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Filtered noise can mimic low-dimensional chaotic attractors
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This contribution presents four results. First, calculations indicate that when examined by the
Grassberger-Procaccia algorithm alone, filtered noise can mimic low-dimensional chaotic attractors.
Given the ubiquity of signal filtering in experimental investigations, this is potentially important.
Second, a criterion is derived which provides an estimate of the minimum data accuracy needed to
resolve the dimension of an attractor. Third, it is shown that a criterion derived by Eckmann and Ruelle
[Physica D 56, 185 (1992)] to estimate the minimum number of data points required in a Grassberger-
Procaccia calculation can be used to provide a further check on these dimension estimates. Fourth, it is
shown that surrogate data techniques recently published by Theiler and his colleagues [in Nonlinear
Modeling and Forecasting, edited by M. Casdagli and S. Eubanks (Addison Wesley, Reading, MA, 1992)]
can successfully distinguish between linearly correlated noise and nonlinear structure. These results, and

most particularly the first, indicate that Grassberger-Procaccia results must be interpreted with far
greater circumspection than has previously been the case, and that the algorithm should be used in com-
bination with additional procedures such as calculations with surrogate data. When filtered signals are
examined by this algorithm alone, a finite noninteger value of D, is consistent with low-dimensional

chaotic behavior, but it is certainly not a definitive diagnostic of chaos.

PACS number(s). 05.45.+b, 02.60.—x

I. INTRODUCTION

Experimentally acquired signals are typically filtered.
Additionally, analytical methods in which interevent in-
terva1 data are reduced to continuous functions are, in
effect, filters. Given the widespread use of filtering, it is
important to determine its effects on dynamical analysis.
This contribution focuses on a specific issue: what effect
does filtering have on the estimation of the correlation di-
mension using the Grassberger-Procaccia algorithm?
This question has already received attention from a num-
ber of investigators. One paper explicitly considering the
effect of filtering on dynamical analysis that has come to
our attention is that of Badii and Politi [1]. They con-
sidered a restricted class of filter, the single-pole low-pass
filter, and concluded that "a dimension increase can be
theoretically predicted, contrary to the idea that filtering
reduces the dimensionality of the signal. " These results
were generalized by Badii et al. [2] and Mitschke,
Moiler, and Lange [3], who have argued that whenever
the effects of a filter can be described by a differentia1
equation, then filtering should increase dimension esti-
mates. Conversely, empirical experience with very noisy
signals produced the opposite effect [4]. Also, digital
filters themselves can be a source of chaos [5].

Mitschke's more recent results [6] indicate that acausal
filters do not necessarily cause an artifactual increase in
dimension estimates. This is consistent with results of
Yip, Holstein-Rathlou, and Marsh [7], who demonstrated
that an appropriately tuned Kaiser-Bessel filter can accu-
rately resolve a noise corrupted low-dimensional attrac-
tor. In a recent paper Broomhead, Huke, and Muldoon
[8] have shown theoretically that finite-order nonrecur-
sive filters leave invariant quantities that can be estimated
using embedding techniques, including, for example, the
correlation dimension. However, they are careful to
make the important distinction between that which is
theoretically true and practical issues of numerical es-
timation using finite data sets.

In this paper we construct an extremely simple filter
than can produce the spurious identification of chaotic
behavior by the Grassberger-Procaccia algorithm. Addi-
tionally, we show that calculations using a surrogate-data
method described by Theiler and his colleagues [9] can
successfully distinguish between linearly correlated noise
and nonlinear structure. As Theiler et al. stress,
surrogate-based hypothesis testing has a long history.
These papers are reviewed in Sec. V. Given the ubiquity
of filtered signals in experimental science, these results
suggest that the estimates obtained from the
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Grassber ger-Procaccia algorithm must be interpreted
with far greater circumspection than has typically been
the case. If filtered signals are being examined, this
method should only be used in combination with other
procedures, such as surrogate data calculations.
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II. SPECIFICATION OF THE RANDOM DATA
SET AND THE FILTER

A set of random numbers, uniformly distributed on the
unit interval, was generated using a procedure by Press
et al. [10]. This procedure follows a design specified by
Knuth [11]. In order to define a time scale for subse-
quent calculations, it is assumed that the random-number
generator was sampled at a frequency of 1 Hz', 8192 data
points are used in all calculations unless otherwise
specified.

