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Signatures of chaos in the modulus and phase of time-dependent wave functions
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For a classically chaotic two-dimensional bound system, based on the assumption that an initially-
well-localized, semiclassical wave packet can be represented by a superposition of a large number of ran-
dom plane waves at fixed times, we show that the modulus and phase of the wave function are indepen-
dent random functions having a Rayleigh and a uniform one-point spatial distribution function, respec-
tively. These predictions are confirmed through our numerical wave-packet study for one-quarter of the
Sinai billiard. Streamline vortices can form around wave-function nodes, a fact first discovered by Dirac
in 1931. For a classically chaotic billiard, the random plane-wave superposition approximation predicts
that both the number of nodal points and the maximum number of vortices in a wave packet with initial
wave number k is N, where N refers to the Nth eigenstate with wave number kz which is closest to k.

PACS number(s): 05.45.+b, 03.65.—w, 02.50.—r

Much effort (see [1] for a review and references) has
been devoted to the understanding of the quantum mani-
festation of classical chaos in two-dimensional (2D)
bound systems in recent years. The main approach of
such an endeavor, commonly referred to as quantum
chaos or quantum chaology [2], has been statistical in na-
ture. The results of various studies suggest that the sta-
tistical properties of energy eigenvalues, and both station-
ary and time-dependent wave functions of classically
chaotic systems, exhibit generic behavior. For eigenval-
ues [1—3], the spectral statistics are well described by
random-matrix theory. For spatially irregular wave func-
tions, semiclassical energy eigenfunctions [4,5] and
initially-well-localized, semiclassical wave packets [6,7]
are quite accurately represented by a superposition of a
large number of plane waves of equal wave-vector magni-
tude but random directions and phases. The random
plane-wave superposition approximation (PWSA) was
originally conjectured by Berry and co-workers [5,8] to
be valid for semiclassical (high-lying) stationary states of
classically chaotic systems with and without time-
reversal symmetry. Recently, its validity has also been
studied for nonchaotic, pseudointegrable billiards [7,9].
O' Connor, Gehlen, and Heller [10] found, numerically,
that a superposition of a large number of random cosine
waves exhibits a network of ridge structures in
configuration space, instead of a speckle pattern as previ-
ously believed. These ridge structures have recently [11]
been observed experimentally in water surface waves in a
stadium-shaped ripple tank.

For time-dependent wave functions g(r) (the time
dependence in f is omitted because only spatial proper-
ties of the wave functions at axed times are considered
here, as we did in [6,7]), we have recently shown that the
PWSA leads to the result that the real and imaginary
parts [6,7]

y(r) =Ref(r) and g(r) =Imp(r)

are independent Gaussian random functions (processes)
in position. The 2 X 2 pair-correlation-function (PCF)

matrix has zero off-diagonal elements (cross PCF's) and
identical diagonal elements (auto PCF's), which are ex-
pressed in terms of a Bessel function. To verify these pre-
dictions, spatial statistical properties (one- and two-point
distribution functions and PCF's) of y(r) and q(r) were
studied numerically for the chaotic S4 billiard (one-
quarter of the Sinai billiard) [6,7] and a scattering version
thereof [6]. Good agreement between the PWSA predic-
tions and numerical results was obtained for initially-
well-localized, semiclassical wave packets at times much
longer than the classical time of flight, as determined by
the initial mean speed of the wave packet, between the
walls of the billiards. Berry and Robnik [5] have also
suggested, on the basis of the PWSA, that the real and
imaginary parts of the high-lying stationary states of a
classically chaotic system without time-reversal symme-
try are independent Gaussian random functions of posi-
tion, and used it to predict the number of singularities
(they occur at the joint zeros of the real and imaginary
parts; in two dimensions, the zeros are points) in the
eigenfunction's phase. For the Africa billiard [5], the
predicted numbers agreed reasonably well with numerical
results.

