The arrest of concentration fluctuations, i.e., the noner-
godicity of the sample on the time scale T of the experi-
ment, is evident in DLS by a measured value for g}Z)(q,O)
of less than 2. Intercepts were obtained from the mea-
sured intensity autocorrelation functions, g(Tz)(q,T), by
the usual cumulant analysis [38].

The other two quantities appearing in the right-hand
side of Eq. (11), required for the evaluation of the ISF
from gi*'(¢q,7), are the time-averaged intensity, I, and
the ensemble-averaged intensity, I5. Iy is simply given
by the average number of photon detections accumulated
by the correlator during a particular measurement. Ip
was determined from the photon counts accumulated
while the sample was moved vertically in the laser beam
by a computer-controlled motor. About 15 such scans
through different parts of the sample ensured that esti-
mates of I, based on at least 2000 independent speckles
in this procedure, were accurate to about 1%.

IV. RESULTS AND DISCUSSION

A. Visual behavior of the samples

Previous work [1,39] on suspensions of similar particles
has already described in detail the overall phase behavior
and its resemblance to that of the ideal hard-sphere sys-

TABLE I. Designation of latices, hydrodynamic radius Ry, polydispersity, effective hard-sphere ra-
dius R, and glass transition volume fraction ¢;. Results shown in all figures, except Fig. 2, are based on
samples prepared from latex 1. Figure 2 is based on data from latex 2.

Latex Ry (nm) Polydispersity (%) R (nm) dg
1 (SMU 21) 210+3 3-5 206 0.563+0.001
2 (SMU 29) 20543 3-5 199 0.570+0.002
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tem. For completeness we give a brief description here.
Samples prepared by the above procedures and left undis-
turbed after tumbling showed the following behavior with
increasing concentration: They remained as colloidal
fluid, separated into coexisting crystalline and fluid
phases, or became fully crystalline. The crystallization in
these cases was by homogeneous nucleation, evidenced by
the appearance of small Bragg-reflecting crystals that
were homogeneously distributed throughout the sample.
The crystals were easily shear melted by simply tumbling
the samples, thus providing suspensions in their metasta-
ble fluid states. Recrystallization was usually evident in
less than about half an hour of being left undisturbed. In
the samples between the freezing and melting concentra-
tions the crystals settled gravitationally and a distinct
boundary, separating the coexisting polycrystalline and
fluid phases, was evident after several days. Using a pro-
cedure similar to that described by Paulin and Ackerson
[15] the effect of slow gravitational settling of the parti-
cles was eliminated. The ‘“‘gravity-free” proportion of
crystalline phase plotted as a function of sample concen-
tration gave a straight line (lever rule). Extrapolation to
0% crystal yielded the core volume fraction, &g, of the
suspension at freezing. The concentrations of all samples
prepared from a particular stock suspension of particles
were then expressed as effective hard-sphere volume frac-
tions, as

¢=Edr/EF » (25)

where ¢r=0.494 is the freezing volume fraction of the
hard-sphere fluid, known from computer simulation [40],
and £ is the volume fraction of particle cores. This pro-
cedure gave an effective hard-sphere melting volume frac-
tion of ¢,;,=0.542+0.003, in good agreement with the
value of 0.545+0.002 established by computer simulation
for the melting concentration of the hard-sphere crystal
[40]. This result, which has been reproduced for several
suspensions of PMMA particles of different radii [16], is a
strong indication that the interaction between these parti-
cles is very similar to that of hard spheres.

The static structure factors, S(gq), measured on these
suspensions [3] can be scaled so that they fit the Percus-
Yevick result, with the empirical correction of Verlet and
Weis [41], for the hard-sphere fluid, at least in the region
of the position, g,,, of the primary maximum. We use the
same procedure as detailed elsewhere [3,42] to locate g,,
for a suspension at the freezing concentration. The
effective hard-sphere radius, R, of the particles in the re-
fractive index matched suspensions is given by

R=0,, /4, (26)

where Q,, =3.47 is the theoretical value [41] of the posi-
tion of the main maximum of S(g) in units of the hard-
sphere radius. The values of R obtained for the two sus-
pensions used in this work are listed in Table I. Hence-
forth scattering vectors are expressed in units of the re-
ciprocal of the hard-sphere radius, i.e., as gR.