This data set was filtered by a procedure modified from
the smoothing algorithm published by Press et (2l. [10].
The Fourier transform of the original data set is calculat-
ed and the jth element of the resulting Fourier series is
multiplied by factor F,

F, = max[0, 1 —kj ), k=0.37X10

Since the Fourier transform is linear, the resulting filter is
linear; that is, if x ( t ) and y ( t ) are functions of time, a
and b are constant multipliers, and F( ) represents the ac-
tion of the filter, then F(ax(t)+by(t))=aF(x(t))
+bF(y ( t ) ). Filters are also classified as causal or
acausal. If F(x(t )) depends only on x(t, ), . . . , x(t ),
then the filter is said to be causal. In the filter described
here, the value of F(x(t )) depends on the entire time
series. Filters of this type are acausal.

It is appropriate to ask what signal properties remain
invariant under the filtering process, and most particular-
ly what happens to the dimension. In the Appendix we
show that it is possible to present our filter in a form that
corresponds to the finite-order, nonrecursive filters de-
scribed by Broomhead, Huke, and Muldoon [8]. Filters
that satisfy the conditions of this theorem do not change
properties that are determined after embedding by the
method of delays. This would include Lyapunov ex-
ponents, Kolmogorov entropy and the dimension. From
the equation for F given above, we see that our filtered
signal has 10 independent frequencies. Therefore,
theoretically, the dimension of a signal will be unaltered
by the filter if its dimension is less than 499. As Broom-
head, Huke, and Muldoon stress, "the situation is not so
clear, however, even for a finite-order nonrecursive filter,
when constructing numerical estimates of dimension. "
This is the issue of focus for this paper. We are con-
cerned here with the practical, numerical difficulties that
are encountered when we try to estimate dimension using
finite, filtered data sets. Numerical estimates of dimen-
sion are not invariant under the filtering process.

Figure 1 shows a section of the original set of random
numbers and the corresponding filtered output. The
spectrum of the original data set is uniform, and the spec-
trum of the filtered data set follows the profile given by I'-
as defined above. All spectra were calculated four times
using square, Welch, Hanning, and Parzen windows. No
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significant window-dependent differences were observed.
These two data sets constitute the experimental material
for the next set of calculations.

III. CONVERGENCE CRITERIA FOR THE
GRASSBERGER-PROCACCIA ALGORITHM

In order to establish several definitions precisely, we
begin the discussion with an abbreviated didactic state-
ment of the Grassberger-Procaccia algorithm [12,13].
The investigation begins with a data set I V } measured at
a time interval T~. These data are used to construct
points [Xk ] in an X-dimensional embedding space,

XK ( +1+ {K —1)J ~ ~1+ (K —1)J +L

Vi+(K —1)J+2L~ ' ' ' ~ Vl+{K—1)J+(N —1)L )

lag L, together with embedding dimension X and sam-
pling interval determine the window, W=(X —1)I.T&, of
the embedding. The window is the length of time re-
quired to measure the data used to construct any point
Xz. The important parameter in an embedding is not
LTz or N separately, but the value of window. Albano
et al. [14) have shown over a wide range of values of win-
dow that if the window is the same, even though the
embedding dimension and lag are different, the resulting
correlation integrals nearly coincide and produce nearly
equal estimates of dimension. They have also shown that
the selection of an appropriate value of window is crucial
to the successful application of the Cxrassberger-
Procaccia algorithm. An inappropriate window can re-
sult in the unnecessary failure to resolve a finite-
dimensional attractor. Several candidate measures for
predicting a successful window are summarized by Al-
bano et al. [14,15], Liebert and Schuster [16], and Gib-
son et al. [17].

The correlation integral corresponding to this embed-
ding is then constructed,

FIG. 1. The effect of filtering random numbers with the filter
specified in the text. . The input signal (lower trace) is the set of
random numbers. The filter's output is shown in the upper
trace.



47 FILTERED NOISE CAN MIMIC LOW-DIMENSIONAL CHAOTIC. . . 2291

TABLE I. Results from random numbers.

lnrL 1nr U 1nr U
—1nrL lnr „D,„

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15

1.00+0.15
2.02+0.30
2.94+0.44
3.85+0.58
4.73+0.71
5.71+0.86
6.46+0.97
7. 16+1.07
7.98+1.20
8.79+ 1.32
9.63+ 1.44

10.62+ 1.59
12.01+1.80
12.44+ 1.87
12.72+ 1.91

—11.00
—7.75
—4.85
—3 ~ 80
—3.25
—2.90
—2.20
—1.90
—1.50
—1.35
—1.40
—1.15
—1.00
—0.95
—0.80

—1.90
—1.45
—0.95
—0.75
—0.90
—0.80
—0.80
—0.40
—0.50
—0.35
—0.20
—0.20
—0.40
—0.15
—0.10