Dirac [12], and later Hirschfelder, Goebel, and Bruch
[13], showed that quantum-mechanical streamlines (they
follow the direction of the flux density J=Re[ i /*V P])—
can form vortices around nodes of the wave function
P(r). For a given spatial dimensionality, a vortex can
only occur if the node has the proper topology: in two
dimensions, the node must be a point [13,14]. However,
the existence of a node of the correct topology does not
guarantee the existence of a vortex around it [13]. Fur-
thermore, the vortex is quantized in the sense that the
line integral of the "velocity" v= J/P'P along any closed
path that encloses, but does not cross, the same node is
given by [13,14]

m fv dr=nb, n =+1,+2, . . . ,

where m is the mass and A' is Planck's constant. Vortices
have been observed in various quantum time-independent
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and time-dependent scattering studies [14], including a
previous (unpublished) wave-packet vortex study for the
S4 billiard by us.

The aim of this paper is twofold. To date, we [6,7]
have only treated the real and imaginary parts of the
time-dependent wave function P(r) at fixed times. Our
main aim is to study the modulus and phase of ttt(r) (also
at fixed times); in particular, their individual one-point
spatial distribution functions (DF) and their joint spatial
distribution function(JDF) are derived on the basis of the
PWSA and numerically verified for the S4 billiard.
Second, we will show that the result of Berry and Robnik
[5] for stationary states, with a slight reinterpretation, is
also valid for wave packets, i.e., that the PWSA can also
predict the number of nodal points in a billiard wave
packet, and thus the maximum number of vortices the
wave packet can have.

According to the PWSA [5,6,7], y(r) and g(r) are both
Gaussian random functions, which means [15,16] that
their individual n-point distribution functions are mul-
tivariate Gaussian functions. In particular, their indivi-
dual DF's are predicted to be Gaussian functions with
zero means and the same variance o [5—7]

explicit 6nite-difference scheme for the chaotic S4 bil-
liard and, for comparison, the integrable square billiard.
Details of the propagation scheme can be found in [6].
For our calculations, the initial wave-packet parameters
xo=yo =0.025, k =1500, k =2500, and variance
o; =6.25X10 were chosen. The spatial grid size and
time step used in the propagation scheme were 2. 5 X 10
and 1.0X 10, respectively. Also, A'= m(mass) = 1. For
the S4 billiard, a circle of radius 0.05 centered in a square
of side length 0.1 was chosen. For the square billiard, a
side-length of 0.05 was used. All physical quantities with
dimensions are in arbitrary units. Previously [7], using
the same initial wave-packet and propagation parameter
values, we found that the spatial statistical properties of
the real and imaginary parts of the wave function for the
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P(f)=(2mcr )
' exp( f /2cr ),— (2)

where f is either y or rI. For a billiard with total area S,
the variance cr is equal to 1/2S [5—7]. Moreover, y and
il are not only uncorrelated, but also independent [5—7].
Under these circumstances, it is possible to derive the
DF's of the modulus
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8=tan '(ri/y) (4)

of the complex-valued wave function lij. Since y and i)
are independent and since we know their individual DF's
[Eq. (2)], it is easy to show, using the transformation-of-
variable technique [16], that the modulus p has a Ray-
leigh DF [17]

cr pexp( p /2cr ) f—or p&0
0 elsewhere, (5)
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and the phase 8 (radians) has a uniform DF
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Furthermore, it can be shown [16) that p and 8 are also
independent, i.e., their JDF is given by

&(p, &) =&(p)J'(&) . (7)

To test predictions (5), (6), and (7), an initially-well-
localized (in position and momentum), semiclassical
(k„'« a « 1/S ) 2D Gaussian wave packet

f(x,y)=(2ma )
' exp( —[(x —xo) +(y —yo) ]/4a )

Xexp(ik x+ikyy)

was propagated numerically using a conditionally stable,

e (rad)

FIG. 1. One-point distribution functions of (a) modulus P(p)
and (b) phase P(B) for the S4 billiard and the square billiard.
In (a), histograms I and II are the numerical P (p) for the S4 bil-
liard and the square billiard, respectively. The smooth curves
are the PWSA predictions for P(p): the narrower curve is Eq.
(5) plotted using the area of the S4 billiard; the wider curve is
Eq. (5) plotted using the area of the square billiard. Shown in
(b) are the numerical P(B) for the S4 billiard (bold histogram)
and square billiard (thin histogram). The horizontal dashed line
is 1/2n. [Eq. (6)] predicted by the PWSA.
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S4 billiard agree well with the PWSA predictions after an
initial "relaxation" period, whereas the corresponding
properties for the square billiard do not.