Beyond ¢,, a volume fraction ¢, was reached where
homogeneously nucleated crystallization was superseded
by the slow formation of larger crystals, nucleated

heterogeneously at the meniscus, walls of the optical cu-
vette, or possibly on the occasional impurity. These
larger crystals were evident after several hours at volume
fractions just above ¢; but their formation slowed
significantly at higher volume fractions. On approaching
the random close-packing volume fraction, ¢ =0.64, pro-
gressively smaller proportions of crystal grew from the
menisci over increasingly long periods (days to weeks)
while the rest of the sample remained amorphous. Here
we identify ¢ as the glass transition volume fraction and
all DLS results discussed in the following subsections ap-
ply to the glass phase (¢ > ¢;). We attribute the small
variations in the value of ¢ (0.555-0.575) observed here
(see Table I) and in previous work [1,3] to differences in
the polydispersities, that are too small to detect by DLS
[37], and also to the systematic error in the effective
hard-sphere volume fraction incurred in the determina-
tion of & for different suspension preparations. Howev-
er, for a particular preparation the concentrations, scaled
according to Eq. (25), are internally consistent and accu-
rate to about 0.5%.

B. Testing of a model for colloidal glasses

In this subsection we present several tests of the validi-
ty of Eq. (11) which expresses the (ensemble-averaged)
ISF in terms of a single measurement of the time-
averaged intensity correlation function of a nonergodic
medium. The basic assumption in the derivation of Eq.
(11), as well as its corollary equation (12), is that the par-
ticles are effectively localized about fixed average posi-
tions for the duration of the experiment. The extent to
which a colloidal glass shows this property can be tested
by making measurements of different duration T and, in
each case, calculating the apparent nonergodicity param-
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FIG. 1. Apparent nonergodicity parameters f(q,“e”) of
colloidal glasses as a function of the duration T of the measure-
ment. Squares signify the sample volume fraction ¢=0.580,
measurements made at the scattering vector (multiplied by the
hard-sphere radius) of gR =3.35 (i.e., near the position of the
main peak in the static structure factor). Triangles denote the
sample at $=0.576 and gR =2.77.
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eter f (g, “”) from the measured values of g{?)(q,0), I,
and I by use of Eq. (12). Figure 1 shows the results of
such measurements, for T ranging from 10 to 2000 s, for
two colloidal glasses at volume fractions ¢ =0.576 and
0.580. Each data point was obtained by averaging about
ten measurements of f (g, “c”). Between each of these
measurements the sample was moved relative to the laser
beam so that a different volume was illuminated, result-
ing in a different value of the time-averaged (or speckle)
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FIG. 2. (a), (b) Normalized intensity autocorrelation func-
tions, g'¥'T(q,7), time-averaged over T =1000 s as functions of
the delay time for the indicated speckle intensities I;/Ig
(=Y"'), volume fractions and scattering vectors. (c) Inter-
mediate scattering functions, f(g,7), derived from the above us-
ing Eq. (11).

intensity I,. It can be seen that f(q, ‘o) decreases
with increasing T up to T'=100 s, implying the existence
of residual ““fast” fluctuations on this time scale associat-
ed with the local motions of the particles about their fixed
average positions. However, for 100<7 $2000 s,
f(g,“x”) is essentially independent of T. At the very
least, this behavior demonstrates the existence of fluctua-
tions with a bimodal distribution of relaxation times; fast
fluctuations, with relaxation times of less than 100 s, and
slow fluctuations, associated with large-scale “structural”
relaxations whose time scales greatly exceed 2000 s.
Thus concentration fluctuations, due to large-scale parti-
cle motions, are effectively arrested on any reasonable ex-
perimental time scale, i.e., the particles are localized, as
assumed in the model for a nonergodic medium [21].

