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In this paper we view the folding of polynucleotide (RNA) sequences as a map that assigns to each se-

quence a minimum-free-energy pattern of base pairings, known as secondary structure. Considering
only the free energy leads to an energy landscape over the sequence space. Taking into account structure
generates a less visualizable nonscalar "landscape, " where a sequence space is mapped into a space of
discrete "shapes. " We investigate the statistical features of both types of landscapes by computing auto-
correlation functions, as well as distributions of energy and structure distances, as a function of distance
in sequence space. RNA folding is characterized by very short structure correlation lengths compared
to the diameter of the sequence space. The correlation lengths depend strongly on the size and the pair-

ing rules of the underlying nucleotide alphabet. Our data suggest that almost every minimum-free-

energy structure is found within a small neighborhood of any random sequence. The interest in such
landscapes results from the fact that they govern natural and artificial processes of optimization by mu-

tation and selection. Simple statistical model landscapes, like Kauffman aud Levin s n kmodel [J. -

Theor. Biol. 128, 1 1 l1987i], are often used as a proxy for understanding realistic landscapes, like those
induced by RNA folding. We make a detailed comparison between the energy landscapes derived from
RNA folding and those obtained from the n-k model. We derive autocorrelation functions for several
variants of the n-k model, and briefly summarize work on its fine structure. The comparison leads to an
estimate for k =7—8, independent of n, where n is the chain length. While the scaling behaviors agree,
the fine structure is considerably different in the two cases. The reason is seen to be the extremely high
frequency of neutral neighbors, that is, neighbors with identical energy (or structure), in the RNA case.

PACS number(s): 87.10.+e, 87.15.By, 64.60.Cn

I. COMBINATORY MAPS

Processes like combinatorial optimization and evolu-
tionary adaptation take place on landscapes that result
from mapping microconfigurations to energies or nonsca-
lar entities like structures. A classic example from phys-
ics is a Hamiltonian that assigns an energy value to a spin
configuration. Another instance, taken from operations

research, is a geography that maps tours through a set of
cities into transport costs. Many properties of those pro-
cesses reAect the local and global statistical features of
the landscape on which they occur. This leads to the
problem of understanding what these features are, and
how to study them.

As an example, we study the biologically important
landscape induced by the folding of polynucleotides
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(RNA). Here, the microconfigurations are sequences
over an alphabet of nucleotides, and scalar properties are
free energies of secondary or tertiary structure formation.
Another scalar could be the rate constant of a reaction
involving that structure (e.g. , replication of viral RNA).
Nonscalar properties like the secondary structure or the
3D (three-dimensional) structure are of particular in-
terest. Here, we consider both the energy as well as the
structure landscapes induced by RAA folding, and com-
pare the former with a simple parametrized model
landscape, known as the n kmo-del [I].

Common to all these examples is a function whose
domain is a set of combinatorial complexity —where the
elements represent combinations or variations of some
kind —and whose range is either R, or another set of
combinatorial complexity (suitably discretized structures,
for example). This motivates the following definition of a
combinatory map (CM).

Definition, A CM is a quintuple (~,d;~, d;f), where
~ and ~ are sets endowed with metrics d and d, re-
spectively, and f is a map ~~~. If ~=a and
d (a, b) = ~a b~(, we—refer to the quintuple as a combina-
tory landscape (CL).

(~,d ) is known as configuration space. The natural
metric is induced by some physically meaningful set of
operations that interconvert configurations. In the
present case of RNA's, a configuration (or sequence)
space consists of all sequences of fixed length n over an
alphabet of size )( (typically a. =4), the interconversion
operations are point mutations, and the Hamming metric
provides a distance measure between sequences.

The basic problem we are concerned with here is how
to investigate the major statistical features of CM's. One
approach studies CM's from the point of view of a ran-
dom walker [2,3]. This essentially converts spatial infor-
mation into time series that can be characterized, for ex-
ample, by autocorrelation functions. Another approach
attempts to devise tools that reflect the statistical features
of CM's as a whole. Some of these features cannot be ac-
cessed with random walks alone.

In Sec. II, we generalize the autocorrelation function
to the case of combinatory maps, and define density sur-
faces as an instance for the second approach above. Sec-
tion III gives a brief classification of landscapes by auto-
correlation, Sec. IV presents a study of the RNA case,
Sec. V introduces Kauffman's n-k model, derives
landscape autocorrelation functions, and brieAy reviews
analytic results on gradient and adaptive walks. Section
VI compares the RNA energy landscape with the n-k
model. Section VII concludes the paper.

II. AUTOCORRELATION AND DENSITY SURFACES

In the case of landscapes, a random walk [x„xz, . . . ]
on a configuration space generates a real-valued time
series [f (x, ),f(xz ), . . . ] whose autocorrelation function
is given by

(f(,)f(, , )&, —(f &'
r(s) =

02

with variance o. =(f &
—(f & . A landscape autocorre-

lation function, however, should yield information about
the average changes of f (x, +, ) as the configuration-
space distance d of x, +, to some reference point x, is
varied. This leads to the definition

(f(x)f(y)&d( )=d —(f &'

where ( &d( ~) d denotes an average over all pairs of
configurations (x,y) at distance d from each other.

The autocorrelation of the landscape and the auto-
correlation along a walk on the landscape are related to
each other via

r (s) =g )p,dp(d),
d

(3)

where y,d denotes the probability that a walk of s steps
ends at a distance d from the starting point. Equation (3)
establishes a complete correspondence between the
random-walk and the landscape autocorrelations, provid-
ed the y,d are independent of the initial conditions of the
walk. For this to be the case, a sufhcient regularity of the
configuration space is required. Such a regularity is miss-
ing, for example, on spaces of sequences with variable
length that result from insertion and deletion operations.
On sequence spaces with fixed length, we obtain [4]

v —d+1 d K 2
9'sd =0's —&, d —

&

V
+0's —&, d v K 1

2+1 1
+0's —i,d+ 1 v K 1

(4)

Here ( [f(p) f (q) ]~ & =2( (f 2
&
—(f—& ) denotes the

average over pairs of randomly chosen configurations p, q.
Further insight into the statistical properties of CM's is

provided by density surfaces [5). A density surface P(t~s)
is the conditional probability that the iinages f (x) and
f(y) have distance d„[f( ),xf(y)]=t, given that the
configurations x and y are at a distance d [x,y]=s from
each other. The density surface shows how, and how
fast, the distribution of image differences changes as the
configurations become uncorrelated. This approach pro-
vides more information than can be obtained by random
walks alone. The autocorrelation p(d), Eq. (5), is extract-

In the generic case of CM's, where the range off could
be a nonscalar object —for example, a structure —we
must generalize the definition of p(d) with the help of the
distance measure on ~. We propose the following.