9.10
6.30
3.90
3.05
2.35
2.10
1.40
1.50
1.00
1.00
1.20
0.95
0.60
0.80
0.70

0.00 6.95
0.30 7.38
0.45 8.69
0.55 9.26
0.60 8.57
0.65 8.89
0.70 9.14
0.75 10.98
0.75 11.06
0.80 11.78
0.85 12.18
0.85 12.73
0.90 11.58
0.90 13.14
0.95 13.45

where 8 is the Heaviside function, L is the number of
points in the embedding space, and Xz is the number of
distinct pairs of points. In all of the calculations present-
ed here, the Euclidean metric is used. There are two
reasons for making this choice of metric. First, the Eu-
clidean metric is typically used in the Grassberger-
Procaccia literature that we wish to address in this paper.
Second, we have suggested [14] using the orthogonal
transformation specified by the singular-value decomposi-
tion prior to calculations of the Grassberger-Procaccia al-
gorithm as a noise-reduction technique. The Euclidean
metric is invariant under a rotation. Other metrics, such
as the max norm, are not.

Grassberger and Procaccia demonstrate that if a series
of conditions are satisfied, then the double-logarithmic
plot of the correlation integral versus the distance in the
embedding space constructed using data obtained from a
finite-dimensional system wi11 display a linear region
called the scaling region. The slope of the scaling region
is the correlation dimension of the attractor. The condi-
tions of the theorem require using a sufficient number of
data points of high quality (low noise) and a sufficiently
large value of embedding dimension. In the calculations
presented here, we have estimated the derivative of the
correlation integral by determining the slope of 11 con-
secutive points. The partition width of the ln(r ) axis was
0.05 in all calculations. It should be stressed that the di-
mension estimate itself is determined directly from the
correlation integral. The derivative calculation is used
only to determine boundaries rI and rU of the scaling re-
gion. Though its limitations are recognized, this method
results in an objective, quantitative procedure that allows
systematic comparisons between cases. Following a
recommendation of Caswell and Yorke [18], we include
the specification of rL and rU in the report of the dimen-
sion estimates summarized in Tables I and II. r,„ is the
largest interpoint distance in the embedding space.

Three convergence criteria should be applied to dimen-
sion estimation based on the Grassberger-Procaccia algo-
rithm. First, the scaling region must be linear. The de-
gree of variation of the derivative in the scaling region
should not exceed some specified standard. This factor

TABLE II. Results from filtered random numbers.

lnrL 1nr U lnr U
—1nrl lnr, „a,„

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15

1.00+0.15
1.98+0.30
2.97+0.45
3.02+0.45
2.95+0.44
3.70+0.56
3.85+0.58
4.07+0.61
4.00+0.60
4. 18+0.63
4.36+0.65
4.57+0.69
4.35+0.65
4.40+0.66
4.45+0.67

—14.80
—8.50
—7.70
—6.35
—5.15
—6.00
—6.05
—5.70
—5.15
—4.95
—4.70
—4.80
—4.10
—4.05
—4.00

—2.25
—3.55
—5.05
—4.60
—3.85
—4.50
—4.10
—4.25
—3.70
—3.50
—3.30
—3.35
—2.70
—2.45
—2.20

12.55
4.95
2.65
1.75
1.30
1.50
1.95
1.45
1.45
1.45
1.40
1.45
1.40
1.60
1.80

—0.55 7.53
—0.20 4.47

0.00 3.18
0.15 3.41
0.20 4.00
0.30 3.41
0.35 3.60
0.40 3.51
0.40 3.93
0.45 4.07
0.45 4.27
0.50 4.16
0.50 4.91
0.50 5.21
0 50 5.56

b.r -2 b,x =2K (x —y) b,x Ir
Bx

Since r is of order N' (x —y ),

hr -(2X)' bx

The resolution requirement b r ( rL therefore becomes

bx (rL /(2X)'

The value of rI is determined from the dimension calcu-
lation. If bx does not satisfy this condition, reduced
confidence must be ascribed to the dimension estimate.

establishes an optimistic estimate of uncertainty in the di-
mension estimate. Second, the scaling region must be of
significant length. In Tables I and II, we report
ln(rU ) —ln( rL ). A length of 6 ln(r ) = 1.6 corresponds to
a fivefold variation in r. We regard this as being the
minimally acceptable scaling length. Third, the estimate
of dimension should be robust against variations in the
embedding window. It should be noted that the estimate
should be robust against changes in window, not against
changes in embedding dimension alone.