Next we examine time-averaged intensity correlation
functions for several colloidal glasses obtained by mea-
surements of 7"=1000 s duration. As above, the sample
was moved relative to the laser beam between each mea-
surement. The data in Fig. 2 show that very different re-
sults are obtained for gi?)(¢,7) for different values of I
(or Y =1Ig /I;) corresponding to different volumes in the
sample. The results of individual 1000-s measurements,
shown here, exhibit some statistical noise as well as evi-
dence of residual fast fluctuations that persist to times of
order 100 s (see Fig. 1). This is more noticeable in Fig.
2(a) for the volume fraction, ¢ =0.575 (€~0.01), which,
for this latex (latex 2) is only marginally inside the glass
phase (¢;=0.570+0.002). Increasing ¢ results in arrest
of a progressively larger fraction of the concentration
fluctuations and the ‘“‘compression” of the nonarrested
fluctuations to shorter times. Figure 2(c) shows the ISF’s
calculated, with Eq. (11), from the data in Figs. 2(a) and
2(b). Significantly, the same ISF is obtained for the
different time-averaged intensity autocorrelation func-
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FIG. 3. Verification of Eq. (12). Measured values of the
mean-squared intensity fluctuation, g‘?;(¢,0)— 1 (open squares)
and derived values of the nonergodicity parameters, f(g, )
(solid squares) are plotted against I;-/I; for a range of speckle
intensities /. The dashed line shows the average value of
f (g, ©). Measurements are made for $=0.594 and gR =2.77.
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FIG. 4. Apparent diffusion coefficient, D,,,/D, (open
squares), obtained from the initial decay of the time-averaged
intensity autocorrelation function [Eq. (13)] and the correct
diffusion coefficient, D /D, (solid squares) in units of the free-
particle diffusion coefficient, D, calculated from the intermedi-
ate scattering function [Eq. (14) or (15)] are plotted against
I;/Ig; sample at ¢=0.579 and gR =4.23. The dashed line
shows the average value of D /D,.

tions. This supports the main result of Sec. II A and Ref.
[21] that the ensemble-averaged ISF, calculated for a col-
loidal glass from Eq. (11), is a property of the sample in-
dependent of the particular scattering volume.

Figure 3 illustrates that, for a colloidal glass, the
mean-squared intensity fluctuation, 02=g(72)(q,0)— 1, de-
creases with increasing time-averaged intensity, I;.
However, while different values of gi*(g,0) are recorded
for different speckle intensities I, corresponding to
different scattering volumes in the sample, Eq. (12) gives
essentially the same value for f (g, ©). Also, as shown in
Fig. 4, the apparent diffusion coefficient, D, calculated
from Eq. (13) varies with I; and significantly overesti-
mates the correct short-time diffusion coefficient D, ob-
tained from Eq. (15).

The results of Figs. 2—4 demonstrate that for colloidal
glasses the measured time-averaged intensity correlation
function is dependent on the choice of the particular
scattering volume in the sample. However, the ISF cal-
culated from Egs. (11) and (12) is an ensemble-averaged
property of the sample. We mention that the model for a
nonergodic medium and the light scattering theory based
on it, as outlined in Sec. II A and detailed in Ref. [21],
has also been verified for polymer gels as well as colloidal
particles trapped in gels [43].

C. Dynamic-light-scattering results

Having verified both the model and light scattering
theory for nonergodic media we examine the intermedi-
ate scattering functions measured for colloidal glasses in
more detail.

First, the nonergodicity parameters, f (g, « ), measured

on colloidal glasses (prepared from latex 1, see Table I)
are shown in Fig. 5 for concentrations ranging from
¢5=0.563 (e=0) to random close packing, ¢=0.64
(e~0.14). Each data point represents an average over
several measurements, ranging in duration from 200 to
1000 s, with different values of I. In the regions where
the coherent scattering is weak (at small g, gR $2.5,
where the static structure factor has a small value and
large g, gR X 5, near the minimum in the single-particle
form factor) multiple scattering may cause uncertainties
in the data. In addition, incoherent scattering, associated
with the small spread in particle size (see Table I), may
contribute at small g. (Single-particle motions, as mea-
sured by the incoherent ISF, are much slower than the
small wave-vector collective motions, measured by the
coherent ISF [20].) However, in the vicinity of the pri-
mary maximum of S(q), where (single) coherent scatter-
ing is strong the results should be reliable. For reference,
the static structure factor calculated from the Percus-
Yevick expression for hard spheres at ¢=0.563 is also
shown in Fig. 5. The increase in f(g, ) with particle
concentration reflects the increasingly restricted particle
motions, culminating in the effective cessation of motion
at random close packing where f (g, o0 )=~1.