Definition

( d„[f(x),f (y) ]' &,(.y) =„
p(d) = I—

(d„'&
(5)

It is readily seen that, for landscapes d (a, b) = ~a b~, —
we recover the usual autocorrelation:

(d„' &
—(d„[f(x),f(y)]'&&(, ,)=d

=([f(p) —f (q)]'& —([f(x)—f (y)]'&d(. ,)=d

2(f2& 2(f & 2(f &+2(f(x)f(y)&d( y)

=2(f(x)f(y)&d(„y) d
—2(f &
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ed from the density surface with the following correspon-
dences:

(d [f(x),f(y)]')d(„),=gt P(t, ~s),

From the density surface, the number of neighbors with
identical image is retrieved as P (O~ 1)(ir—1)n

III. CLASSIFICATION BY AUTOCORRELATION

(d„)=g g t P(tls)p(s) . (7)
t d

p (s) is the frequency of configuration pairs with distance
d =s. For sequence spaces, this amounts to

n
p (s) = (a —1)'

It has been suggested [6] to characterize CM's by the
behavior of the autocorrelation function at small dis-
tances d . Landscapes with known autocorrelation func-
tion are listed in Table I.

Let the scaled distance be g=d /max(d ). Many
combinatorial optimization problems exhibit landscape
autocorrelation functions that can be approximated for

TABLE I. Combinatorial optimization problems and their autocorrelation functions. g for the p-spin model denotes the sum
over all odd j, subject to the restriction j & min(d, p). REM is Derrida s random-energy model; STSP and ATSP denote symmetric
and asymmetric traveling-salesman problems [12], GM is the graph-matching problem [13]. The corresponding metrics are transpo-
sitions (Trans. ), 2-opt moves, and canonical transpositions (CTrans. ). GBP is the graph bipartitioning problem [14];its metric (Exc) is
derived from exchanging a pair of objects. LAS stands for the low autocorrelated string problem [15]. The Sherrington-Kirkpatrick
spin glass [16] is the special case p =2 of the p-spin model introduced in [17]as a model for a rugged landscape in evolutionary optim-
ization. The abbreviations RN, PR, and AN refer to random neighbor, purely random, and adjacent neighbor N-k model, respective-
ly. Here the canonical metric is the Hamming metric.

Name Metric r(s) diamI Ref.

REM

STSP

Any

Trans.

2-opt

CTrans.

&o, d 60,
—4s/n

—2s/n

—2s/n

n/4

n/2

n/2

n —1

n/2. . .n —1

n(n —1)
2

[6]

ATSP

2-opt

' —4s In

1 (g + e
—2s/n)

n/4 n —1

CTrans.

Trans.

—3sjn

e
—4s/n

n/3

n/4

n(n —1)
2

[6]

GBP Exc. n 1

n 2
d d

8——16
8 8

1 ——+
n n2

{n —3)/8 n/2

LAS Ham. —10s/n n /10

RN (¹k)

PR (N-k)

Ham.

Ham.

d k
1 —— 1—

n n —1

k+1
n

d
k+1

n

k+1
n

,
s

n/(k +1)

n/(k +1)

[1l,a)

[a]

AN (N-k) Ham. Eq. {24c)
k+1

n
n/(k +1) [1l,a]

p-spin

SK

Ham.

Ham.

yi(d)(n —d)
(n) l P J
P

cE
1 — 4——4

n —1 n n

'2

e
—

2ps /n

4
1 ——

n

n /(2p)

n/4

[6)

'This paper.
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small g by the first terms in the expansion of the exponen-
tial,

The examples of Table I all induce random walks with
exponential autocorrelation functions r (s). This need not
be generally the case, as exemplified by superpositions of
independent landscapes with different characteristic
lengths that obviously result in landscapes with no unique
a. Even if a walk on a landscape does not exhibit exactly
a decaying exponential as autocorrelation function, a
rough correlation indicator is given by the nearest-
neighbor correlation:

requirements [19]: (1) each base is involved in at most
one base pair, and (2) there are no knots or pseudoknots,
i.e., if (s, , sj. ) and (sk, s&) are base pairs, then i &k & 1 &j
ork&i &j&l.

The basic elements of secondary structures are shown
in Fig. 1. For the free energies of these building blocks,
experimental data are available. The elements are as-

(d' )
A. =na=

(d„[f( ),f (y)]') „,=,
(10)

Another class of landscapes is characterized by discon-
tinuous autocorrelation functions, as, for example, the
random energy model [7], or the asymmetric traveling
salesman problem (TSP) [8];see Table I.

Smooth landscapes have p(g')=1 —
g + . , and non-

trivial fractal landscapes are characterized by
p(g)=1 —I(I + .

, with a40, 1,2.

IV. RNA LANDSCAPES interior base pair closing base pair

A. RNA folding

An RNA sequence of length n is represented as a string
I = [s,s2. . .s„], with the s; taken from an alphabet A.
Here we consider the natural four-letter alphabet
A = [A, U, G, C], the binary alphabets A = IG, CI and
A = IA, UI, as well as artificial four- and six-letter alpha-
bets A = IA, B,C, D] and A = IA, B,C, D, E,FI, respec-
tively, where complementarity is assumed between A and
B, C and D, E and F (with energy parameters as in the
GC case).