A crucial issue to any experiment is the accuracy of the
experimental measurement. Moiler et al. [19] have
shown that inadequate resolution causes an underesti-
mate of the dimension. Let Ar be the uncertainty in the
measurement of a distance in embedding space. For the
dimension estimate to be meaningful we require Ar (rl,
where rL is the lower bound of the scaling region:

r —[N(x —y) ]'

where X is the embedding dimension, and x and y are
representative values of the measured variable. Let Ax
and Ay be the associated uncertainties in x and y. Ax and
Ay are determined by several factors including arithmetic
precision in the case of theoretical calculations and digi-
tizer resolution in experimental investigations,

2

Ar = Ax+ Ay
Br 2 Br
Bx By
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IV. DIMENSION CALCULATIONS USING RANDOM
NUMBERS AND FILTERED RANDOM NUMBERS

The results of the dimension calculations using our set
of random numbers are summarized in Fig. 2 and in
Table I. The behavior expected for random numbers is
observed, namely the estimated dimension should be
equal to the embedding dimension. The failure to fill the
embedding space at higher dimensions is a consequence
of the finite number of data points used. This failure in-
dicates that care will have to be exercised when examin-
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FIG. 2. Estimated correlation dimension as determined by
the Grassberger-Procaccia algorithm as a function of embed-
ding dimension. The input data sets were 8192 random num-
bers (upper trace) and 8192 filtered random numbers (lower
trace). In each embedding I.=J= 1. Numerical details of these
calculations are presented in Tables I and II.

Conversely, existing implementations of the algorithm
can be modified to begin the search for rI at
rL = (2N )

' b,x. A modest acceleration in the computa-
tion can result. This criterion is satisfied in all of the di-
mension calculations presented here.

A final consideration is Nd„„ the number of data
points required to resolve the attractor. As previously
noted [20] there is no universal response to this question
since the answer will depend on the distribution of points
on the attractor. Smith's analysis [21] indicates that data
requirements increase exponentially with the dimension
of the attractor, 42 . However, Grassberger, Schreiber,
and Scha6'rath [22] have argued that this pessimistic esti-
mate is based on assumptions that are not applicable to
the correlation dimension. Eckmann and Ruelle [23]
have produced a somewhat more optimistic estimate.
According to their criterion, the maximum dimension es-
timate that can be supported by Nd„, data points is

D,„=2lnNd„, /ln(1/p),

where p = r /r, „. Here r,„ is the maximum distance
vector and r is a representative value of r in the scaling
region. In our calculations we use r;d=(rl +rU)/2 as
the representative value. D,„should be calculated as
part of the dimension-estimation procedure. If the es-
timated value of dimension exceeds D,„, that estimate is
questionable.

ing dimension calculations in higher-dimensional spaces
(roughly when N ~ 10) if only 8192 points are used. In
summary, these calculations with random numbers show
an estimated value of dimension that increases with in-
creasing embedding dimension. This data set would not
be mistaken for a system with dimension less than 16.

The results of the dimension calculations using filtered
random numbers are shown in Fig. 2 and in Table II.
The filter described in Sec. II effectively reduces the num-
ber of independent points in the data set. Thus, the es-
timated dimension of filtered noise should be less than the
dimension of the original set of random numbers. These
results were obtained when the maximum permitted ex-
cursion of the derivative in the scaling region was limited
to 15%. The plateau length is stable and the value of the
dimension estimate is comparatively robust, certainty
within 15%, with changes in the embedding window.
Also, D,„ is greater than the dimension estimate in the
critical embeddings that display a stable value of dimen-
sion. It should be noted that these calculations are based
on a naive embedding. In each case L =J=1. Prelimi-
nary calculations suggest that if the dimension calcula-
tions were preceded by a systematic effort to establish a
better window, the scaling-region duration would be
significantly improved. These calculations suggest that
inappropriately filtered random signals can mimic finite-
dimensional chaotic attractors when they are analyzed by
the Grassberger-Procaccia algorithm alone.

Theiler [24] has demonstrated that erroneous results
can be obtained from the Grassberger-Procaccia algo-
rithm when correlations from consecutively sampled
points produce spuriously low values of the correlation
dimension. These correlations are to be contrasted from
geometrically significant correlations which result when
the trajectory in embedding space returns to the vicinity
of an earlier point on the trajectory. Theiler argues that
a simple modification of the correlation integral can
correct for this bias,

K —B K
Cz(r)=(1/Np) g g e(r —~X; —X&~) .

i =1 j=i+B
The case 8=1 reduces to the conventionally defined
correlation integral. The choice of 8 must be considered.
A natural time scale for any time series is its autocorrela-
tion time (the time required for the autocorrelation func-
tion to drop to 1/e of its original value). For the filtered
random numbers the autocorrelation time is 6 s. We re-
calculated the dimension of this data set for 8=6, 60,
and 600 (M=8192, N= 1-15, L = 1, J= 1). No
significant differences were observed. This insensitivity
to 8 should be expected since for this time series all of
the correlations result from time-correlation pairs. The
correlation time introduced by the filter is very small
compared to the total time span, and thus deleting some
of the time-correlated pairs does not significantly change
the final result.

