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We present an exact and Monte Carlo renormalization-group (MCRG) study of the self-avoiding
walks (SAW's) on an infinite family of the plane-filling (PF) fractals. The fractals are compact, that
is, their fractal dimension dt is equal to 2 for all values of the fractal enumerator b (an odd integer,
3 & b & oo). On the other hand, we demonstrate, via precise calculations, that the corresponding
spectral dimension d, monotonically increases from 1.39385 to 2,when b varies from 3 to oo. For the
PF fractals, we calculate exactly (for 3 & b & 9) and through the MCRG approach (for b & 121) the
SAW critical exponents v (associated with the mean-squared end-to-end distance) and p (associated
with the total number of distinct SAW's). The MCRG results for 3 & b & 9 deviate from exact
results at most 0.04%%uo in the case of v and 0.06%%uo in the case of p. Our results show clearly that v
monotonically decreases with b and crosses the Euclidean value v = 3/4 between b = 27 and b = 29.
This is in contrast with all available Flory-type theories, as they predict that v should be, in the
case under study, strictly less than 3/4. In addition, our results show that the critical exponent p,
being always larger than the Euclidean value 43/32, monotonically increases with b. We discuss,
in a framework of the finite-size scaling approach, behavior of v and p in the fractal-to-Euclidean
crossover region that occurs when 6 —+ oo. Finally, we discuss a possible relevance of our results to
the problem of SAW's on the two-dimensional percolation clusters.

PACS number(s): 05.40.+j, 05.50+q, 64.60.Ak, 61.41.+e

I. INTRODUCTION

The self-avoiding walk (SAW) is a random walk that
must not contain self-intersections. The inQuence of
quenched imperfections of tl-.e underlying lattice on the
statistics of SAW's has become a controversial research
problem in the past decade. Various kinds of imperfec-
tions that perturb the translational symmetry of the un-
derlying lattice have been introduced in order to learn
their influence on the critical exponents of SAW's. In
particular, the case of lattices randomly perturbed to
the extent of being close to the percolation threshold has
been most frequently studied. The problem is relevant to
the phenomenology of linear-chain polymers in the dilute
solution confined in a porous media. Various theoretical
methods have been applied, including the exact enumer-
ations, the Flory-type approximations, the Monte Carlo
(MC) 'simulations, and the renormalization group (RG)
techniques (see, for instance, Refs. [1—4], and references
quoted therein). Simply speaking, in spite of numerous
studies, it is not yet known whether the SAW walker,
which on a perturbed lattice has to avoid both previously
visited sites and lattice imperfections, travels (on aver-
age) farther away from the starting point than a SAW
walker on an unperturbed lattice. In other words, it is
not yet known whether in the relation (Rs~) N~, for

the mean-squared end-to-end distance for ¹tepSAW's,
the critical exponent v changes when the underlying lat-
tice gets perturbed. Thus, in the case of SAW's on the
two-dimensional percolating clusters it is not firmly es-
tablished hitherto whether v is larger than, or equal to,
the Euclidean value 3/4 [5]. Under these circumstances,
knowledge of exact properties of SAW's on infinite fami-
lies of nontrivial deterministic fractals, which in a certain
limit approach a standard Euclidean lattice, should pro-
vide grounds for systematic tests of various approximate
studies.

In this paper we report on the exact and the Monte
Carlo renormalization-group (MCRG) study of SAW's
on an infinite family of fractals that can be considered as
self-similarly perturbed two-dimensional square lattices
(with various degrees of inhomogeneity). More specifi-
cally, we study SAW's on the plane-filling (PF) fractal
lattices [6] and demonstrate that the corresponding ex-
ponent v can be larger, as well as smaller, than 3/4. This
result challenges further phenomenological investigations
since all available Flory-type formulas [7—12] for v erro-
neously predict that it should be, in the case under study,
strictly less than 3/4.

The failure of the phenomenological formulas [7—12]
to fit sequences of the exact (and MCRG) results for
the SA%' critical exponents for in6nite families of deter-
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ministic fractals has been already observed in the case
of the Sierpinski gasket (SG) family of fractals [13,14]
and, recently, in the case of two newly introduced fami-
lies of deterministic fractals [15]. Here we notice that all
phenomenological formulas are certain algebraic combi-
nations of the fractal df and spectral d, dimensions of
the relevant fractals, which, in the case of fractals stud-
ied, appears to be a plausible choice of a minimal set
of parameters. However, one may question which of the
two parameters (df or d, ) predominantly determines the
behavior of the SAW critical exponents. The study of
SAW's on the PF family of fractals provides an inspir-
ing answer to this question, for in this case the fractal
dimension is constant (df = 2 for all members of this
family), whereas d, rnonotonically increase from 1.39385
to 2 when the fractal enumerator 5 (the positive odd in-
teger) varies from 3 to infinity. Nevertheless, our results
show that the SAW critical exponent v has the same in-
triguing behavior that was found for the SG family [14],
whose both df and d, monotonically approach the Eu-
clidean value of 2 from below when the fractal enumer-
ator b (the positive integer, 5 & 2 in this case) tends to
infinity. This ending suggests that the future quests for
closed-form formulas for the critical exponents of SAW's
on fractal lattices should give a stronger emphasis on the
role of the spectral dimension.