RNA structure can be broken down conceptually into
a secondary structure and a tertiary structure. The
secondary structure is a pattern of complementary base
pairings (Fig. 1). The tertiary structure is the three-
dimensional (3D) configuration of the molecule. As op-
posed to the protein case, the secondary structure of
RNA sequences is well defined; it provides the major set
of distance constraints that guide the formation of terti-
ary structure, and covers the dominant energy contribu-
tion to the 30 structure. In this paper, we will be con-
cerned only with secondary structures.

The definition of secondary structure used in most
computational approaches assumes planarity. Planarity
means that unpaired nucleotides inside a loop cannot pair
with unpaired nucleotides outside a loop. It is known,
however, that unpaired bases from different loop regions
may pair with each other, forming so-called pseudoknots.
While the computational problem for strictly planar
secondary structures has been essentially solved in the
early 1980s [18—21], the problem involving long-range
pseudoknots is still unsolved.

A secondary structure S(I)HS is forinally defined as
the set of all base pairs (s, ,s ) with (i &j) fulfilling two
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FIG. 1. Top: example of a secondary structure. Below:
basic structure elements. Every secondary structure can be
decomposed into such basic elements. The free energy of a
secondary structure is the sum over all contributions of these
elements. Their energy contributions have been experimentally
determined as a function of the nucleotide sequence [22—24].
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sumed to contribute additively to the overall free energy
of the complete secondary structure. The data set used
here has been taken from the literature [22—24].

Under thermodynamically reasonable assumptions, the
folding problem for planar RNA secondary structure
consists in finding a minimum free-energy structure, and
can be attacked by the technique of dynamic program-
ming. Our implementation of the folding algorithm fol-
lows the reasoning given by Zuker and Stiegler [20]. The
combinatory map from the space of sequences A", into
the space of minimum free-energy structure S',

S: A"—+4, I~S(I),
is the quintuple (A. ",dH, t, d&, S), with dH denoting the
Hamming distance, and d@ being a suitably defined dis-
tance between secondary structures (see below). If we
view the folding procedure as a map from a sequence to
the free energy of the corresponding structure,

variances o. for a variety of alphabets. We have also
computed the skewness (third moment scaled by cr ) and
the kurtosis (fourth moment scaled by o ) of the distribu-
tion (not shown).

The main observations are that (b,G ) scales linearly
with chain length n for all alphabets, and so does the
variance tT for n ) 50 (see Table IV below). The distribu-
tion sharpens considerably for longer chains. A Gaussian
distribution is characterized by vanishing skewness and a
value of 3 for the kurtosis. This seems to be mostly the
case for the biophysical GCAU alphabet and long chains.
The other alphabets show deviations from the Gaussian
case in skewness and/or kurtosis. The available data do
not allow a definite statement about the limiting behav-
ior for very large n to be made. We did not pursue this
issue in depth because of doubts about the validity of a
thermodynamic (rather than kinetic) folding algorithm in
that limit.

b, G: M"—+R, I~b G(I), (l2) C. Free-energy autocorrelation

we obtain the
I, ~G).

combinatory landscape

B. Distribution of energies

Here we focus on global features relating to the distri-
bution of free-energy values over the RNA landscape.
Table II shows the mean free-energy values (b,G ) and

Figure 4(a) shows an example of the landscape auto-
correlation function p(d ). Complementary sequences
have similar structures and energies. For each reference
sequence on binary alphabets, there is only one comple-
ment, and, therefore, this approximate symmetry shows
up as a 0-shaped correlation. Table III lists the charac-
teristic lengths of the landscape, Eq. (10), for various al-

TABLE II. Averages of the free energies EG and their variances o. for (1) GC, (2) AU, (3) GCAU,
(4) GCXK, and (5) ABCDEF. For (3), the biophysical parameter set is used; for (4) and (5), the GC pa-
rameter set is used for all base pairs. Energy unit: 0.1 kcalmol '. Energy data set taken from [23].

(2) (3) (4) (5) (2) (3) (4) (5)

20
25
28
30
30'
35
40
45
50
50'
55
60
70
80

100
120
150
200
250
300
350
400
450
500

74.40
108.85

144.23

180.27
217.00
253.73
290.61

327.59
364.50
440.73
516.83
669.35
824.41

1054.77
1445.62
1838.36
2233.63
2629.50
3026.54
3423.91
3822.34

2.22
5.68

9.59

14.09
18~ 83
23.53
28.54

33.54
38.61
48.46
59.32
80.12

133.45
188.21
243.62
299.62
355.88
412.50
469.30
526.24

10.29
17.56

25.58
25.68
33.61
42.33
50.58
60.12
60.16
68.84
77.48
95.64

113.77
150.78

244.57
339.16
434.93
531.34
628.59
726.02
823.52
921.46

19.06
31.50
39.38
44.46

58.24
72.60
86.98

101.89

116.47
131.28
161.63
192.19
254.56

6.59
16.05

28.80
31.86

5.12
8.78

16.91 34.55 11.24

48.89
55.81
69.59
83.57

111.46

44.23
45.51
47.95
50.76
54.21
58.42
62.12
68.63
74.08
79.80
84.40
88.44
92.98
95.74

17.81
18.79
20.25
21.78
24. 17

28.79
32.58
36.04
39.70
42.72
45.50
47.70
49.69

22.71 36.96 13.18
29.30 39.17 14.64
35.67 40.87 15.81
42.36 42.66 16.89

2
22.00
24.35
26.88
28.83
31.03
31.13
32.82
34.63
37.64
40.46
45.96

29.22
31.54
33.25
35.32

36.89
38.19
40.99
43.37
48.04

57.06
66.28
73.79
81.14
87.96
94.41
99.92

105.2

14.63 19.95
18.56 23.88

25.79
1.81 26.96

12.35
16.05

18.89

21.32
23.59
25.38
27.24

28.70
30.10
32.66
34.87
38.90

'Specially stable tetraloops taken into account.
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phabets as a function of n. The characteristic length has
been calculated by both random walks and density sur-
faces. The agreement is remarkable, indicating that the
landscapes are indeed sufficiently regular for the
random-walk approach to be meaningful.