As mentioned in the Introduction we find, to the extent
that the experimental accuracy in the sample concentra-
tion allows, coincidence of the concentration ¢;, where
homogeneously nucleated crystallization is first
suppressed, and that where DLS indicates the partial

f(q,)
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FIG. 5. The nonergodicity parameters f(g,o) of hard-
sphere colloidal glasses as functions of volume fraction and
scattering vector. Experimental data: squares, ¢=0.563, sepa-
ration parameter €==0; triangles, $=0.597, €¢=0.060; circles,
$=0.626, €=0.114; stars, random-close-packed sample,
¢==0.64, €e=0.14. The solid curves are the mode-coupling pre-
dictions [6] for the perfect hard-sphere system at separation pa-
rameters €=0 (lower curve) and €=0.066 (upper curve). The
dashed curve is the Percus-Yevick static structure factor for
hard spheres at $=0.563 reduced in magnitude by a factor of
10.
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arrest of concentration fluctuations. We therefore identi-
fy ¢ with the critical concentration, ¢., where mode-
coupling theory predicts structural arrest, i.e., where a
nonzero nonergodicity parameter, f (g, « ), is first found.
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FIG. 6. Normalized intermediate scattering functions vs log-
arithm of the delay time. Measurements are made on samples
at the indicated concentrations and scattering vectors. The
small horizontal bars at the right indicate corresponding values
of the nonergodicity parameters, f (g, © ). The solid and dashed
lines are calculated from Eq. (14) for gR =2.77 and 3.54.

For the hard-sphere system the theoretical prediction is
¢5=0.52 [6,33]. Since this value is somewhat smaller
than the experimental value of ¢;==0.563 observed for
this suspension (latex 1, see Table I), concentrations are
expressed in terms of the experimental separation param-
eter € [Eq. (20) with ¢o=1] in order to compare experi-
ment with mode-coupling theory. The solid curves in
Fig. 5 are the theoretical predictions of Bengtzelius,
Gotze, and Sjolander [6] at separation parameters €e=0
and 0.066. One sees that these agree rather well with the
experimental data for e=~0 and 0.060, although the
theory seems to overestimate slightly the maximum
values of f (g, ). Importantly, there are no parameters
involved in this comparison.

Results for the ISF’s are displayed in Fig. 6 for col-
loidal glasses at several concentrations and scattering
vectors. To prevent overcrowding the figures only three
results are shown for each concentration, at scattering
vectors below, near, and above the position of the main
peak in the static structure factor. Again, each curve was
obtained by averaging over 5—-10 measurements, each of
1000 s duration, with different values of I,. Less than
the first 10% of the total decay of the ISF’s is accounted
for by the microscopic particle motion, given by the
quantity exp[—D(gq)g*r]. The short-time collective
diffusion coefficients, D (q), were calculated from the ini-
tial decay of the ISF’s [see Eq. (14)] for $=0.579 at the
scattering vectors indicated in the figure. Beyond this in-
itial decay the relaxation of concentration fluctuations
slows significantly until the fluctuations appear essential-
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FIG. 7. Critical nonergodicity parameters, f.(q) (open sym-
bols), and critical amplitudes, 4 (q) (solid circles), used to con-
vert results of Fig. 6 to scaled results in Fig. 8 according to Eq.
(19). The solid and dashed lines are the mode-coupling predic-
tions for f.(q) and h(q), respectively. The theoretical f.(q) in
this figure calculated by Fuchs et al. [34] used the Percus-
Yevick and hard-sphere fluid structure factor which incorporat-
ed the Verlet-Weis [41] correction. These f,.(g) are slightly
different, particularly at small g, from those shown in Fig. 5 ob-
tained by Bengtzelius, Gotze, and Sjolander [6], which did not
include this correction. In the region where the experimental
data are most reliable there is no significant difference between
the two results.
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ly frozen at 7=~1 s. Except at the highest concentration
(¢=0.594), a slight decay, of a few percent at most, is
evident outside the statistical and correlator noise from
about 1 to 1000 s. The values of the ISF’s at the delay
time of 1000 s (the duration of the experiments) are given
by the nonergodicity parameters f (g, « ) and are indicat-
ed by the horizontal bars in Fig. 6. In view of our earlier
conjecture that phonon-activated processes may be ab-
sent in colloidal glasses, we suggest that, given the finite
polydispersity of the suspensions (see Table I), this small
remnant decay of the ISF’s at long times may be associat-
ed with a trace concentration of small mobile particles.
A genuine extremely slow structural relaxation, other
than activated transport, is another possibility.