The present paper is organized as follows. We define
the PF family of fractals in Sec. II, where we also present
calculation of the corresponding spectral dimensions. In
Sec. III, we explain our exact and MCRG approach to the
evaluation of the critical exponents v and p of SAW's
on the PF fractals. Finally, in Sec. IV we present an
overall discussion of the obtained results and pertinent
conclusions.

II. PLANE-FILLING FRACTAL LATTICES

Each member of the PF fractal family is labeled by
an odd integer 5 (3 & b & oo) and can be constructed
in stages. At the initial stage (n = 1), the lattice is
represented by the corresponding generator (see Fig. 1).
The nth stage fractal structure can be obtained in a self-
similar way, that is, by enlarging the generator by a fac-
tor b" and by replacing each of its segments with the
(n —1)th stage structure, so that the complete fractal
is obtained in the limit n ~ oo. The shape of the frac-
tal generators and the way the fractals are constructed
imply that each member of the family has the fractal di-

( = 1 nRi/1 nb, (2.2)

where R~ is the electrical resistance of the fractal genera-
tor. Rb can be calculated straightforwardly [6] up to, say,
5 = 11, when the problem becomes too complex and one
has to apply a computer facility. For an arbitrary mem-
ber of the PF family with b & 3, a computer program
can be made to calculate Bb, by evaluating the electri-
cal currents through the fractal bonds in accord with
Kirchhoif's laws and the underlying axial symmetry of
the fractal generator. Eventually, it turns out that one
has to solve (6 —3)/2 linear nonhomogeneous equations
with very high precision [18].

The results obtained for Ab and d, are given in Ta-
ble I. In order to learn the asymptotic behavior d, we
have plotted (following the approach of Ref. [17]) data
for Rb versus lnb (see Fig. 3). One can observe that all

mension df equal to 2. Thus, they appear to be compact
objects (with no voids) embedded in the two-dimensional
Euclidean space. In fact, the PF fractals mimic imper-
fect square lattices with various degrees of inhomogeneity
distributed self-similarly. In Fig. 2, the n = 2 stage of the
b = 5 fractal is depicted and one can see that appearance
of a lattice imperfection is equivalent to the elimination
of the corresponding site together with binding two pairs
of the remaining bonds.

The spectral dimension d, of the PF fractals can be
obtained by studying some dynamical problem related
to the fractal substrata. We have found that it is useful
to conceive an arbitrary member of the PF family as an
electrical network of unit resistors corresponding to the
segments of unit length (see, for instance, Refs. [16,17]).
Then the spectral dimension is given by

da = 4

2+ (2.1)

where ( is the exponent of the scaling law RL, cx L& which
governs the resistance BL, of the fractal structure of size
L. This scaling law implies the following relation:

b-3 b=5 b-7

FIG. 1. The fractal generators of the first .three members
of the plane-filling (PF) family of fractals.

FIG. 2. The n = 2 stage fractal structure of the 6 = 5
member of the PF family of fractals. It should be noted that
this structure looks like a square lattice with imperfections.
Indeed, the complete fractal structure (that appears in the
limit n ~ oo) has no voids. It has self-similarly distributed
imperfections of the type exemplified within the small circle.
In the large circle, a lattice imperfection is blown up (the two
tips would be merged into a single lattice site, in the case of
an unperturbed square lattice).
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However, in what follows, this similarity between the two
families of fractals should be kept in mind together with
the basic difference between the corresponding fractal di-
mensions (df = 2 for each b, in the PF case, whereas
dy = ln[b(b+ 1)/2]/lnb in the SG case).

III. EXACT AND MONTE CARLO
RENORMALIZATION-GROUP CALCULATION

OF THE CRITICAL EXPONENTS

data for Rb display remarkable linear dependence of ln b.
Indeed, the least-squares fit to a linear function of lnb
demonstrates that the mean-square deviations, including
all data, is not larger than 10, whereas in the case
when the data for b & 35 are excluded one finds that the
deviations are not larger than 10 ~ Therefore, we have
concluded that Bb can be represented in the form

Bb = 1.273 lnb+ 1.271, (2 3)

where the quoted numbers remain unchanged for any
least-squares fit that starts with some b & 35 and ends
with b = 131. The above conclusion, together with for-
mulas (2.1) and (2.2), implies the following asymptotic
law for the PF fractal spectral dimension:

lnlnb
lnb

(2.4)

which is valid in the fractal to Euclidean crossover region,
that is, for very large b. It is interesting to observe that
the asymptotic form of the type (2.4) has been also es-
tablished in the case of the SG family of fractals [17,19].

lnb

FIG. 3. Data for the electrical resistance Rb (of the fractal
generators) plotted against lnb. One can see that all data
(except those for small b) comprise a straight line. The least-
squares fit to the data is given by Eq. (2.3).