The characteristic length scales linearly with n. This is
understood by observing that the absolute free-energy
difference between two neighbors (one-digit mutants) is
bounded from above by twice the largest possible stack-
ing energy plus the strain of an internal loop of size two
(approximately 10 kcalmol '). This is seen by consider-
ing that in the worst case a mutation disables a base pair,
thus interrupting a stack by creating an internal loop. If
this leads to a complete refold of the sequence, then the
new structure must have a smaller absolute energy
difference than the worst case. The expectation value of
the squared energy difference between nearest neighbors
will, therefore, level off to a constant at sufficiently large
n. At the same time, the data of Sec. IVB show a vari-
ance linear in n, and hence we have A-n (se, e Table IV
below).

Figure 2 shows the free-energy density surface

P (z
~
d ) =P ( ~

EG (I, ) bG (I2 ) =z
~ dH —(I„I2) =d ) . (13)

It reveals a very rugged landscape. Cuts along constant
Hamming distance show roughly the positive half of a

X exp
Z2

4o [1—p(d)]
(14)

Figure 2(b) shows P(z~d) as in Eq. (14), with p(d) taken
from the data in Table III. The overall shape is in agree-
ment. For comparison, we also plot the corresponding
exact density surface for the Sherrington-Kirkpatrick
spin glass. [p(d) from Table I, and references therein. )

From the density surface, we can read off the frequency
of neutral neighbors (see Sec. II). This is shown in Fig. 3.
The fraction of neutral neighbors tends to a positive con-
stant for long chains. From statistics of structural ele-
ments [5,25], we know that for long chains the average
loop size becomes constant, while the average number of
loops per structure scales linearly with n. The sequence
positions that can be changed without affecting the struc-
ture and its energy must be located within loops (or exter-
nal elements). This explains the linear scaling of the
number of neutral neighbors.

Gaussian, except for a pronounced peak at P (0~ 1), corre-
sponding to neighbors with identical energy. If the free
energies were sums of independently distributed random
variables, one would expect for the density surface

1

&m.[1—p(d) ]o.

TABLE III. Correlation lengths for various types of RNA free-energy landscapes. R and D denote
calculations via random walks and with density surfaces via Eq. (7), respectively. Energy parameters
are taken from [23].

AU GCAU ABCDEF

D D D D

20

25

28
30

35
40

45
50

55
60
70

80

90
100
120

1.96

2.44

2.95

3.49
4.00

4.47
4.57

5.50

8.41

1.97

2.41

2.96
2.90
2.82
3.23
3.97
4.04
4.15
4.51

5.43
6.17
6.68
6.56
7.03
7.82

8.52
10.55

1.85

2.49

1.13
1.27
1.50
1.44

1.93

2.23
2.56

2.75
3.07
3.15

3.24
3.72
4.45
4.19

4.88
4.89
5.14
6.11

3.64

4.83

5.97
6.08'

7.29
8.67

10.05
11.49
10.83
11.74'
12.10
14.88
16.22

19.03

24.73

3.62

4.76

6.01

7.79
8.16
8.12
9.60

11.11

13.20
16.40
15.05

25.18

2.62

3.21

3.49
3.84

4.35
4.88

5.38
6.08
5.61

6.68
7.05

12.20

2.48

3.17

3.75

4.39
4.85

5.22
5.95

7.03
7.68
8.09

8.84

10.57

2.70

3.46 .

4.02

4.59
5.46

5.96
6.68

7.97
9.06

9.98

11.45
12.31

2.50

3.16

3.92

4.66

5.97
6.32

7.05
7.55
8.71

9.89

11~ 55

'With specially stable tetraloops.
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D. Structure autocorrelation

As detailed in Sec. II, computing the autocorrelation of

the s a
t e structures t emselves requires a distance measeasure on

e space of structures. The definition is essentially based
on converting one-to-one secondary structure graphs into
rooted ordered trees [5,26—28]. The distance between
two trees is obtained as a generalization of sequence
alignment procedures, and involves minimizing the cost
of transforming one tree into the other with elementary
editing operations, such as deletion, insertion, and rela-
beling of nodes. For details, see [5].

Figure 4 shows the structure autocorrelation function
p(d). The U-shaped form for the binary alphabet arises

for the same reason given in Sec. IV C.
The structure density surfaces of sequences with

n =100 for the GC and GCAU alphabets are shown in
Fig. 5. First, we note that nearest neighbors in
configuration space can exhibit already substantially
different structures with significant probability. Further-
more, it is extremely unlikely that two randomly chosen
sequences fold into identical structures. This is in sharp
contrast to the energy landscape. Stated differently:
there are many more structures than energies. N th-
ess, e distribution of structure distances approaches al-

ready, at fairly short Hamming distances, the distribution
expected for random sequences. In contrast to the free
energy, there is no size-independent upper bound to the

0
0
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N p
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Q
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0
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20
25
30
35
40
45
50
55
60
70
80
90

100
120

1.51
1.69
1.87
2.02
2.15
2.33
2.35
2.62
2.68
2.87
3.13

3.36
3.72

1.22
1.61
1.85
2.12
2.24
2.33
2.50
2.64
2.83
2.91
3.32
3.60
3.77

2.84
3.68
3.99
4.49
4.85
4.97
5.46

6.01
6.25

7.63

2.43
2.88
3.25
3.57
3.74
4.10
4.33

4.84
5.24
5.67

6.45

2.50
3.28
3.92
4.51

5.49
5.84
6.20
6.60
7.14
7.93

8.94
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(15)

AU GCXK

diA'erent energy

n len th of free energies for different al-variance, and correlation lengt o reeith se uence length of average free energy, variance,TABLE IV. Scaling with sequence eng variance,

CDEF

rameters from [23].

AB

phabets. Energy pararnet

GCAU

Slope
Intercp.
Corr.

7.8120
—101.21

0.99996

1.0948
—26.14

0.9998

1.9006
—32.25

0.99992

2.9495
—43.97

0.9996

1.3044
—21.40

0.998

CT2

Slope
Intercp.
Corr.

