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Synchronization of chaotic trajectories using control
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We demonstrate that two identical chaotic systems can be made to synchronize by applying small, jud-
iciously chosen, temporal-parameter perturbations to one of them. This idea is illustrated with a numer-
ical example. Other issues related to synchronization are also discussed.
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I. INTRODUCTION

Chaos is characterized by a sensitive dependence of a
system's dynamical variables on the initial conditions.
Trajectories starting with slightly different initial condi-
tions diverge from each other exponentially. Conse-
quently, synchronization seems unlikely even for two per-
fectly identical chaotic systems if trajectories start from
initial conditions that differ slightly. Moreover, in practi-
cal applications the existence of noise (both external and
internal) and system imperfect identification makes the
hope of synchronizing two chaotic systems even more re-
mote. Nonetheless, it has been established that [1] synch-
ronization of chaotic dynamical systems is not only possi-
ble but it is believed to have potential applications in
communication [1] and in providing insight into some
neural and biological processes [2].

Previous studies demonstrated [1] that for a certain
class of chaotic systems, synchronization can indeed be
achieved. Consider a system that can be divided into two
subsystems. If one of the subsystems has only negative
Lyapunov exponents, trajectories from two such subsys-
tems can then be synchronized provided that the other
subsystem (whose largest Lyapunov exponent is positive)
is used as a common driving system [1]. This strategy
was verified numerically on various chaotic systems in-
cluding the Lorentz and Rossler systems and it was also
experimentally realized on some electrical circuits [1].

In this paper, we address the following question: given
two almost identical chaotic systems„can one make a
chaotic trajectory of one system to synchronize with a
chaotic trajectory of the other system by control'? Here
we do not require that the system under study be divided
into subsystems. Moreover, we allow for both noise and
a small amount of system parameter mismatch.

Our approach to synchronize chaotic systems is based
on the idea of controlling chaos by Ott, Grebogi, and
Yorke (OGY) [3]. While the original OGY method was
proposed to stabilize unstable periodic orbits embedded in
the chaotic attractor, we extend it to stabilize a chaotic'c

trajectory of one system around a chaotic trajectory of the
other system to achieve synchronization of the two sys-
tems. It should be noted that the idea of stabilizing
chaotic orbits by using the OGY method were also pro-
posed by Mehta and Henderson [4]. Their approach is to
construct an artificial dynamical system evolving errors
between the system's output and the target chaotic orbit.
If the artificial system has a zero fixed point, parameter
perturbations based on the OGY algorithm are then ap-
plied to stabilize the artificial system around its zero fixed
point, which means that the original system's output is
brought to the desired chaotic orbit [4]. They illustrated
their method by using one-dimensional maps. Construc-
tion of the artificial map for more general dynamical sys-
tems may be nontrivial. In our method, on the other
hand, parameter perturbations are applied directly to the
original dynamical system and the method makes use of
the geometrical structure of a chaotic trajectory.

II. SYNCHRONIZATION

To synchronize two chaotic systems that we call 3 and
8, we imagine that some parameter of one system (as-
sume 8) is externally adjustable. Our strategy is illustrat-
ed schematically in Fig. 1, where we assume that some
state variables of both systems A and B can be measured.
Based on this measurement and our knowledge about the
system (we can, for example, observe and learn the sys-
tem first), when it is determined that the state variables of
2 and B are close, we calculate a small parameter pertur-
bation based on the OGY algorithm and apply it to sys-
tem 8. Two systems can then be synchronized, although
their trajectories are still chaotic. Under the inAuence of
external noise, there is a finite probability that two al-

ready synchronized trajectories may lose synchroniza-
tion. However, with probability one (due to the ergodici-
ty of chaotic trajectories), after a finite amount of tran-
sient time, trajectories of A and B will get close and can
then be synchronized again. In this sense, our synchroni-
zation method is robust against small external noise.
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FIG. 1. Schematic illustrations of our strategy to synchron-
ize two chaotic systems. Some dynamical variables of two sys-
tems are measured, based on which temporal-parameter pertur-
bations are calculated and applied to the system B. We assume
that before the synchronization, some information about the
geometrical structure of the chaotic attractor (e.g. , the Jacobian
matrices along a long chaotic trajectory that practically covers
the whole attractor) has been obtained.

tract as a result of the map F. Similarly, a sma11 circle at
x(n, ) maps into an ellipse at xn under F, which means
that distances along the inverse image of the major axis
of the ellipse at x, expand under F. Therefore, the for-
ward image of the major axis of the ellipse at x(„,) and
the major axis of the ellipse at x„(image of the small cir-
cle at x~„,~) approximate the stable and unstable direc-
tions at x„, respectively. See Ref. [6] for a systematic al-
gorithm to compute stable and unstable directions for
general two-dimensional maps.

