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Nonlinear-response effects in stochastic resonance
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Nonlinear-response effects in stochastic resonance are investigated. An analytic solution is obtained
in the framework of the adiabatic approximation. It is found that the input signal strength plays an im-
portant role in a6'ecting the stochastic resonance behavior. Our analytic predictions fit well both numer-
ical calculations and experimental results.

PACS number(s): 05.40.+j, 05.20.—y

x =ax —x + 2 cos(At +0)+I (t),
& r(t)) =o, (r(t)r(t )) =2Ds(t —t ), (2)

which is equivalent to the Fokker-Planck equation (FPE)
[17]
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Using the adiabatic approximation McNamara and
Wiesenfeld [6] proposed a two-state model to consider-
ably simplify Eq. (3). They obtained

The problem of stochastic resonance (SR) has attracted
much attention in the past decade [1—12]. Up to now
most of the theoretical analyses, apart from certain nu-
merical works, are mainly based on perturbation theory
and linear-response theory. Many experimental and nu-
merical results strongly indicate, however, that the non-
linear response of a system to the input signal plays an
important role in the SR problem [13,14]. For instance,
the SR noise strength (i.e., the noise strength at which the
output signal takes its maximum value) may decrease as
the input signal strength increases [14], and the SR
amplification ratio (i.e., the ratio of the output signal
strength to that of the input) may be considerably
modified by varying the input signal strength. These phe-
nomena cannot be understood on the basis of linear-
response theory because in the linear regime the input
signal strength is irrelevant to the SR problem. The main
purpose of this paper is to give an effective approach for
describing the main nonlinear-response characteristics of
the SR at su%ciently small frequency of the input signal.
For considerations beyond the small-frequency (adiabat-
ic) limit we refer the reader to [15,16].

Let us start from the following bistable model which
has been extensively investigated [6—14]:

nA a A,

P, (co) =5(to 0)—
2D (k, +0 )

a

4D
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A, , =[~U"(0)~U"(&a )]'~ exp

1 1 1

a O'A) (6)

Therefore, in this paper we stick to the adiabatic approxi-
mation (for the fundamental ideas of the adiabatic ap-
proximation, cf. Refs. [18,19]), while taking into account
the nonlinear effects with respect to A. However, the
effects of the continuous bistable system will be taken
into account, instead of considering the simple two-state
model.

The evolution of the system can be separately investi-
gated in two time scales: a fast and a slow time scale.
The fast scale corresponds to the relaxation in a single
basin of attractor (1/a time scale) and the slow one is re-
lated to the transition probability between the two poten-
tial wells (1/0 and 1/A, , time scale). Since the probabili-
ty transition rate can be neglected in comparison with the
relaxation rate, the local asymptotic solution of Eq. (3)
can be regarded as valid all the time when we consider

a 2 1 4U(x)= ——x + —x, b, U=U(0) —U(&a ),
2 4

where P, is the spectral intensity of the signal and % the
signal-to-noise ratio in the output [6,7]. This result is
based on the linear-response theory. The two-state model
has grasped the essential point in the original continuous
bistable system. The adiabatic approximation fits many
practical situations very well. For instance, in our exper-
iment [12,13] we can easily realize the condition that the
relaxation time in each basin of attractors is negligibly
smaller than the period of the input, and than the hop-
ping time between the two basins, i.e.,
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the evolution on the slow time scale. Therefore, we have The solution of Eq. (10) can be easily worked out and
given by

n+(t)
N+ (t)

p(x, t)= '

n (t)
(t)

—U(x)
D

x )x„

x&x, ,

(7)

n+(t)=S(t) n+(t, )+f T (t')S '(t')dt'
0

S(t)= exp —f [T+(t')+T (t')]dt'
0

(12)

(13)

where we have used the notation

U(x, t) = U(x) Ax—cos(Qt +8) .

x„(t) is one of the three solutions of

ax (t) —x (t)+ A cos(Qt +0)=0 . (9)

n+(t)= —W(t)n+(t)+T+(t) . (10)

We have n (t)=1 n+(—t), W(t)=T+(t)+T (t). The
transition rates T+(t) and T (t) are determined by the
local asymptotic distribution equation (7) as