17.33
959.8

0.996

5.06
22.2
0.997

22.61
—180.4

0.99996

23.56
16.1
0.997

17.07
—143.3

0.998

Slope
Intercp.
Corr.

0.0857
0.43
0.992

0.0600
0.06
0.997

0.2627
—1.93

0.997

0.1078
0.50
0.993

0.1182
0.47
0.997
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Binary alphabets generally form more structures because
the probability for two randomly chosen positions along
the sequence to pair is highest. Changing one position,
therefore, is more likely to alter the minimum energy
structure. In contrast, the characteristic lengths of the
free-energy autocorrelation do not follow the same order-
ing:

[AU] & [GC] & [GCXK] & [ABCDEF]« [GCAU] .

E. Biased walks and local optima

Additional information about the local structure of
landscapes is provided by biased walks. These are ran-
dom walks aimed at reaching local extrema of the
landscape. The data provided by this technique will be

compared with a statistical model in the following sec-
tions.

We define a local minimum y in configuration space by

f(y)&f(x) for all neighbors x ofy . (17)

Local maxima are defined analogously. The term local
optimum means either minimum or maximum, according
to context.

We consider here two types of biased walks, adaptive
walks and gradient walks. In an adaptive walk, a starting
point xo is chosen at random. The walk then proceeds to
a randomly chosen neighbor x' such that f (x') &f(x~),
and it stops if no neighbor satisfies this condition, at
which point the walk has reached a local minimum. A
gradient walk, by contrast, proceeds to the neighbor x'
for which f (x') is minimal.

Table VI compiles the average lengths of adaptive and

TABLE VI. Adaptive and gradient walks on RNA free-energy landscapes. Fdenotes the free energy
of random sequences. Average free energies of local optima are denoted by F,p„F,*p„and F,*„*,, de-
pending on whether they are generated randomly, as end points of adaptive walks, or as end points of
gradient walks, respectively. The standard deviations of their distributions are denoted by o.+, c7 pt,
G pt and o.*p*, . The lengths of adaptive and gradient walks are denoted by L,d, p and Lg„d, respectively.
The rightmost column compiles the probability pLo for finding a local optimum at random.

V
opt opt ~opt ~Opt Ladap gI Rd I LO

GC
Energy parameters from [22]

20 118.9
25 178.9
30 239.7
35 303.1

40 368.6
50 500.1

60 632.2

43.0
47.3
50.8
54.0
57.6
62.3
66.7

179.7 32.0
257.6 44. 1

329.3 50.6
390.3 43.6
465.5 48.8
633.4 48.9
768.0

204.5

300.4
398.5
493.1

584.7
759.8
934.4

29.1 211.5
37.8 305.2
48.7 402.9
60.5 496.5
74.5 585.3
90.7 755.5
97.4 930.9

31.2
42.0
53.7
67.4
79.1

92.4
94.9

2.10
2.70
3.09
3.57
3.98
4.67
5.65

2.42
3.30
4.44
5.49
6.42
8.06
9.61

1.72 0.1138
2.29 0.0530
3 ~ 12 0.0220
3.88 0.0108
4.48 0.0084
5.50 0.0025
6.42 0.0008

20 74.4
30 144.2
40 217.0
50 290.6
60 365.5

28.8 127.9
34.6 213.1
39.2 315.0
42.7 415.0
45.5

Energy parameters from [23]
24.9 148.3 21.6 152.0 22.2
28.1 262.6 36.6 265. 1 37.3
29.5 369.2 44.4 372.4 44.7

478.0 48.9 481.9 49.3
587.6 56.6 589.4 55.1

1.96
2.93
4.00
4.51
6.17

3.55
5.32
6.78
8.27
9.62

2.51 0.0230
3.70 0.0050
4.69 0.0011
5.68 0.0002
6.64

30 34.2
40 59.8
50 90.6
60 128.1

70 162.7
80 201.9

31.0
37.9
43.8
48.1

50.6
55.3

GCAU
Energy parameters from [22]

94.6 45.4 208.5 72.3 228.5 78.4
307.3 93.5 339.8 103.7
404. 1 105.1 441.8 112.0
504.6 118.0
604.2 125.3 644. 1 132.9
704.2 139.2

6.73
9.85

13.76
18.38
20.80
23.81

8.01
11.62
14.77
17.99
21.22
24.17

5.12 0.0009
7.57
9.31

13.32

Energy parameters from [23]

30
40
50
60
70

25.7 22.0
42.3 26.9
60.2 31.1
77.5 34.6
95.6 37.6

172.9
253.0
325.8
401.8
478.4

43.9 181.1
50.4 272.0
59.6 352.3
68.3 428.0
73.1 508.0

47.4 6.08 11.84 7.17
54.8 8.14 16.26 9.95
65.1 11.74 20.73 12.53
71.9 13.20 25.30 14.92
80.1 16.20 29.13 17.44
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tribution is dominated by a few quanta (Fig. 7) that iden-
tify the most likely structural changes.

In Fig. 8, we plot the average change in free energy for
landscapes of different length along biased walks. The
number of walk steps is scaled by the corresponding
characteristic length A, . The figure demonstrates that for
a fixed alphabet the properly scaled statistical features of
walks are independent of the system size.

V. KAUFFMAN'S n-k MODEL

Because of the important role of landscapes in prob-
lems of optimization and evolutionary adaptation I30],

there has been considerable interest in devising simple
statistical models, the hope being that these models
reAect the proper qualitative features of their natural
counterparts. In Sec. IV we had a close look at an expen-
sive but realistic model of a landscape induced by RNA
folding. In this section, we present a frequently used sta-
tistical model due to S. Kauffman, the so-called n-k mod-
el I'31,32].

Let us assume that the energy F of a string of n bits is
the average of contributions from each of the individual
bits. We choose the contribution from the ith bit, f, , as a
random function of the state of that bit and a context
given by k &n other bits. Each of the 2 +' possible
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FIG. 6. Distribution of per-step energy difFerences along a
random walk. (a) GC sequences of length n =100. (b) AUGC
sequences of length n = 100.