Next we check whether the ISF’s of Fig. 6 comply with
the scaling prediction of mode-coupling theory, Eq. (19),
for the B process. The theoretical critical nonergodicity
parameters, f.(q), and critical amplitudes, 4 (g), calculat-
ed for the hard-sphere system [34] are shown in Fig. 7.
Rather than attempting an alignment of the data for
different scattering vectors, at a given concentration, by
independently varying both f.(q) and A (g), we used the
theoretical values for 4 (q) and adjusted f,.(q) to provide
the best overlap of the measured intermediate scattering
functions at long times. The results of this procedure, ap-
plied to the data in Fig. 6, are shown in Fig. 8. Systemat-
ic errors, due to correlator noise or poor statistics of the
correlation functions close to background, partly masked
in this procedure at long times, are moved to the short-
time regime. Despite this the expected [30] strong depen-
dence on the scattering vector of the decay at short times,
discussed in Sec. Il A, is fairly well preserved by the scal-
ing procedure. At long times the results for different
scattering vectors scale to a single curve. For the two
lower concentrations [Figs. 8(a) and 8(b)] the scaling is
obeyed for a dynamic range of almost three decades
roughly from the points of inflection (log,,7>4.5).
Presumably the inflection marks a crossover from the mi-
croscopic dynamics to the slower B process. With in-
creasing concentration the g-dependent short-time decay,
associated with the small-scale particle motions, extends
to longer times. At the highest concentration [Fig. 8(c)]
the dynamic range of the scaling property is reduced to
less than two decades. However, the separation parame-
ter (€=~=0.055) at this concentration is probably too large
for the asymptotic results of mode-coupling theory to be
entirely applicable [24].

The critical nonergodicity parameters, shown in Fig. 7,
obtained in the above scaling are consistent for the three
concentrations studied and they are also in good agree-
ment with the theoretical results. Importantly, they
agree quantitatively with those measured directly on a
sample at the glass transition concentration (see Fig. 5).
The wave-vector variation of f(q) (Figs. 5 and 7) is in
harmony with the static structure factor. The physical
explanation for this behavior is that S(g) is proportional
to the mean-squared amplitude, or compressibility, of
concentration fluctuations of wave vector g, and it is en-
tirely plausible that the most compressible fluctuations,
those of wave vector g,,,, should be most strongly arrested
at the glass transition. For the same reason, the ampli-

tude of the complementary nonarrested fluctuations,
h(q), mirrors S(q).
Furthermore, according to mode-coupling theory the

_ scaled intermediate scattering functions are given by

[flg, )= f(q)]/h(q)=c.g(1/7pg) [see Eq. (19)]. Thus,
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FIG. 8. Intermediate scattering functions scaled according to
Eq. (19). Thus f[(q,7)—f.(q)]/h(q) is plotted as function of
the logarithm of the delay time. The critical nonergodicity pa-
rameters, f.(q), and critical amplitudes, 4 (g), required to ob-
tain the overlap at long times, are shown in Fig. 7. The solid
curve is the mode-coupling master function, g, (7), for the 8
process in the hard-sphere glass.
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FIG. 9. The correlation scale ¢, and the scaling time Tg, of
the B process; c2 (open squares) and (1/74)* (solid squares) vs
volume fraction.

the correlation scale ¢, and the scaling time 75 were ad-
justed to fit the predicted master function g, (7/75) of
the B process to the scaled data of Fig. 8. One sees that it
is possible to align the master function with the data
roughly from the time [log,,7>4.5 in Figs. 8(a) and 8(b)]
where the scaling applies. Again, for reasons suggested
above, the region of agreement is less extensive at the
highest concentration [Fig. 8(c)].