Numerical results for the DF's P (p) and P ( 8) are
shown in Figs. 1(a) and 1(b), respectively. For the S4 bil-
liard, the agree~izent between the numerical DF's and
their corresponding predictions (5) and (6) is good. In
contrast, the DF's P(p) and P(8) for the square billiard
deviate considerably from Eqs. (5) and (6), respectively,
and they are nongeneric, depending on time. For the S4
billiard, the numerical JDF P(p, B) (a cross section for a
particular range of phase is shown in Fig. 2) is well fitted
by Eq. (7), but the JDF for the square billiard is not.

Based on these results, we conclude that the modulus
and phase (at fixed times) of an initially-well-localized,
semiclassical wave packet of a classically chaotic system
are independent random functions (variables), having a
Rayleigh and uniform distribution function, respectively.
Our analysis in this paper should also be equally valid for
semiclassical eigenstates of classically chaotic systems
that do not have time-reversal symmetry, e.g. , the Africa
billiard [5], since their real and imaginary parts should
[5] also be independent Cxaussian random functions, with
DF's given by Eq. (2). Conversely, the result of Berry
and Robnik [5) with regard to the number of nodal points
in a semiclassical eigenstate of the Africa billiard should
also be valid for an initially-well-localized, semiclassical
wave packet [see Eq. (8)]. In [5] the number of nodal
points in the Nth eigenstate (N~ ac, i.e., semiclassical),
with energy E& =Pi k& 12m, was predicted to be

Sk~/4~ =%, (9)

Sk /4m, (10)

where k=(k„+k )'~ is the wave-packet initial wave
number. If we replace k in (10) by k~, the wave number
of the Nth eigenstate of the billiard 8 that is closest to k,

where S is the area of the billiard. The right-hand side of
Eq. (9) was obtained [5] by noting that the left-hand side
is the leading term in the expression for the average part
of the spectral staircase function for a billiard.

For initially-well-localized, semiclassical wave packets
in a billiard B, the derivation in [5] that led to the left-
hand side of (9) also applies, and thus the number of no-
dal points is
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FIG. 2. Cross section of the numerical (histogram) joint dis-
tribution function P(p, B) as a function of p for BE[2.94, 3. 15]
and the corresponding prediction (smooth curve) of the PWSA
[Eq. (7)] for the S4 billiard.

Funding for this research was provided by the Net-
work of Centres of Excellence in Molecular and Interfa-
cial Dynamics, one of fifteen Networks of Centres of Ex-
cellence supported by the Government of Canada.

then the same argument [5] that led to the right-hand
side of (9) also applies, and thus the number of nodal
points (10) is approximately N.

In two dimensions, streamline vortices can only occur
around nodal points, but the existence of a nodal point is
not a sufhcient condition for the formation of a vortex
[13]. Thus, for a chaotic billiard, the maximum number
of vortices in a wave packet (or a stationary state without
time-reversal symmetry) is evidently given by the right-
hand side of (9), which is the number of nodal points pre-
dicted by the PWSA. Apart from the question of how
many vortices can occur, another interesting question is:
What is the distribution of vortex size? Also, what are
the role of vortices in scattering systems [18], which ex-
hibit chaos classically? It has been speculated [14] that
the vortices play an important role in the dynamics of
molecular collisions. These and other problems concern-
ing vortices remained to be studied, and we hope to re-
port our findings in the future.
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