FIG. 7. Distribution of energy increments after more than
four steps along a gradient walk. (a) GC landscape and (b)

AUGC landscape.
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values for f;, one for each of the possible states of the
k + 1 bits upon which f, depends, is assigned by selecting
an independent random variable from some specified
probability distribution, P (x)=Pr( f,. ~ x ). This set of as
signments constitutes the "energy table" for the ith bit.
There is a different, independently generated table for
each of the n bits, which, once chosen, is never reas-
signed.

It remains to specify the k sites that inAuence a given

GCAU

(a)
0
T

I

+I-j 0

U0 p4

position. The simplest choice is to imagine that the
neighborhoods consist of the k/2 bits that are the neares&
neighbors on each side of the bit in question and to as-
sume that the bits are arranged in a circle (periodic
boundary conditions). The other extreme is to pick the k
sites at random. In a variant of this model, it is not re-
quired that f; depends on i, but all k+1 relevant sites
are chosen randomly. These three versions of the n-k
model will be referred to as AN (adjacent neighborhood),
RN (random neighborhood), and PR (purely random)
model, respectively. These two extremes correspond to
two important types of spin glasses: the adjacent neigh-
borhoods correspond to a one-dimensional, short-range
spin glass; the random neighborhoods correspond to a di-
lute, long-range spin glass.

If the underlying probability distribution of the site en-
ergies, f;, has a finite variance, the distribution of the
fitness of the entire string,

F=—gf;,1

n
(18)

&0
L y

C
LLj

0 5Sca II ed
1 0 1.5

wa II k il ength

(b)

I I I

J

I I I I

f

I I I I

)

I I I I

will tend to a Gaussian with mean p and variance o. /n,
where p and o are, respectively, the mean and variance
of the f s as n —+ oo.

A. Correlation

Weinberger [3] shows that the autocorrelation function
of a random walk on the n-k model landscape is a single
decaying exponential to within an error of O(lln) All.
isotropic landscapes of this kind can be generated by an
appropriate choice of the mean and variance of the site-
energy distribution P (x), and an appropriate choice of k.

The ruggedness of the landscape varies dramatically as
k varies from 0 through n —1. For k =0, each site is in-
dependent of all other sites. The autocorrelation function
in this special case reads

0 p(d)=l dln . — (19)

U0
0

I

0%+~ 0 y~ ~ d-

ac~
cthe () c

After some algebra, one shows that a random walk on
this landscape generates an AR (1) process with auto-
correlation function

S

r(s)= g y(s, d)p(d)= 1 ——1 /c

GI' =0 n v —1
(20)

Q)0

I

C
LLI

0
I

0
8

I

0 5 1.0sca II ed wa Ilk
1 5

II ength

I I I I I

i

I I I I I

i

I I I I I

I

In contrast, the k =n —1 landscape is the random-
energy model: the energy contribution of each site then
depends on all of the other sites because the context for
each of the n —1 other bits is changed when even a single
bit is Aipped. In this case, therefore, the energy of each
n-bit string is assigned an energy that is statistically in-
dependent of its neighbors.

The autocorrelation functions for the various types of
n-k models are obtained from

FIG. 8. Average energy increment per step for biased walks

on the (a) CxC landscape and (b) AUGC landscape. , b, 0, 0,
M belong to adaptive walks and chain lengths 30, 40, 50, 60, re-

spectively. The corresponding gradient walks are denoted by
+, X, +, 't, and V. Energy parameter set taken from [23]. && [f,(x)—f, (y)] . (21)
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The average over the second sum vanishes because of the
independence of the f, 's, a. nd the contributions of the
terms [f;(x)—f, (y)] are zero if x and y have the same
digit at all positions that are in the neighborhood of site i.
Otherwise the contributions are random with mean value
o. . Thus we obtain

([F(x)—F(y)] ) = 2I—T nh (d),1

n

where h (d) is the probability for a site to appear at least
once in the list of the d sites that are changed by moving
from x to y. For the n-k model, it is evident that comple-
mentary strings are uncorrelated, because they do not
have any contribution to site fitnesses in common; there-
fore the variance of E is o. and

in[(x —1)(k +1)]in(A'Lo ) =CD+ n in~- k+1 (27)

where c0 is some small constant. The distribution of en-
ergies of local optima is Gaussian with mean
(FLo ) =p —I)o., where

For the random-energy model, it has been shown
[1,33 —35] that the landscapes have many local optima,
that the walks to optima are short [O(inn )], and that
only a small fraction of local optima are accessible from
any initial string. Weinberger [36] derived expressions
for the expected number of local optima and the proba-
bility distribution of their energies. In the Gaussian case,
the expected number of local optima JUL& is given by

p(d)=1 —h(d) . (23)

For the three variants of the n-k model, the functions
h (d } are derived in the Appendix:

d

2ln[(v —1)(k + 1) ]
0+1

and variance

1/2

(28)

hRN(d)=1 — 1 ——d

hpR(d) = 1 — 1—

k1—
n 1

2 — 21 1
0QQ 0 (29)

n 1+4(~—1)(k +2) [ln(k + 1)]/(k + 1)

Estimates for the average lengths of biased walks have
been derived recently [36]. The average length of gra-
dient walks can be estimated from the average distance of
two local optima as

n

min(k, n +1—d) n —j —1
(k —j+1)

~—1 in[(II —1)(k + 1)]
(k + 1)lnI~

(30)

As an estimate for the length of adaptive walks, one ob-
tains

for d +2 . (24)

Evidently, h (d) is independent of the number of letters in
the alphabet. For all three types of n-k models, the
correlation length can be estimated from the nearest-
neighbor correlations, Eq. (10),

in[(II —1)(k + 1)]
(k+1)

The lengths of adaptive walks and gradient walks differ,
therefore, by a constant factor

p(1) = 1

n

k1—
n —1

@+1
n

(25)

I.,d,„
~ grad

(32)

since all h (1) are identical. This yields the estimate
The chance to find a local optimum at random is given
by

k+1
A, = —1 ln 1— n 1 0+1

k+1 2 n
. (26)

in[(w —1)(k + 1)]
npLQ =111JVLQ n nlc c0 n k+1 (33)

B. Biased walks and local optima

In the case k =0, there is, with probability 1, a unique
optimal digit for each site, hence, a single specific se-
quence comprised of the optimal digit values in each po-
sition is almost surely the single, global optimum in the
energy landscape. Any other string is suboptimal, and
lies on a connected walk via nearest-neighbor better vari-
ants to the global optimum. The length of the walk is
just the Hamming distance from the initial string to the
global optimum. For a randomly chosen initial string,
(tc 1)/~ of the digits —will be in an energetically less
favorable state (Ir is the size of the alphabet), hence the
expected walk length is just [(II'—1)/Ic]n.