In order to check the predicted algebraic dependence
of 75 on € [Eq. (21)] and the square-root dependence of ¢,
on € we plot, in Fig. 9, (l/TB)Za and cﬁ as functions of
volume fraction (for hard spheres @ =0.301). The con-
centration dependence of both the experimental scaling
time and the correlation scale are consistent with the
theory. The result for 74 in particular verifies the surpris-
ing prediction that the time scale of the B process de-
creases as one goes deeper into the glass. The narrow
range of volume fractions in the hard-sphere glass where
the asymptotic results of mode-coupling theory are ex-
pected to be accurate [24], along with the errors that ac-
crue in the above manipulation of the data, preclude
quantitative tests of these scaling predictions. Linear ex-
trapolation of the two sets of results in Fig. 9 to zero give
¢, in the range 0.565-0.575, which is at least compatible
with the more direct estimates of the glass transition con-
centration (see Table I).

V. SUMMARY AND CONCLUSIONS

Colloidal  suspensions of near-micrometer-sized
PMMA particles stabilized by thin adsorbed layers of
PHSA show the equilibrium phase behavior as well as a
glass transition consistent with those seen in computer
simulations for perfect hard spheres [40,44]. A glass
transition concentration is identified where homogene-

ously nucleated crystallization is superseded by a much
slower crystallization nucleated heterogeneously at sur-
faces. One might speculate whether in the absence of
surfaces heterogeneous crystallization would proceed at
all and samples at ¢>¢; would remain amorphous
indefinitely. Nevertheless, studies on several different
suspensions of PMMA particles consistently show a close
correspondence of the concentration of this observed
glass transition and that where the time scale of the
slowest concentration fluctuations significantly exceeds
the duration of a 1000-s experiment, i.e., suppression of
crystallization and cessation of large-scale particle
diffusion occur at essentially the same concentration.

Determination of the intermediate scattering functions
of colloidal glasses by dynamic light scattering requires a
procedure that properly averages over both the fluctuat-
ing and the arrested structure. The results of Sec. IVB
show that disregarding the nonergodicity of the scatter-
ing medium leads to incorrect interpretations of DLS re-
sults. In this paper we have verified the theory of DLS
based on a model for a nonergodic medium which as-
sumes that the particles are localized about an amor-
phous distribution of fixed average positions. The statist-
ical properties of the light scattered by the fluctuating
structure are the same for all scattering volumes in the
sample and, therefore, can be unambiguously obtained in
a single time average. However, the distribution of fixed
average positions, i.e., the arrested structure, is different
for different scattering volumes. Thus, a single measure-
ment of the time-averaged intensity autocorrelation func-
tion plus the ensemble-averaged intensity are required to
compute the (ensemble-averaged) intermediate scattering
function. Verification of this theory of DLS by colloidal
glasses was achieved by demonstrating that, while the
time-averaged intensities and intensity autocorrelation
functions vary markedly over different scattering volumes
in the sample, the calculated intermediate scattering
functions are invariant.

The nonergodicity parameters were obtained for col-
loidal glasses at several concentrations over a range of
scattering vectors around the position, g,,, of the first
maximum in the static structure factor. The results are
in good agreement with mode-coupling theory. By ex-
pressing the concentrations in terms of the separation pa-
rameter €, the comparison in Fig. 5 involved no adjust-
able parameters.