C(x) = ) C~x
N=1

(3.1)

L(x) = ) (R~) Crux /C(x),
iV=2

(3.2)

whose leading singular terms, when x approaches 1/p
from below, are of the form

C(x) (1 —xp) (3.3)

L(x) (1 —xp) (3.4)

In order to calculate v and p we have found that it is con-
venient to introduce three restricted partition functions
g("), Q&~), and C& ) (see Fig. 4) which provide a corn-

In this section we determine the critical exponents v
and p of SAW's on the PF family of fractals. The criti-
cal exponent v describes the scaling law (R~~) N2 for
the mean-squared end-to-end distance for N-step SAW's,
whereas the critical exponent p determines the scaling
law C~ p, N~ for the total number C~ of distinct
SAW's of N steps (averaged over all possible positions of
the starting point). Here p, is the connectivity constant,
and it is assumed that N is a very large number. These
critical exponents we calculate in the framework of the
RG method, in which we study the corresponding gen-
erating functions that can be defined by introducing the
weight factor x (fugacity) for each step of SAW. Thus,
we first recall the generating functions C(x) and L(x)
defined by

TABLE I. The electrical resistance Rb of the PF fractal
generators and the corresponding spectral dimensions d, .

Rb

5
7
9

11
15
17
21
23
27
29
31

2.60000
3.29885
3.73903
4.06356
4.32131
4.71828
4.87818
5.14786
5.26389
5.46833
5.55941
5.64440

1.39385
1.45900
1.49380
1.51624
1.53236
1.55467
1.56289
1.57592
1.58122
1.59015
1.59397
1.59746

35
41
51
61
71
81
91

101
111
121
131

5.79904
6.00062
6.27862
6.50665
6.69997
6.86777
7.01601
7.14877
7.26898
7.37882
7.47993

1.60360
1.61127
1.62124
1.62894
1.63517
1.64037
1.64481
1.64867
1.65208
1.65512
1.65786

FIG. 4. A diagrammatic representation of the three re-
stricted partition functions for an nth stage of the fractal con-
struction of a member of the PF family. The fractal interior
structure is not shown. Thus, for example, A(") represents
the SAW path that starts somewhere within the nth stage
fractal structure and leaves it at its upper right link to rest
of fractal.
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piete description of the appropriate generating functions
C(x) and L(x) [15,20]. The three restricted partition
functions represent sums of statistical weights of all pos-
sible walks within the nth-stage fractal structure for the
three kinds of SAW's that are consistent with the con-
straints depicted in Fig. 4. Thus, A("} is the weighted
sum over all walks that start somewhere within the nth-
stage fractal structure and leave it at its upper right link
to the rest of fractal, whereas B~"~ is the weighted sum
of all walks that start at the lower left link of the nth-
stage fractal structure and leave it at its upper right link,
and, finally, C(") is the weighted sum of all walks that
start and end at two locations within the nth-stage frac-
tal structure (see Fig. 4). In the case of the fractal unit
segment, we accept the following initial conditions for the
three restricted partition functions

A(o) ~z B(o) z ( (0) 0 (3.5)

I or arbitrary n, the self-similarity of the fractals under
study imply the following recursion relations:

A(n} q (A(n i) B(n —i))—

B(n} q (B(n—i))

g(n) q (A(n —i) B(n—i) ~(n —i))

(3 7)

(3.8)

Equation (3.6), for instance, states the fact that a walk of
the type A (see Fig. 4), within the nth-stage fractal struc-
ture, can be composed only of a walk of the type A and
walks of the type B performed within the next smaller
structures, that is, of the A and B (but no C) walks
within the (n 1)th frac—tal structures. The explicit forms
of the functions Qi, Q2, and gs are, because of the un-
derlying self-similarity, independent of the specific value
of n, which allows one to state that the three equations
(3.6), (3.7), and (3.8), comprise the exact renormaliza-
tion group for the SAW problem under study.

(3.9) at the nontrivial fixed point 0 ( x' ( 1 (see, for
instance, [13] and [20]), that is

dx'
(3.11)

Accordingly, evaluation of v starts with determining the
coefficients aiv of (3.9) and finding of the pertinent fixed
point value x*. We have been able to find exact values of
aiv for 3 & b & 9 (these values are given in the Appendix;
calculation of exact values of aN for b = 11 would require
more than 100 days of continuous work of a computer
with the Intel 80486 microprocessor). Knowing aiv and
2:*, for a given b, we apply (3.10) and (3.11) to learn the
critical exponent v. Our results are presented in Table II.