VI. COMPARISON OF THE RNA LANDSCAPE
WITH THE n-k MODEL

k=n(1 —e '
}—1 . (34)

Since the characteristic length of the RNA landscape
scales linearly with n, A, =an +aa, we find asymptotically

k= ——1+O(n ) .=1 —1

a (3&)

Table VII compares the statistics of local optima in the

In order to compare the n-k model and the RNA
landscape, we need a hypothetical k value. From Eq.
(26), we obtain
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TABLE VII. Hypothetical k values and a comparison between the n-k model and computed RNA
data. Given are numbers from the older data set [22] and the newer one [23]. k~„,d is the predicted
value of k for the RNA landscape as obtained from Eq. (34); f~„d is the predicted average scaled energy
of a local optimum according to Eq. (28). f„o,fLo, and fLo are the numerical average scaled energies

for random local optima and for local optima obtained from adaptive and gradient walks, respectively.

kpred fLO fLo fLO fpred=

[22] [23] [22] [23] [22] [23] [22] [23] [22] [23]

20
25
30
35
40
50
60

6.58
6.74
7.29
7.55
7.89
8.64
8.73

6.99

7.64

7.85
8.94
7.98

1.41
1.66
1.76
1.62
1.68
2.14
2.04

1.85

1.99

2.50
2.91

1.99
2.57
3.13
3.52
3.75
4.17
4.53

2.57

3.42

3.88
4.41
4.88

2.15
2.68
3.21
3.58
3.75
4.10
4.48

2.69

3.49

3.96
4.48
4.92

0.73
0.73
0.71
0.71
0.70
0.69
0.68

0.72

0.71

0.70
0.70
0.68

GCAU

30
40
50
60
70
80

3.14
2.86
2.51
2.17
2.29
2.29

3.55
3.62
3.08
3.38
2.29

1.95 5.62
6.53
7.17
7.83
8.73
9.19

6.69
7.83
8.54
9.37

10.18

6.27

8.02

9.51

7.38
8.54
9.39

10.13
10.97

1.10
1.13
1.16
1.19
1.18
1.18

1.07
1.07
1.11
1.08
1.12

n-k landscape with the statistics of local optima in the
RNA free-energy landscape. The ensembles of local opti-
ma in the RNA case have been obtained with gradient
and adaptive walks, as detailed in Sec. IV E. The com-
parisons use the scaled quantities

(F)—&F„&
fLO (36)

Table VII shows that average free energies of local op-
tima for the RNA landscapes, sampled with both gra-
dient (fLo) and adaptive walks (fLo), differ significantly
from those predicted by the n-k model. Due to the sam-
pling method, the local optima in the RNA case are obvi-
ously not a true random sample, but are biased towards
those optima that have large basins of attractions. These
optima usually have more extreme values than purely
randomly sampled local optima. The comparison, there-
fore, is only limited. On the other hand, the n-k model
predicts a distribution of average energies of local optima
that sharpens like o.Lolo. —Iln, Eq. (29). If this were
the case for the RNA landscape, we should observe no
difference between our biased sample and a random sam-
ple. This is clearly not the case. In fact, the variances
cr Lo (Table VII), scale linearly with chain length. In the
GC case, we could accumulate a representative random
sample of local optima (referred to as random optima in
Sec. IV E). This allows a direct comparison with the pre-
diction from the model as seen from Table VII; fLois still
in disagreement with f„„d.

We find that some scaling properties are in common; in
particular, the linear dependence of the walk length on n
and the exponential decrease of the probability for

finding a local optimum p„o as a function of n. Estimates
for the latter can already be derived by assuming that in
highly correlated landscapes there should be O(1) local
optima in a path of radius A, [8], which, after some calcu-
lations, leads to

1npLo=c~ —n [ln2+ln(v —l)a —2(a —1/2) ] . (37)

By the same reasoning, the length of a gradient walk
should be roughly

lnp Lz /n L, adap ~n L, grad

[23] [22] [23] [22] [23] [22]

GC landscape
n-k model
Eqs. (37), (38)

—0.5
—0.25
—0.35

GC
—0.12 0.15 0.18 0.10 0.12
—0.25 0.25 0.25 0.18 0.18
—0.34 0.09 0.08

GCAU
0.44 0.32 0.26 0.20
0.60 0.67 0.32 0.36

0.26 0.30

AUGC landscape (—0.3 = —0.2
n-k model —0.60 —0.67
Eqs. (37), (38) —0.87 —0.94

TABLE VIII. Scaling of the number of local optima and
walk length for GC and AUGC landscapes. Shown are the
slopes of linear fits to the calculated data (Table VII). n-k mod-
el refers to the prediction from Sec. V. Also shown are the
rough estimates obtained from Eqs. (37) and (38). Given are
values of the older parameter set from Salser [22] and the newer
set [23].
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L grad A, an (38)

Table VIII lists the scaled lengths of adaptive and gra-
dient walks, as well as the logarithm of the probability of
randomly hitting an optimum. The measured quantities
are compared with the predictions from the n-k model
and the crude estimates based on Eqs. (37) and (38). The
latter agree fairly well, in the case of gradient walks, with
the observed data. The n-k model is, at best, in the
ballpark. The ratios L,d, /Ls„d, Eq. (32), are pretty
close to the predictions. For the GC alphabet we find
1.45, and for GCAU we find 1.57, versus a prediction of
1.45 and 1.85, respectively.