[~„~,]'"
T+(t) = exp2'

AU+ (t)—
b, U+(x)= U(x„,t) U(x+, t), —

The other two solutions read as x+(t), x (t), satisfying
x (t) &x„(t)&x+(t). N+(t) are normalization factors
N+(t) =+f„"e—xp[ —U(x)/D]dx. In Eq. (7), n+ (t) and

n (t) are the total probabilities in the right and the left
basins, respectively, which can be determined by the mas-
ter equation

A, +[x —x+(t)]
2D

k+
p+(x, t) =n+(t)

2nD
exp

(14)

x„corresponds to the maximum of the potential while

x+ and x correspond to the other two solutions. It
should be emphasized that, in Eq. (9), the modification of
the potential wells by the periodic signal needs to be tak-
en into account, because for large A this modification
changes the system's response considerably. There is a
turning point of A, =&4/27. As 3 ) 3, , in a certain
time interval Eq. (9) has only a single real solution corre-
sponding to the unique minimum of the potential. For
such a large 3 the above physical picture is no longer
valid, as a result this system does not show any SR
phenomenon. Thus we only consider the case of 3 & A, .
In Eq. (11) we do not take into account the probability
transition due to the motion of x„(t), because this transi-
tion rate is proportional to 0 which is negligibly smaller
than the rate included in (11). Since D «1, the major
portion of probability in each basin is centered at the
minimum point of the potential. Hence, a Gaussian ap-
proximation of the local distribution is reasonable. This
approximation leads to simpler expression

1/2

d U(x)
dx

d U(x)
dx

x =x+(t)

x =x„(t)

where p+ (x, t) and p (x, t) are the probability distribu-
tions in the slow time scale in the intervals x )x„and
x &x„, respectively. If we further consider the evolution
in the fast time scale, i.e., consider the relaxation from a
given 5 function p(x, to)=5(x xp) xp)x (tp) the
probability distribution in each basin can be specified by

A, +(t)
p (x, t~xp, to) =n+ (t) 2' A+(t)[x —x+(t) —[xo —x+(t)] exp[ —A+(tp)(t —tp)]]

exp
2D

x )x„,
A. (t)

=n (t) 2' (t)[x —x (t)]
exp

2D
x &x„, (15)

with n+(to)=1, n (to)=0. The solution for xp &x„(to) can be obtained from Eq. (15) by replacing all the subscripts
+, —by —,+, respectively. The solutions (12) and (15) describe the entire evolution from any initial distribution to
the asymptotic state, keeping the leading order of Q and D in all time scales.

From Eq. (15) we can easily calculate the autocorrelation function

G(r)=(x(t, +r)x(t, ))„
'0+2~/n= lim f dtp f f dx dy xyp(x, tp+r~y, tp)p(y, tp)

t0 277 t0

=G+(~)+G (r),
Q 2m/0 DG+(r)= 2' 0

dtoI n++(r, to)R(t +)[ o(xt'++ o) r(xto+)+ exp( —A+(tp)r)]
A, +(to+r}

+[1 n++(r, to)]tt+(—to}x+(to)x (r+to)],

(16)
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D =0.05, 0.03) one may again find a peak on the P-A
curves. These curves show the SR phenomenon with
respect to the signal strength. To our knowledge, this
kind of behavior is analytically predicted for the first time
in the present paper on the basis of nonlinear-response
theory. In Fig. 4, we again plot PM vs A, with PM being
the maximum value of the f3 Dcu-rve for a given A.
Then, we find that the amplification ratio decreases
monotonously by increasing A. This fact agrees with all
the numerical calculations and the experimental observa-
tions available up to date.

Since the SR phenomenon essentially relies on the op-
timal switching between the two basins, the hopping rate
A, , certainly plays a very important role in affecting the
SR behavior. An important point for the nonlinear
response is that the hopping rate depends on both D and
A. Figure 5 shows the level curves A, , (D, A )

=(0,/27r) f o W(t )dt =0.0. 1 and 0.02. As can be seen,
A,

&
is indeed modified by changing A. Increasing 3 may

increase the hopping rate, which turns out to be the key
point for understanding the nonlinear-response effects.
Especially, for A close to A„a slight change of 2 may
dramatically change A, &. Our model is still unable to
show the behavior of A,

&
in the vicinity very close to 3,.