Let e, (n) and e„(n) be the stable and unstable directions
at xn and f, (n) and f„(n) be two vectors that satisfy

u(n) u(n) s(n) s(n) an u(n) s(n) s(n) u(n)
To stabilize Iy„] around [x„],we require the next itera-
tion of y, after falling into a small neighborhood around
x„ to lie on the stable direction at x~„+,~(po ), i.e. ,

[y +i x( +i}(po)] f
( +i)=

We consider two almost identical chaotic systems that
can be described by two-dimensional maps on the Poin-
care surface of section

x„+,=F(x„,po) [A], y„+,=F(y„,p) [B],
where x„y„&R, F is a smooth function in its variables,

po for system 3 is a fixed parameter value, and p for sys-
tem B is an externally controllable parameter. For the
purpose of synchronization, we require that the dynamics
should not be substantially different for systems 3 and B.
In other words, any parameter perturbations should be
small. Thus, we require

Ip
—

po I
& &,

where 6 is a small number defining the range of parame-
ter variation. Suppose that two systems start with
different initial conditions. In general, the resulting
chaotic trajectories are completely uncorrelated. Howev-
er, due to ergodicity, with probability one two trajec-
tories can get arbitrarily close to each other at some later
time n, . Without control, two trajectories will separate
from each other exponentially again. Our objective is to
program the parameter p in such a way that ly„—x„ l

~0
for n ~ n„which means that 3 and B are synchronized
for n +n, .

The linearized dynamics in the neighborhood of the
"target" trajectory [ x„ ] is

Substituting Eq. (3) into Eq. (5), we obtain the following
expression for the parameter perturbations:

[J [yn xn(—po)1] fu(n+ i)
(&p )„=

u(n +1)

It is understood in Eq. (6) that if (bp)„)5, we set
(bp )„=0.

One advantage of the OGY method is that it does not
require any knowledge of system equations [3], although
it is necessary to "learn" the system to obtain enough
knowledge about the unstable periodic orbits to be stabi-
lized before the control. Here by "knowledge" we mean
the Jacobian matrices J (note that f„~„~can be calculated
in terms of J [6]) and vector V in Eq. (6). A time series
with the use of delay coordinates is always enough to pro-
gram the necessary parameter perturbations to stabilize a
chaotic trajectory around the unstable periodic orbit. In
our synchronization problem, the orbit to be stabilized is
chaotic (say, with period ao). In principle, one can still
run the system for long enough time to estimate both J
and V for many trajectory points which practically cover
the whole chaotic attractor. While extrapolating both J
and V from a time series is relatively easy for an unstable
periodic orbit [7], it may be very difficult to do so for a
long chaotic trajectory. Hence, at present we cannot
guarantee that our synchronization scheme is meaningful
if we do not know the system well enough. Note that the
previous methods [1,4] also require the knowledge of the
equations of the system.

y. +i —x.+i(po) =J[y.—x.(po)]+V(~p). , (3)

where p„=po+(bp)„, (bp)„~5, J is the 2X2 Jacobian
matrix, and V is a two-dimensional column vector

J=D F(y,p)l„„, V=D F(y,p)l„ (4)

A property of a chaotic trajectory is the existence of both
stable and unstable directions at almost each trajectory
point [5,6], which can be seen as follows. Let us choose a
small circle of radius e around some orbit point xn. The
image of a small circle under F is an ellipse at x(„
This deformation from a circle to an ellipse means that
distances along the major axis of the ellipse at x(„,)

con-

III. NUMERICAL EXAMPLE

We i11ustrate our synchronization algorithm by using
the standard Henon map: (x,y)~(a —x +0.3y, x ),
where a is our control parameter. Consider two such
Henon systems. One has a fixed parameter value
(a =ao=1.4) which serves the target and in the other
system we adjust a in a small range (1.39,1.41) according
to Eq. (6). At time t =0, we start two systems with
different initial conditions: (x &,y &

) = (0.5, —0.8) and
(x2,y2) =(0.001,0.001). Two systems then move on
completely uncorrelated chaotic trajectories. At time step
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2534, the trajectory points of two systems come close to
each other within a circle of radius of 0.01. When this
occurs, we turned on the parameter perturbations calcu-
lated from Eq. (6). Note that the radius 0.01 above can
be changed slightly (without affecting the synchroniza-
tion) depending on how we define the "synchronization
neighborhood" in which two trajectories are considered
to be close together. In general, the size of such a neigh-
borhood should be chosen to be proportional to 5, the
maximum allowed parameter perturbation [3]. Figure
2(a) shows part of a time series of the uncorrelated and
synchronized chaotic- trajectories before and after the
control is turned on, respectively, where the crosses and
diamonds denote values of x for two chaotic trajectories.
Clearly, after the control is turned on, crosses and dia-
monds overlap each other, indicating that the two chaot-
ic Henon trajectories evolve completely in phase (synch-
ronization), although they are still chaotic. Figure 2(b)
shows a time series of Ax(t) =x2(t) —x&(t), where we see
that bx(t) =0 after the control is applied.