V. CALCULATIONS WITH ALGORITHM 1
SURROGATE DATA

Scheinkman and LeBaron [25] have proposed a simple
and easily implemented shufBe test that can be used to ex-
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elude at least some classes of spurious Grassberger-
Procaccia results. In this test the correlation integral is
calculated with a data set obtained by shuNing the origi-
nal data. A representative result obtained by using
filtered random numbers and a data set produced by ran-
domly shufIling the data is shown in Fig. 3. (Following
Albano et al. [14], the x axis in this diagram is normal-
ized against r „, the largest interpoint distance in the
embedding space. ) The differences between the correla-
tion integral obtained from the original data and its
shufBed variant are readily observed and indicate that
there is a nonrandom structure in the filtered random
numbers. However, the shuNe test detects any correla-
tion. In the case of filtered noise the existence of a corre-
lation in the data is not in dispute. Rather, our objective
is to determine if a meaningful structure underlies this
observed correlation.

Several investigators have demonstrated the impor-
tance of bringing more rigor to measurements of dimen-
sion [26—29]. Notable in this regard is the work of Brock
and his colleagues [30—32]. A recent review of their
work is given in Brock and Potter [33]. As a result of the
recognized need for improved procedures, a number of
investigators have independently proposed using a class
of methods that, collectively, have come to be called sur-
rogate data techniques. The surrogate data method is
only one of many techniques that can be used to avoid
spurious estimates of dimension. Early variants of the
method include contributions by Grassberger [34], Brock
[35], Brock, Dechert, and Scheinkman [36],Oborne et al.
[37], Theiler [38], Elgar and Mayer-Kress [39], Theiler
[40], Kaplan and Cohen [41], and Pijn [42]. Theiler and
his colleagues [9] have expanded on this work in a recent
paper. Following the nomenclature in their paper, the
most elementary form of the method is referred to as the
Algorithm 1 test. This procedure directly examines the
null hypothesis that the signal in question is linearly
correlated noise. This hypothesis is tested by construct-
ing a surrogate data set in a three-step process.

(1) Determine the Fourier transform of the original
data set.

(2) Randomize the phases of this Fourier transform.
(3) Produce a surrogate data set by taking the inverse

transform.

The surrogate and original data will have the same
power spectrum and autocorrelation function. A mea-
sure is then applied to the original data set and to its sur-
rogate. In this paper we are specifically interested in
identifying possible sources of errors that have appeared
in published estimates of dimension. Therefore, the
correlation dimension as determined by the Grassberger-
Procaccia algorithm is the calculated measure. However,
other measures of dynamical behavior can be employed.
In addition to dimension, forecasting error [43,44],
Lyapunov exponents [45 —47], and direct measurements
of local vector fields [48] have been used with surrogate
data sets. Our present understanding of the numerical
difFiculties associated with estimation of different mea-
sures is expanding rapidly. For example, Eckmann and
Ruelle [23] have recently argued that measuring
Lyapunov exponents may require much more data than
has previously been supposed. Also, it is now recognized
that the Grassberger-Procaccia algorithm may not be the
best approach to estimating dimension. Recent work by
Judd [29] has resulted in an alternative procedure that
produces dimension estimates based not on the correla-
tion integral, but on the distribution of interpoint inter-
vals that is used to calculate the integral.

If the measures obtained from the original and its sur-
rogate are significantly different, the null hypothesis fails,
and it is concluded that the original data set is not simply
linearly correlated noise. A crucial word in the preceding
sentence is "significantly. " In order to determine the
confidence with which the null hypothesis can be reject-
ed, several distinct surrogate data sets should be generat-
ed by the three-step procedure. Let Dd„, be the correla-
tion dimension of the original data. Let (D,„,„) be the
mean correlation dimension of the surrogates, and o.,„„
be the standard deviation of the correlation-dimension
values obtained from the surrogates. The significance S is
defined as

5.0

0.0--

-5.0

(3
—-1 0.0

Theiler [9]„suggest that a value of S—2 is not significant
but S-10 is highly significant. In that paper they also
derive an analytic expression for AS, the uncertainty in S.
As an example of the method, we began by applying it to
data where deterministic, nonlinear structure is known to
exist. Test data were generated by the Henon attractor

x+&=1—ax +y„, y+&=bx„, a =1 4, b =0 3 .