All the level curves should cross the point
( A = A„D =0), since at A ) A, the regular switching
takes place, and then the hopping rate should approach
infinity (measured in slow time scale) as Eq. (9) has only a
single solution. The striking resemblance between Figs.
2 and 5 strongly indicates that the SR behavior is closely
related to the behavior of the hopping rate.

In all these figures we concentrate on the amplification
ratio /3. An important quantity in the study of SR is the
so-called signal-to-noise ratio % [6,7]. In this paper we
can only give some brief discussions in this respect.
From Eq. (16) one can calculate spectra of both output
signal and noise. Thus, an analytic result of % can be
also obtained in the framework of the nonlinear-response
theory. Two facts are already clear from the structure of
Eq. (16) without specifying the concrete form of the solu-
tion. First, % obtained by the two-state model, Eq. (5),
has an unreasonable behavior that the % approaches zero
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0.05 0,10 0.15 020 025 0.30 035 0,40
A

FIG. 5. The level curves of XI(A, D) in the A-D plane. The
resemblance of this figure to Fig. 2 is striking.

as D goes to zero. This shortcoming can be overcome in
our analysis by considering the motion within a basin.
As D~0, the noise part of (16) vanishes while the signal
part does not because x+(t) oscillates due to the input
signal. Thus, the % must reasonably approach infinity as
D~0 in our case. Second, in experiments we found that
increasing the input signal may result in an increase of
the output noise [i.e., there is a huge peak in the N (out-
put noise) —A curve, see the solid curve in Fig. 7 of Ref.
[13]]. This peculiar phenomenon can never be explained
by the linear-response theory [6,11]. However, from the
level curves in Fig. 5, the mechanism of this seemingly
peculiar behavior can be clearly understood. For small 0
and small D the major part of the noise correlation
spectrum at 0 can be (roughly) expressed as
N ~ A, , l(A, &+0 ). Fixing D to a small value, one may in-
crease k, by increasing A. At a certain 3 the hopping
rate may cross the value A, , =Q, and then the output
noise may have a peak about it. A detailed discussion
about these aspects will be published elsewhere.

At the end of this paper it is interesting to make some
remarks about the adiabatic approximation. Actually,
there are different definitions of adiabatic approximation.
Jung and Hanggi required the following conditions [14]:

0 «ki, A2, A3, . . .

In this case, the asymptotic solution of Eq. (3) can be ap-
proximately expressed in the form

80

p(x, t)=N(t) exp
U(x)

D
(19)
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PIG. 4. pM (the maximum p value on the p Dcurve for the-
given A) plotted against A. As observed by experiments and
numerical works, PM monotonously decreases as A increases.

where N(t) is the normalization factor. The second
definition requires Eq. (6) [6]. In the former case the glo-
bal distribution can be obtained adiabatically. In the
latter case, the adiabatic elimination procedure can be
only used in the local evolution in each potential basin.
The probability balance between the two basins, like Eq.
(19), cannot be obtained in a straightforward manner. It
is emphasized that the solution (7) can never approach
(19) as X, is sufficiently small even if t ~ ~, though the
shapes of local distributions in both cases are identical.
A simple matching procedure may unify the solutions in
different parameter regions. Since Q«a, we can easily
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find the hopping rate satisfying the condition
O«ki( A, D) «a. For instance, we can simply define

R, =i/af2 A. t this hopping rate both conditions (6) and
(18) are satisfied. Hence we can match the two solutions
to a unified one as p (x, t) = [ I /(1+ a) ]p i (x, t)
+[a/(1+a)]p2(x, t), where a=A, , /i/a0, and p, (x, t)
and p2(x, t) are the asymptotic solutions given by (7) and
(19), respectively.

In Ref. [13], some experimental data were found in
conceptual contradiction with the results obtained by the
adiabatic approximation. This contradiction leads the

authors to the conclusion that the observations are
beyond the interpretation of the adiabatic framework.
Now it is clear that the main experimental features can
be satisfactorily explained in the framework of the adia-
batic approximation if we fully consider nonlinear
responses and the effects of continuous variable of the bi-
stable system.
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