To overcome the computational problem of learning
exact values of aiv, we apply the MCRG method for
b & 9. It has been pointed out in a similar situation
[14] that, due to both the inherent self-similarity and the
Finite ramification of the underlying lattices, this method
should work better in this case than in the case of regular
lattices. The essence of the MCRG method [14,21] con-
sists of treating 2.", given by (3.9), as the grand canoni-
cal partition function which comprises all possible SAW's
that traverse the fractal generator at two fixed apexes. In
this spirit, (3.9) allows us to write the following relation:

dx' x'= —(N(&))
dX X

where (N(x)) is given by

(3.12)

(N(x)) = —,) Na~x
N

(3.13)

which can be considered as the average number of the
SAW steps, made at fugacity x by all possible SAW's
that pass the fractal generator. Comparing (3.11) with
(3.12) we obtain the equality Ai = (N(x')), and thereby
we obtain

A. Critical exponent v
ln

ln(N(x*))
' (3 14)

NX: QNX
N

(3 9)

whose first term is of the order x~. The coefBcients aN
are numbers of all possible SAW's of N steps that tra-
verse the fractal generator. Specific values of the critical
exponent v follows from

lnb
lnA1

' (3.10)

where Ai is the relevant eigenvalue of the RG equation

We apply in this subsection the foregoing RG frame-
work to find the SAW critical exponent v for the PF
fractals. We shall first present the corresponding exact
calculation, and then we shall expound on the MCRG
approach. To this end, we need to analyze (3.7), at the
corresponding fixed point, for B(i) and B(0) denoted by
2." and 2:, respectively. It can be shown that gz(x) is a
simple polynomial

This is the formula that enables us to calculate v via the
constant-fugacity MCRG method [22], that is, without
calculating explicitly the coeKcients aN.

In this paragraph we present the MCRG algorithm of
finding the critical fugacity x*. The algorithm starts with
the MC simulation for a given initial guess for the fugac-
ity xo in the region 0 & xp c 1. Here xo can be inter-
preted as the probability of making the next step along an
available direction from the vertex that the SAW walker
has reached. Then we assume that, after the experiment
is completed, we have So total number of the MC simula-
tions of SAW's (at the chosen xo), with Soi of them being
those that traverse the fractal generator. Hence the ratio
Soi/So can be accepted as the renormalized fugacity xo
of the coarse-grained fractal structure. In this way we

get the value of the sum (3.9) without specifying the set
aiv. The next (closer to x') values 2: (m & 1), at which
the MC simulation should be performed, can be found
by using the "homing" procedure [22], which can be ter-
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minated at the stage m when the difference x +q —x
becomes less than the statistical uncertainty associated
with x . Consequently, x* can be identified with the last
value x +~ found in this way.

Having found x* we can evaluate (N(x*)) using the
following expansion formula

(N(**)) = (N(x ))+ 'D(N(x )), (3»)

where'D(N) = (N )—(N) is the fluctuatio of the num-
ber N of SAW steps (measured at x = x ). The quanti-
ties that appear on the right-hand side of (3.15), (N(x~))
and 'D(N(x~)), can be determined directly through the
MC simulations, which means that we have all elements
necessary to calculate v using (3.14). In Table II we
present our MCRG results for v for the PF fractal lat-
tices with 6 & 121. First, we note that comparing the
MCRG results for 3 & 6 & 9 with the exact results we can
see that there is no deviation larger than 0.04%. Next,
we would like- to point out the monotonic decrease of v
when 6 increases, and, in particular, the crossing of the
Euclidean value v = 0.75 between 6 = 27 and 6 = 29.
This crossing of the Euclidean value should be compared
with the similar crossing found [14] in the case of the

SG family of fractals. The results for both families are
depicted in Fig. 5, where one can see that the two cases
display amazingly similar behavior (for b ) 3) in spite
of the fact that the corresponding fractal dimensions are
quite disparate functions of b. The possibility that v
will regain the Euclidean value v = 3/4 in the crossover
region 5 ~ oo, and an overall comparison with the phe-
nomenological predictions for v, will be discussed in Sec.
IV.

B. Critical exponent p

(gy(n
—1)

) [g(n —1)]) (3.16)

The critical exponent p describes the scaling law C~
p N~ for the total number C~ of distinct SAW's of N
steps, and thereby it determines the singular part (3.3) of
the generating function C(x) defined by (3.1). In order
to determine p as a function of the fractal enumerator 6,
we first note that, in the case of the PF family, C(x) can
be written in the form

TABLE II. The exact (3 & b & 9) and the MCRG (3 & b & 121) results for the critical fugacity
x, the RG eigenvalue Aq, and the SAW critical exponent v. The given error bars have been
determined by statistics of the MC simulations and by the "homing" procedure used in evaluation
of x* and Ai [22]. The extrapolation of the least-square fits of the x* data gives x = 0.37931 for
6 —+ oo, which deviates 0.07% from the reciprocal of the connectivity constant p = 2.638 159 found
for the standard square lattice [23].