-15.0 "-
~ ~

-20.0
-8.0 -6.0 -4.0

In (r/r inax)

-2.0 0.0

FIG. 3. Correlation integrals obtained from filtered random
numbers and its random shufBe. The random shufBe has the
steeper slope. In both calculations X„„,=8192, N=6, L=1,
J=1.

In calculations using these data and the Grassberger-
Procaccia algorithm, satisfactory scaling regions can be
obtained when the derivative criterion is reduced to 10%%uo.

The requirement D2 ~D,„was easily met in each
embedding [49]. When a correlation integral obtained
from the Henon data is compared with that obtained
from one of its surrogates, dramatic differences are ob-
served. Table III (case 1) shows the results of systematic
comparisons of the Henon data and its Algorithm 1 sur-
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TABLE III. Significance as function of embedding dimen-
sion. Case 1: Henon data, N= 8192, L =J= 1, ten Algorithm 1

surrogates. Case 2: Linearly filtered random numbers,
N =8192, L =J= 1, ten Algorithm 1 surrogates. Case 3: Non-
linearly transformed, linearly filtered random numbers,
N=8192, L =J= 1, ten Algorithm 1 surrogates. Case 4: Non-
linearly transformed, linearly filtered random numbers,
N =8192, L =J= 1, ten Algorithm 2 surrogates.

N, I,

2
3
4
5

6
7
8

9
10
11
12
13
14
15

Case 1

54.00+ 12.08
98.64+22.06
63.29+14.16
46.09+10.31
48.75+ 10.91
50.22+ 11.23
25.09+5.62
21.74+4.87
35.23+7.88
22. 59+5.06
19.41+4.35
16.10+3.61
21.13+4.74
13.27+2.98

Case 2

0. 13+0.32
1.53+0.47
3.04+0.75
2.53+0.65
0. 10+0.32
0.09+0.32
0. 13+0.32
0.23+0.32
0.22+0.32
0.02+0.32
0.22+0.32
0.20+0.32
Q. 32+0.32
0. 15+0.32

Case 3

8.25+ 1.86
10.00+2.26
6.25+ 1.43
3.84+0.92
4.57+ 1.07
3.07+0.76
3.63+0.87
2.79+0.70
1.66+0.49
1.88+0.53
1.92+0.53
2.82+0.71
1.98+0.54
1.91+0.53

Case 4

1.14+0.41
0. 10+0.32
0.71+0.35
0.97+0.38
0.34+0.33
0.46+0.33
0. 19+0.32
0.31+0.32
2.69+0.68
1.95+0.53
1.51+0.46
1.15+0.41
1.97+0.54
1.59+0.48

rogates. Given the very high S values, it is possible to re-
ject the null hypothesis, that the Henon data are linearly
correlated noise, with a high level of confidence. Algo-
rithm 1 was then applied to filtered random numbers.
When correlation integrals obtained from these data and
one of their surrogates are compared, they very nearly su-
perimpose. Results from calculations using ten surro-
gates are also summarized in Table III (case 2). Using
this test it is possible to conclude that the data set of
filtered random numbers is, indeed, indistinguishable
from linearly correlated noise.

VI. CALCULATIONS WITH ALGORITHM 2
SURROGATES

The set of linearly filtered random numbers is clearly
an artificial data set. In actual laboratory applications
some degree of nonlinear distortion of the signal often
occurs. Suppose that the filtered noise was subjected to a
monotonic nonlinear transformation h. Would Algo-
rithm 1 correctly identify the random origin of the ob-
served signal? This question is addressed in the next set
of calculations. The filtered random numbers were
transformed by the function

x —x;„—0.0001

by this nonlinear function are given in Fig. 4.
Grassber ger-Procaccia dimension estimates obtained
with these data are much less robust than those obtained
using the original set of filtered random numbers. In or-
der to satisfy the D2 & D „condition and to get scaling
regions of even marginal acceptability, it is necessary to
increase the derivative criterion to 20%. Even without
the benefit of surrogate data calculations, one would con-
clude that the identification of a low-dimensional struc-
ture in this data set was very tentative.