In the presence of noise, two synchronized trajectories
can go uncorrelated again (x2 is "kicked" out of the
neighborhood of xi by the noise). When b, x(t) exceeds a
critical value, say 0.01, we turn off the control and let the
two systems evolve by themselves. Due to ergodicity, the
two trajectories will come close again and be synchron-
ized. To model the effect of noise, we add a term Eo (t) to
the x component of the two Henon systems, where o. is a
random variable with Gaussian probability distribution
of zero mean and unit standard deviation, and e charac-
terizes the noise amplitude. Figures 3(a) and 3(b) show
part of the time series of Ax ( t ) for e=3.8 X 10 and
e=4. 18 X 10, respectively. Clearly, the smaller the
noise amplitude is, the longer the two systems can remain
synchronized.

In stabilizing unstable periodic orbits, the average tran-
sient time to achieve the control is shown to scale with
the maximum allowed parameter perturbation 5 as
v-5 ~, where y is given in terms of the stable and unsta-
ble eigenvalues (A,, and A,„)of the unstable periodic orbit
by [3 gl
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FIG. 2. Synchronizing two H enon systems
[(x,y)~(a —x'+0. 3y, x)]. In system A, the parameter a is

fixed at ao = 1.4. In system 8, a is a11owed to vary in

[1.39,1.41]. (a) The uncorrelated and synchronized chaotic tra-
jectories of the two systems before and after the parameter con-
trol are turned on, and (b) part of the time series of difFerence
Ax =x2 —x& corresponding to (a). The synchronization neigh-
borhood is chosen to be a circle of radius 0.01 (see text).

FIG. 3. Inliuence of noise [of the form eo (t), where cr(t) is a
Gaussian random variable having zero mean and unit standard
deviation, and e is the noise amplitude] on synchronized orbits.
(a) a=3.8X10 and (b) a=4. 18X10 . It is clear that noise
can make the synchronized orbits uncorrelated by kicking one
orbit out of the neighborhood of the other orbit.
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(7)

if the controlling neighborhood is chose to be a circle. In
our case of synchronization, such a scaling relation still
holds, as shown in Fig. 4 for the standard Henon map,
where we plot the average time (with respect to 200 ran-
dom pairs of initial conditions) to achieve synchroniza-
tion versus 6 on a logarithmic scale. The absolute value
of the slope of the line is the scaling exponent y, which is
approximately 1.225 for Fig. 4. Following the same argu-
ment as in Refs. [3,8], it is easy to see that y is still given
by Eq. (7) with A,, and A, „denoting the stable and unsta-
ble Lyapunov numbers of a typical chaotic trajectory. For
the standard Henon map, we found that y = 1.27 in terms
of Eq. (7), which agrees reasonably well with that extra-
polated from the straight line in Fig. 4. Note that the
average time to achieve synchronization increases drasti-
cally as 6 is decreased. For 5-10 in the Henon map,
r-10 [see Figs. 2(a), 2(b), and 4]. For stabilizing unsta-
ble periodic orbits, it has been demonstrated that the
average time to achieve control can be greatly reduced by
applying small controls to the orbit outside the control
neighborhood. This technique is known as "targeting"
[9]. Note that in such a case, the target (the unstable
periodic orbit) is always fixed, while in our synchroniza-
tion problem, the target moves chaotically because both
trajectories wander on the chaotic attractor and the actu-
al location at which two trajectories get close together de-
pends sensitively on the pair of initial conditions and the
size of the synchronization neighborhood. How to
reduce effectively the time to achieve synchronization is
at present an unsolved problem.
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FIG. 4. Average time to achieve synchronization ~ vs the size
of the synchronization neighborhood 6 on a log-log plot. Note
that ~-6 ~, where y is the absolute value of the straight line in
the figure.

IV. CONCLUSION

We present an algorithm to achieve synchronization of
two chaotic systems by applying small, temporally pro-
grammed parameter perturbations to one of the systems.
Our method makes use of the stable and unstable direc-
tions of chaotic trajectories to achieve synchronization.
Furthermore, it is robust even in the presence of small
noise.
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