No MC
realization

11
15
17
21
23
27
29
31
35
41
51
61
71
81
91

101
111
121

exact
2x 1O'

exact
2x lO'

exact
1O'

exact
1O'

2x lo'
2x 10'
2x lO'
2x 1O'

2x lO'
2x lO'
5x 10
3x 1O'
2x 1O'
5x 10

1O'
1O'
1O'
1O'
1O'

3 x 1O'
1.2 x 1O'

1O'

0.70711
0.70734 + 0.00045
0.59051
0.59060 + 0.0032
0.53352
0.53351 + 0.00034
0.50029
0.50039 + 0.00027
0.47832 + 0.00016
0.45191 + 0.00013
0.44321 + 0.00011
0.43065 + 0.00010
0.42593 + 0.00009
0.41855 6 0.00008
0.41573 + 0.00005
0.41323 + 0.00006
0.40913 + 0.00006
0.40429 + 0.00004
0.39893 + 0.00007
0.39524 + 0.00006
0.39273 + 0.00006
0.39081 + 0.00005
0.38931 + 0.00005
0.38812 + 0.00004
0.38726 + 0.00004
0.38649 + 0.00004

3.999 + 0.003

7.667 + 0.005

12.08 + 0.01

17.06 + 0,02
22.56 + 0.02
34,90 + 0.03
41,64 + 0.03
56.33 + 0.05
64.33 + 0.06
80.49 + 0.07
89.60 + 0.05
98.45 + 0.07
108.0 + 0.1
148.39 + 0.08
203.5 + 0.3
265.6 + 0.3
329.8 + 0.4
401.0+ 0.5
474.1 + 0.6
552.0 + 0.4
631.7 + 0.7
721.8 + 0.8

0.79248
0.79259 + 0.00038
0.78996
0.79011 + 0.00024
0.78111
0.78102 + 0.00031
0.77464
0.77459 + 0.00029
0.76947 + 0.00019
0.76232 + 0.00017
0.75976 + 0.00017
0.75522 + 0.00016
0.75300 + 0.00015
0.75108 + 0.00015
0.74905 + 0.00009
0.74822 + 0.00012
0.74530 + 0.00014
0.74274 + 0.00008
0.73969 + 0.00017
0.73643 + 0.00017
0.73513 + 0.00016
0.73314 + 0.00015
0.73212 + 0.00014
0.73098 + 0.00008
0.73034 + 0.00013
0.72865 + 0.00013
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g(n& —a(B(n-») g(n- i& (3.17)

C(n& c (B(n 1&)C—(n —1& + c (B(n—
1&) (g(n 1&]2—

(3.18)

where gi(B(n &) and g2(B(n i&) are polynomials in
B(n i&. This form for C(x) stems from the fact that all
possible open SAW's paths, within the nth-stage fractal
structure, can be made in only two ways (see Fig. 6).
Hence one can see that the behavior of C(x) in the vicin-
ity of x' depends on the corresponding behavior of the
restricted partition functions A(n&, B(n&, and C(n&. Since
in the preceding subsection we have learned the behav-
ior of B(n&(x), it remains to analyze here the recursion
relations (3.6) and (3.8). The structure of possible SAW
paths (see Fig. 4) imply the following structure of the
recursion relations:

FIG. 6. The form of the generating function C(x) given
by Eq. (3.16) stems from the fact that all possible open SAW's
paths, within the nth stage fractal structure, can be made in
only two ways that are depicted in this figure.

where a(B(n i&), ci B(n i&), and cz(B(n &) are also
polynomials in B~"

The above set of formulas allow us to find the critical
exponent p. To this end, we first note that, according
to the procedure detailed in previous papers [13,20,24], p
can be expressed, in the case under study, in the following
form:

0.79-
(3.19)

0.78- 0

o

where Aq is the RG eigenvalue

A2 = a(x') (3.20)

0.77—

0.76—

075—

0.74—

0.?3—

0

k ~
k ~

of the polynomial a(B(n &) defined by (3.17), with x'
being the fixed point value of (3.9). Therefore, it re-
mains either to find means to determine exactly an ex-
plicit expression for the polynomial a(B(n i&) or to sur-
pass this step and to evaluate somehow only the single
value needed a(x'). We have been able to determine the
exact form of the requisite polynomial for the PF frac-
tals with 3 & 6 & 9, while for b ) 9 we have applied the
MCRG to evaluate a(x').

In order to learn an explicit expression of the polyno-
rnial a(B(" &), we note that its form, due to the under-
lying self-similarity, should not depend on n, and, for this
reason, in what follows we assume n = 1. Then, one can
verify the following expression:

a(x) = 1 + ) Q x (3.21)

0.72
1.35

I

1.45
I

t55
I

1.65

FIG. 5. Data for the SAW critical exponent v for the SG
(triangles) and PF (circles) families of fractals plotted as func-
tions of the corresponding spectral dimensions d, . The open
triangles (open circles) are exact results, while the solid tri-
angles (solid circles) are the MCRG results. The error bars
related to the MCRG data are not depicted in the figure since
they are at least two times smaller than the heights (diam-
eters) of the solid triangles (circles). The horizontal dashed
line represents the Euclidean value v = 3/4. One should no-
tice the remarkable similarity between the two sets of data
(SG and PF) and recall the fact that the PF fractals are com-
pact objects, in contrast to the SG fractals that have voids
on all scales of length.

where Qiv is the number of all SAW's of N steps that
start at any bond within the generator (n = 1) and leaves
it at a fixed exit, which implies that the above sum starts
with the N = 1 term. By enumeration of all relevant
walks, the coefficients Qiv can be evaluated exactly up
to certain Gnite b. In the Appendix we present specific
values of Qiv for 3 & b & 9 (for larger b one would need
more of the computer power than in the case of exact
calculation of v). Using the information given in the Ap-
pendix, together with (3.19) and (3.21) (and previously
found x' and Ai), we have obtained the desired values of
p (see Table III).