VII. CONCLUSIONS

Among the most important steps in understanding evo-
lutionary adaptation is the construction of a model
landscape based on the proper abstractions of the adapt-
ing entities. In this paper, we explored in detail the
statistics of a realistic and biologically motivated
landscape induced by RNA folding. We compare its
features with a widely used simple statistical model for
rugged landscapes, known as the n-k model.

RNA energy, as well as structure landscapes, were ex-
plored by numerically computing landscape autocorrela-
tion functions, random-walk autocorrelation functions,
and density surfaces as a function of the nucleotide alpha-
bet and the sequence length. The main results can be
summarized as follows.

RNA landscapes

(i) Binary sequences, AU or GC, have very short corre-
lation lengths, indicating that they are very likely to
change their structure with few changes in the underlying
sequences.

(ii) GCXK sequences, with XK denoting two artificial
nucleotides with the same pairing strength as GC, are less
sensitive to changes than binary sequences.

(iii) Natural AUGC sequences are even less sensitive
than GCXK. We have checked the infiuence of the non-
Watson-Crick pair GU. Disabling GU pairs in AUGC
sequences strongly inAuenced the energy autocorrelation
(shorter correlation length), but had no or little efFect on
the structure autocorrelation. We conclude that the sen-
sitivity difFerence between AUGC and GCXK is due to
the unequal base stacking and pairing energies associated
with GC and AU pairs.

(iv) ABCDEF sequences (GC pairing strength) have a
very low sensitivity.

This suggests that a natural four-letter GCAU alpha-

(I) The energy, as well as the structure autocorrelation
function, is characterized to a reasonable approximation
by one length scale. -

(2) The characteristic length of the energy and of the
structure landscape scale linearly with sequence length.

(3) The characteristic length for structures strongly de-
pends on the nucleotide alphabet as follows.

bet is a good compromise between (a) enough structural
variety to support biological function, and (b) sufficient,
but not excessive, stability towards changes in the se-
quence.

(4) Exploration of the structure density surface sug-
gests that there is a small region (compared to the diame-
ter of the sequence space) around any random sequence,
such that the sequences within that region fold into al-
most all minimum-free-energy structures.

Comparison with the n-k model

The n-k model is a powerful and flexible, yet simple,
tool for generating scalar landscapes with prescribed
correlation structure. Although both RNA and n-k
landscapes share some simple scaling behavior, they do
not agree in important details concerning the statistics of
local optima and the length of adaptive and gradient
walks. We trace the disagreement between the fine
structure of the two landscapes back to one basic
difference. As detailed in Sec. IVE, the distribution of
energy increments upon changes in one position are not
properly described by a Gaussian in both binary alpha-
bets and the natural alphabet. This is mainly due to a
very high degree of neutrality, that is, neighboring se-
quences with identical minimum free energy or identical
structure. With respect to energies, there are only a few
thousand diff'erent values [30]. In the n kmode-l, all
values are pairwise distinct with probability one. Even a
discretization of the n kmodel (e-.g. , cutting off all de-
cimal places) would still remain Gaussian, without yield-
ing a neutral-neighbor peak of the kind observed in RNA
folding. The physical process of polynucleotide
folding —as far as it is properly abstracted by the
presently used algorithm —is not in the class defined by
the n-k model. The neutrality issue has profound effects
on the number and the distribution of local optima as
well as biased walks on both landscapes. These are the
features in which the disagreement is most apparent. At
the same time, these are also the features that are the
most relevant to evolutionary optimization.

The autocorrelation function, Eq. (I), of the n-k model
is a single decaying exponential along a random walk.
This is no longer the case for the landscape autocorrela-
tion function, Eq. (2), as can be seen from Eqs. (23) and
(24). However, the numerically computed (landscape) au-
tocorrelation function of the RNA free-energy landscape
is, to a good approximation, a single decaying exponen-
tial. For small distances [up to the "correlation length"
(25)], we approximate Eq. (23) by an exponential. This is
the basis for extracting a k =7—8 as the number of con-
text sites infIuencing the energetic contribution of each
position, independently of sequence length. This coin-
cides roughly with the typical size of secondary structure
elements [5], and one may speculate about the nature of
this coincidence.
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APPENDIX: DERIVATION
OF THE AUTOCORRELATION FUNCTION

FOR THE n-k MODEL

In case of the PR version, the chance that a site energy
remains unchanged when a single digit is Aipped equals
1 —(k+1)/n, independent of whether other bits have
been Aipped before. Therefore,

d

1 —hpa(d) = 1— (A 1)

The RN version is only slightly more involved. A site
energy f; is unchanged if it is not one of the d positions
that have been changed previously, and if it is not one of
the k neighbors of any of the Aipped sites. These events

are statistically independent, and thus

1 —hRN(d)= 1 ——d
d

(A2)

For the AN model, however, the situation is more
complicated. First note that h (1)=(k+1)/n, since, for
a single bit Aip, it does not matter whether the assign-
ment of neighbors is random or not, because the contri-
butions to the site energies are pairwise independent.
Now suppose that the d ~2 changes are labeled s, such
that

S, =1&S,&S3 ( Sd (A3)

Evidently there are (d I) such Ilipping patterns. Let us
now calculate the probability that a particular pair of
Aips occurred l sites apart, i.e., s;+, —s, =I. Suppose s,
and s2 are chosen this way. The remaining d —2 Aips
have therefore to be arranged within the remaining
n —l —1 sites; there are ("

d 2
'

) such arrangements.
Therefore we obtain the probability that two Aips are
separated by I digits along the chain by

("d z')/(d I), 1&1&n —1, 2&d &n —1+1,
0, otherwise .l ='

If l k, then l site energies are changed as a result of changing the corresponding position. Otherwise (all k +1 sites
are changed. Thus the probability that a given site energy is changed by moving to Hamming distance d is

k k

h~N(d)= —g pd(l)l+(k+I) 1 —g pd(l)
n I= 1 1=1
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