When correlation integrals calculated using the
transformed data and one of its Algorithm 1 surrogates
are compared, differences are observed. However, these
differences are not as dramatic as those seen with Henon
data. These calculations are also summarized in Table
III (case 3). These results are intermediate to case I
(Henon data) and case 2 (linearly filtered random num-
bers). The average significance for embedding dimen-
sions 2 to 15 is S=3.89. However, it was previously ob-
served that because only 8192 points were used, results
obtained for N ~ 10 are suspect. The average significance
for %=2 to %=9 is S=5.29. When examined with Al-
gorithm 1 surrogates, the nonlinearly transformed filtered
random numbers might be deemed to have low-
dimensional behavior.

The problem of nonlinearly transformed signals has
also been considered by Theiler et al. [9]. Algorithm I
addresses the null hypothesis: the signal is linearly corre-
lated noise. Algorithm 2 addresses the null hypothesis:
the signal is linearly correlated noise that has been
transformed by a static, monotonic, nonlinear function.
The surrogates that are used to investigate this hy-
pothesis are constructed by the following procedure.

(A) let Ix;I denote the original times series. A time
series Iy; I of equal length is constructed with two prop-
erties: the elements Iy; I are drawn from a random
Gaussian distribution, and the time series Iy; I has the
same rank ordering as [x;I; that is, if x27 is the third
largest value of Ix; I, then yz7 is the third largest value of
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where x;„and x,„are the minimum and maximum
values of the set of filtered random numbers and p, in this
calculation, is equal to three. The results of dimension
calculations using filtered random numbers transformed

FIG. 4. Estimated correlation dimension as determined by
the Grassberger-Procaccia algorithm as a function of embed-
ding dimension. The input data sets were 8192 random num-
bers (upper trace) and 8192 numbers generated by a nonlinear
transformation of filtered random numbers. In each embedding
L =J=1.
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[y, ]. Given the hypothesis that the underlying process is
random, the object is to construct in [y; ] the time series
that would have been observed prior to the action of the
nonlinear transformation h; y; =h '(x; ).

(8) Given [y;], an Algorithm 1 surrogate, denoted

[y,'], is constructed. If the null hypothesis is correct (the
underlying signal is random), then randomizing the phase
of [y, ] to create [y ] will not result in a loss of structure.
The measured properties of the two time series should be
the same.

(C) A surrogate, denoted [x,.'], is constructed by
shufHing the original time series [x,. ] so that the rank
structure of [y ] determines the rank structure of [x,'j.
The surrogate time series (x,'j is used in subsequent cal-
culations, in this instance, in calculations of dimension.

Algorithm 2 is thus seen to be a shufBe test, but unlike
the previously described shuNe it is very specific. The
essential step in Theiler s analysis is the numerical ap-
proximation of h . For this construction to be success-
ful and for the subsequent shufile of tx; ] to be other than
just a random shufHe, the data set [x;] has to be large
and well distributed over its domain. This raises ques-
tions concerning data requirements for Algorithm 2
which require systematic investigation.

When correlation integ rais from the nonlinearly
transformed filtered random numbers and from one of its
Algorithm 2 surrogates are compared they are found to
be nearly identical. The significance values from ten sur-
rogates are summarized in Table III (case 4). Calcula-
tions with Algorithm 2 correctly identify the random na-
ture of the underlying signal. As Theiler et al. [9] ob-
serve, these algorithms consider only two of many possi-
ble null hypotheses. It is in principle possible to con-
struct a sequence of hypotheses and corresponding surro-
gates to conduct dynamical investigations of increasing
specificity and rigor.

Vn. CONCLUSIONS

In this investigation random numbers, filtered by a
linear, acausal filter were examined by the Grassberger-
Procaccia algorithm. These calculations alone failed to
identify the underlying random nature of the time series.
These results suggest that considerable care must be exer-
cised when filtered signals are examined. Given the ubi-
quity of filters in experimental equipment, this observa-
tion is applicable to a broad range of experimental stud-
ies. A finite, noninteger value of D2 is consistent with
low-dimensional chaotic behavior, but it is not a
definitive diagnostic of chaos.

Many experimental investigations begin with the mea-
surement of interevent time intervals. Examples include
the measurement of the time intervals between neural ac-
tion potentials and between heart beats. In some studies,
event-interval data are used to construct a continuous
function in time that gives an approximation of the fre-
quency at any given moment. This is done in order to use
analysis procedures that presuppose the existence of a
continuous function defined at uniformly spaced time in-
tervals. The construction of a continuous wave form is
sometimes used by these investigators as a preliminary

step prior to application of the Grassberger-Procaccia al-
gorithm. The process by which interval data is converted
to a wave form is itself a filtering procedure. The results
presented here suggest that this filtering process could
have artifactually produced the appearance of low-
dimensional structures that do not, in fact, exist in the
original data. A comparison with surrogate data should
be used to determine if pretreatment of the original data
in this way has resulted in the spurious identification of
low-dimensional attractors in biological data. The
Grassberger-Procaccia algorithm can be applied directly
to interval data. Unnecessary filtering should certainly
be avoided. Calculations with original interval data
should be combined with calculations using appropriately
constructed surrogates.