For b & 9, we extend the MCRG method, used in the
preceding subsection, and in the similar spirit we conceive
a(x) as a new grand canonical partition function defined
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+- „, (z* —x )',1 d~a(x)
dx2 (3.22)

where a(x ) is the quantity that can be directly mea-
sured in the MC simulations (in a manner exploited to
measure x'), whereas the derivatives

da(x) ) NQ
dx

(3.23)

and

= ) N(N —1)Qivx
dx

(3.24)

can be expressed in terms of the averages

{N(x)) = ) NQ~z
(*)

(3.25)

(N(z)') = ) N'Q z~,
N

(3.26)

TABLE III. The exact (3 & b & 9) and the MCRG
(3 & b & 121) results for the RG eigenvalue A2 and the SAW
critical exponent p. The given error bars are determined in
the same way as in the case of data quoted in Table II.

No MC
realization

11
15
17
21
23
27
29
31
35
41
Gl
61
71
81
91

101
111
121

exact
Gx 105

exact
Gx10

exact
5x10

exact
5 x 105

10'
10
10
10
10
10
1O'
10

5x105
Gx10
Gx 105
Gx10
5x10

10'
Gx10
5x10
5x10
5x10

9.64 + 0.01

29.50 + 0.05

62.9 + 0.2

112.4 + 0.4
180.0 + 0.5
394+ 1
545+ 2
956+ 5
1219+ 7
1880 + 10
2270 + 20
2750 + 20
3950 + 40
6030 + 80
11500+ 200
19900+ 400
29800 + 600
42800 + 700
58000 + 1000
76000 + 2000
107000 + 3000
154000 + 5000

1.6840
1.6840 + 0.0022
1.7423
1.7419 + 0.0024
1.7614
1.7625 + 0.0028
1.7807
1.7803 + 0.0030
1.7938 + 0.0023
1.8395 + 0.0025
1.8595 + 0.0027
1.8944 + 0.0029
1.9069 + 0.0030
1.9328 + 0.0032
1.9396 + 0.0032
1.9549 + 0.0034
1.9810 + 0.0050
1.9967 + 0.0053
2.0398 + 0.0062
2.0744 + 0.0067
2.0830 + 0.0074
2.0912 + 0.0060
2.0960 + 0.0087
2.0984 + 0,0092
2.1295 + 0.0096
2.1723 + 0.0107

by (3.21). Its specific value a(x*) we calculate using the
expansion formula

a(x*) = a(x ) + (x* —x )
da(x)

dx x~

which are also directly measurable in the MC simulations.
In other words, (3.23) and (3.24) can be expressed in the
following way:

da(z)
dx

(3.27)

(3.28)

Therefore, we can obtain a(x*) through the MC simula-
tions, and, knowing A~ from the preceding calculation of
v (see Table II), we can apply (3.19) and (3.20) to learn

In Table III we present our MCRG results for p for
b ) 9, as well as (for the sake of comparison with the
exact results) for 3 & b & 9. Hence one can see that the
MCRG values deviate at most 0.06% from the available
exact values.

The entire set of our results for p is depicted in Fig. 7.
First, we observe that all values of p for the PF fractals
are larger than the Euclidean value p = 43/32 [5], and, in
addition, it appears that p is a monotonically increasing
function of b. Both findings are in accordance with the
behavior of p found for the first seven (2 & b & 8) mern-
bers of the SG family of fractals [13]. In the latter case,
using the finite-size scaling arguments Dhar [25] found
that p should approach 133/32 when b —+ oo, with a neg-
ative correction term proportional to lnlnb/lnb In the.
case of the PF family of fractals, the same behavior of the
spectral dimensions, for large b, for both families (SG and
PF), and our present numerical findings, make us assume
that p continues to grow beyond p = 2.1723 (found for
b = 121) and approaches some finite value when b —+ oo.
Indeed, if we follow the finite size scaling framework of
Dhar [25], we find that the RG transformations for SAW's
on the PF fractals have the same requisite structure ex-
ploited in the case of the SG fractals for large b. Next, if
we use the data pertinent to the SAW criticality in the
m/2 wedge of the square lattice [26], we find that when
6 ~ oo the critical exponent p for the PF fractals should
approach the non-Euclidean value 103/32.