The intermediate scattering functions are compatible
with the scaling predictions for the B process and in
agreement with the master function, predicted for the
hard-sphere glass, for times beyond those of the micro-
scopic dynamics. Presumably due to the overlap of the
small-scale local particle motions with the slower motions
described by the B process there was no evidence of the
predicted critical decay [given by Eq. (22a)]. Nonethe-
less, the results confirm that one can separate from the
microscopic motion a slower relaxation process for which
the spatial and temporal variations are uncorrelated.
Near the glass transition the intermediate scattering
functions show this factorization property for nearly
three decades in time. In this regard the results in this
paper are considerably more conclusive than those of pre-
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vious neutron scattering experiments on ionic systems
[45] and computer simulations on mixtures [46,47].
There the factorization property was demonstrated over
a dynamic range of about one decade. Additional
significant results of the scaling of the experimental data
are that (i) the required nonergodicity parameters and
critical amplitudes are in quantitative agreement with
mode-coupling theory, (ii) the nonergodicity parameters
agree quantitatively with those measured independently
at the estimated glass transition concentration, and (iii)
the concentration dependence of both the correlation
scale and the scaling time of the 3 process are compatible
with the theory.

In view of the comparisons between experiments on
suspensions and mode-coupling theory that have been
made in this and previous works [3,8,23—-25] some com-
ment is warranted on the hydrodynamic interactions
among the suspended particles. Their effect on the dy-
namics may be exposed most simply, although not com-
pletely, by considering the short-time form of the ISF ex-
pressed in Egs. (16) and (17). We argued in Sec. II A that,
although the hydrodynamic interactions cause some
smearing of the wave-vector dependence of the ISF’s, the
ISF’s still vary strongly with wave vector at short times.
As seen in Fig. 8, this variation survives the scaling pro-
cess. Of course, mode-coupling theory is only concerned
with the slow structural relaxation processes that emerge
at very high concentrations and it makes no predictions
with regard to the microscopic dynamics. However, the
strong coupling of the small-scale particle motion, via the
hydrodynamic interactions, to the structure leads to a
lengthening of the microscopic time scale. This may be
the reason for the apparent overlap of the microscopic
dynamics with the slower motions described by the 3 pro-
cess and the absence of the algebraic time dependence
that is predicted for the early part of the 8 process. In
contrast, the time scale of atomic vibrations is relatively
insensitive to density or temperature. This is seen quite
clearly, for example, in the recent work of Li et al., [48]
who measured the susceptibility spectrum of an ionic
glass former. There, in addition to the temperature-
insensitive phonon peak, an algebraic variation of the
susceptibility with frequency was observed in the super-
cooled ionic systems for about one decade on both sides
of the glass transition temperature. Notwithstanding the

strong wave-vector dependence of the decay rates of the
coherent ISF’s in colloidal glasses over time scales that
lengthen with increasing concentration, the results of
Figs. 7 and 8 suggest that the [ process eventually
emerges and that this process is independent of the na-
ture of the microscopic motions.

Finally we comment on the difference between the
glass transition concentration observed in these hard-
sphere suspensions and that predicted by mode-coupling
theory. There is some variation in the glass transition
concentration, ¢; =0.555-0.575, found for different sus-
pension preparations in this and other work [1-3]. We
attribute this mainly to systematic errors incurred in the
estimation of the factor, based on the freezing concentra-
tion, used to convert sample weight fractions to effective
hard-sphere volume fractions (see Sec. IV A). The
present work, based on more accurate sample prepara-
tions, favors larger values in the stated range for ¢g.
This glass transition concentration is consistent with that
(¢;=0.58+0.02) found in computer simulations of the
hard-sphere systems [44]. It has been suggested [8,33]
that the lower value, ¢;=0.52, predicted for the glass
transition concentration by mode-coupling theory is due
to the neglect of hopping motions in the idealized version
of theory. This is also the reason suggested for the slight-
ly larger values for the critical nonergodicity parameters
relative to experiment (Fig. 5). Considering the
difficulties and uncertainties in measurements at the glass
transition, we cannot regard these differences in f,(q) as
very significant. However, the difference between the ex-
perimental and theoretical values of ¢; may be more
significant and, if hopping motions are suppressed in col-
loidal systems, we wonder whether there may be another
explanation for the low theoretical value for ¢;.
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