While the numerical results presented here sound
several cautionary notes, our overall conclusions are op-
timistic. The surrogate data technology is broadly appl-
icable and may prove to be particularly helpful in the
analysis of noisy biological data. Several factors combine
to make the dynamical analysis of biological signals ex-
ceptionally difficult [50], but preliminary results by
Theiler et al. [9] are encouraging. They present an inves-
tigation of an electroencephalographic (EEG) signal us-
ing the Algorithm 2 surrogates. The estimated dimension
increases with embedding dimension. If this EEG record
had been examined by the Grassberger-Procaccia alga-
rithm alone, it would have been concluded that low-
dimensional behavior was absent, and the search for sta-
tistically significant evidence of low-dimensional struc-
ture would have been abandoned. However, the values of
S and AS obtained from this data set and its Algorithm 2
surrogates indicate that significant higher-dimensional
nonlinear structure is present.

Note added. We recently became aware of unpublished
work by James Theiler, who also found that filtered noise
can mimic low-dimensional chaos.

ACKNOWLEDGMENTS

P.E.R. would like to acknowledge support from NIH
Grant No. NS19716. We wish to thank the College Corn-
puter Center of the Medical College of Pennsylvania for
its support. Professor Donald Marsh of the University of
Southern California and Professor Alistair Mees of the
University of Western Australia provided advice about
filtering procedures. Additionally, we would like to ac-
knowledge with gratitude Dr. Theiler's valuable insights
and recommendations.

APPENDIX

In this appendix we show that the filter described in
Sec. II is an acausal, nonrecursive filter of finite order.
Therefore, according to a theorem proved by Broom-
head, Huke, and Muldoon [8] (see below), the filter in
principle leaves invariant those quantities that can be ob-
tained using embedding techniques.

Let V= [uo, u„. . . , uz, j be a series of real-valued
measurements made on a dynamical system. We assume
that the system evolves on an attractor A, which is a sub-
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set of a diA'erentiable manifold At of dimension, m. A
nonrecursive filter applied to V produces a new time
series, U=Iuo, u„. . . ], with

The sequence [a ] is the (inverse) discrete Fourier trans-
form of the filter function F„. We shift the summation
index in Eq. (A5) to get

n —1

uj = QkUj k =8'Vj
k=0

(A 1)
k —N+1

uk= a U/ —a vt
m=k

(A6)

This filter is causal if k ~ 0 and is said to be offinite order
if n is finite.

The filter described in Sec. II uses the fast-Fourier-
transform algorithm which calculates the discrete-
Fourier-transform,

N —1

] y 2,vrikn /N

k=0
(A2)

of the sequence, V= Iuo, u„. . . , viv, ]. The inverse of
Eq. (A2) is

Comparison of Eqs. (Al) and (A6) shows that the filter
defined in Sec. II is an acausal, nonrecursive filter of or-
der N, which is finite, satisfying the hypotheses of the
theorem of Broomhead, Huke, and Muldoon [8] which
we restate here for completeness.

Let Jambe , a compact manifold of dimension m; P:
~At a smooth diffeomorphism; v: JN ~% a smooth

function; and the map, 4(& ). JR~A +' defined by

)(x)=(vo=v(x), v, =v(P '(x)), . . . ,

N —1—~—i[cd ]
— y cy —2mikn IN (A3)

(see, e.g. , Ref. 10). Note that the sequence I V„] is
periodic of period X.

Using Eqs. (A2) and (A3), the action of the filter of Sec.
II may be written as

uk =S '[F„ tt„], (A4)

where F„ is the filter function. Again using Eqs. (A2) and
(A3), Eq. (A4) can be rewritten as

an embedding.
Theorem: Let V be a time series of measurements made

on a dynamical system, (P, A, ), satisfying the above con-
ditions. Then, for triples (a, P, v) it is a generic property
that the method of delays, which constructs, from the
time series U, vectors of the form

(u~ , u i, . . . .
)
.u i+i).

where 1~2m+1 and u =a.v.
N —1

uk = ak jUj'
j=0

N —1

with a =~ '[F ]=—y F em k ~ k
k=0

(A5)

where a describes a nonrecursive filter of finite order n,
gives an embedding of At.

The proof of this theorem given in Ref. [8] requires n

to be at least equal to 2m+1 so that the filter acts as a
map of the original embedding.
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