The possible asymptotic behavior of the critical expo-
nent p for b & 121 raises the question of the applica-
bility of the MCRG method beyond the reached limit.
As a matter of fact, the inset of Fig. 7 shows that our
data for 91 & 6 & 121 do not display the smooth be-
havior of the kind that is observable in the case of data
for b & 91. We have concluded that this fact can be
related to the properties of the random number gener-
ator (RNG) used in the MC simulations. More specifi-
cally, we have used a portable multiple prime RNG [27]
which provides 10 000 random numbers within the inter-
val [0.0000, 0.9999]. However, Table II shows that the x*
data for 6 ) 81 are very densely distributed. Therefore,
due to the fact that our MCRG calculations start with a
given x, we need to perform more precise calculations in
this region, and, to this end, we need a RNG that pro-
vides random numbers with at least five digits. Random
numbers with eight digits can be obtained [27] by a con-
catenated use of the four-digit RNG, but this approach
doubles the computation time. For instance, to calculate
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FIG. 7. The exact (open circles) and MCRG (solid circles) results for the critical exponent p of SAW's on the PF fractals.
In the inset, the last seven data (5 & 61) are depicted together with the corresponding error bars (the latter are hardly visible
on the scale used for displaying all data). The horizontal dashed line represents the Euclidean value p = 43/32.

in this way p for b = 131 (with 5 x 103 MC simulations)
it would take more than ll days of continuous work of
an IBM RS-6000 computer. For this reason, we did not
extend our set of findings beyond b = 121 [28].

IV. DISCUSSION AND SUMMARY

We have studied critical properties of SAW's on the in-
finite family of the PF fractals each member of which has
the fractal dimension df equal to the Euclidean value 2,
while their spectral dimensions d, vary from 1.393 85 to 2
when the fractal enumerator 6 varies from 3 to oo. In par-
ticular, we have calculated the SAW critical exponents v
and p via an exact RG (for 3 & tI & 9) and via the MCRG
approach (for b & 121). Here we would like first to corn-
pare the obtained results for v with the corresponding
phenomenological closed-form formulas. In this compar-
ison, we skip the simplest formula v~ = 3/(2+ df) [29]
since it erroneously predicts that v = 3/4 for the entire
PF family. In other words, we focus on those formulas
for v that include the spectral dimension d, . Chronolog-
ically, the first formula of interest

vRTv = 3d9/df (2 + d, ), (4.1)

vHA = (4dy —d, )/[df (2df —d, + 2)] .

Finally, we quote the formula

vDMs = (2df + d, )/[df(2+. df)] )

(4 2)

(4 3)

that was derived in Ref. [12]. In Fig. 8 we present com-
parison of our exact and MCRG results for v with the cor-
responding predictions that follow from formulas (4.1)—
(4.3). One can see that all phenomenological formulas

was proposed by Rammal, Toulouse, and Vannimenus
[7]. Recently several groups of authors [8—11] obtained a
formula which in the case of fractals studied here has the
form

wrongly predict behavior of v as a function of 1/b Not-.
ing that in the case under study the phenomenological
formulas are functions of d, only (dy = 2, for all 6), we
may conclude that the PF family of fractals provides a
counterargument to the role given to the spectral dimen-
sion in the Flory-type approaches performed so far.

The data presented in Fig. 8 raise a question concern-
ing the behavior of v when 6 —+ oo. The same question
has been raised [13] and discussed [25] in the case of the
SG family of fractals. Using the finite-size scaling argu-
ments [25], it was predicted that v for SAW's on the SG
fractals should approach the Euclidean value 3/4, with a
negative correction term of the type lnlnb/lnb, when 6
tends to infinity. This asymptotic behavior, in combina-
tion with the exact results for v [13), implied a crossing
of the Euclidean value 3/4 at some finite b, which was in
fact confirmed in Ref. [14]. In the case of the PF fractals,
we observe the same type of behavior of v, and, conse-
quently, we can expect that v should also approach 3/4
from below, in the limit 6 —I oo (this expectation can be
corroborated by applying the finite-size scaling method of
Dhar [25)). The established behavior of v up to b = 121
(see Fig. 8) and the expected asymptotic behavior for
large 6 imply that v has a minimum at some finite b.
The location and physical meaning of this minimum are
not clear at present. In fact, the minimum of v can be
located [30] if one accepts the phenomenological assump-
tion of Rammal, Toulouse, and Vannimenus [7] that the
ratio v/vs is a certain function P of the spectral di-
rnension d„where vs = d, /2df is the random-walk
critical exponent. Then, knowing that P, as a function
of b, monotonically decreases from the value 2.27422 for
6 = 3 up to 1.76096 for b = 121, and knowing its limit-
ing value 3/2 (for 6 —I oo), one can [30] make a simple
linear interpolation of P as a function of 1/ ln 1i in the un-
known region between b = 121 and I/O = 0. In this way,
one can learn that minimum of v occurs at 6 = 25000.
However, it is not clear why one should assume the linear
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1/b
The exa«(open circles) and MCRG (solid circles) results for the critical exponent v of SAW's on the pF fractals.

The error bars related to the MCRG results lie within the drawn circles (the size of the bars is at least seven times smaller
than the diameter of the circles). The solid lines, marked by vHA, vDMs, and vRTv, show predictions that follow from the
phenomenological formulas (4.2), (4.3), and (4.1), respectively. The horizontal dashed line represents the Euclidean value
v = 3/4.

dependence of P of 1/ ln b For inst. ance, if we make linear
interpolation of P as a function of 1/b, we find that the
minimum of v occurs at 6 —1800. In any case, both in-
terpolations predict the location of minimum of v in the
region that cannot be reached using the most powerful
present day computers, and, accordingly, this problem
remains open for future studies.

In this paper we have also reported on our exact
(3 ( b & 9) and MCRG (b ( 121) calculations of the
critical exponent p for SAW's on the PF fractals. The
calculation of p through the MCRG method is, to our
knowledge, the first such utilization of the method in
the case of fractals. We have found that p is a rnono-
tonically increasing function of the fractal enumerator 6
and for all studied cases of 6 it appears that p is larger
than the Euclidean value 43/32 [5]. These findings offer
a specific support for the finite-size scaling predictions
of the asymptotic behavior of p [25] (invented originally
for the SG family, whose p is known only for the first
seven fractals [13]). On the other hand, our results for

p are in disagreement with the various arguments [3,31]
which state that p for SAW's on the critical percolation
clusters is not different from p of SAW's on fully occu-
pied Euclidean lattices. Of course, the PF fractals do
not model the percolation clusters, and the observed dis-
agreement may stem from the basic difference between
deterministic and random fractals. Nevertheless, in view
of the fact that the criticality of SAW's on the percola-
tion clusters is still a controversial problem, the noted
disagreement with our exact and MCRG results calls for
further investigations.
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APPENDIX: COEFFICIENTS
OF THE RG TRANSFORMATION

In this appendix we present coefficients of the RG
transformations that have been used to calculate the crit-
ical exponents v and p of the SAW's on the PF family of
fractals. First, we give the coefficients a~ which appear
in the RG relation (3.9):
b= 3

63=1, 05=2;

6=5
a5 = 1, a7 ——12, ag = 20, aqua

——12, a/3 —6, ay5 = 2;

a7 = 1, ag ——30, any ——182, egg ——440, cg5 ——774,
a~7 ——1280, Ging = 1904, a2q ——2332, a23 ——1924,
a25 ——826, a27 = 122;
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ag ——1, aqua ——56, aq3 = 702, a~5 ——3748, a/7
12542, aug ——35346, a2y ——93048, t223 ——231134, a25 ——

538 572, a27 = 1 157 132, aug = 2 193928, a3y = 3446672,
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a33 ——4 232 332, a35 ——3 860 556, a37 ——2 478 588, a39 ——

1042646, a4q ——254 744, a43 ——27638, a45 ——472.

In what follows we present the coefficients QN of the
RG relation (3.21):
b=3

=3, Qg=5, Q3 —4 Q4 —8, Qs=2, Qs=2;

Qt ——3, Qg ——5, Qs ——15, Q4 ——33, Qs = 48, Qs = 104,
Q7 —114, Qs = 196, Qg = 208, Qyp = 250, Q jy = 224,
Qg2 = 186, Qys = 106, Qg4 = 56, Qgs = 12;

Q] = 3 Qg —5 Q3 = 15, Q4 = 33, Qs = 87,
Qs = 201 Q7 = 398, Qs = 900, Qg = 1478, Qyp = 3114,
Qgg = 4654, Qyg = 8864, Qys = 12900, Qy4 = 21518,
Qy5 = 30094, Qgs = 43294, Qy7 = 54496, Qys = 68262,

Qyg = 72 610, Qgp —78 410, Q2y —68 166, Qgg = 59 372,
Q23 = 41 3581 Q24 = 25 808, Q25 ——13574, Qgs = 5020,
Qg7 ——1574, Qgs = 184;

6=9
Qy ——3, Qg=5, Qs=15, Q4=33, Qs=87, Qs=201,
Q7 = 537, Qs = 1261, Qg = 2872, Qyp = 6724,
Qyy = 13438, Qyg = 30638, Qys = 56112, Qy4
122642, Qgs ——214710, Qgs ——445252, Qg7 ——764580,
Qys = 1489630, Qyg = 2507460, Q2p = 4549028,
Q2g = 7396058) Q22 ——12456940) Q2s ——19188414)
Qg4 = 30052712, Qgs = 43067678, Qgs = 62724968,
Q27 = 82 429 002, Qgs = 110922 050, Qgg = 132 313980,
Qsp = 162 160 674, Qsy = 174 252 942, Q32
190453060, Qss = 182794634, Qs4 = 173662376,
Q35 —146 726 468, Qss = 117553 854, Q37 —85 103400,
Qss = 55 243 168, Qsg = 32 659 526, Q4p = 16 097 526,
Q4g = 7 109542, Q4g = 2 325 828, Q4s = 623 048,
Q44 = 87742, Q45 ——6614.
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