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Radiation by solitons due to higher-order dispersion
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We consider the Korteweg —de Vries (KdV) and nonlinear Schrodinger (NS) equations with higher-
order derivative terms describing dispersive corrections. Conditions of existence of stationary and radi-

ating solitons of the fifth-order KdV equation are obtained. An asymptotic time-dependent solution to
the latter equation, describing the soliton radiation, is found. The radiation train may be in front as well

as behind the soliton, depending on the sign of dispersion. The change rate of the soliton due to the radi-
ation is calculated. A modification of the WKB method, that permits one to describe in a simple and

general way the radiation of KdV and NS, as well as other types of solitons, is developed. From the
WKB approach it follows that the soliton radiation is a result of a tunneling transformation of the non-

linearly self-trapped wave into the free-propagating radiation.

PACS number(s): 42.81.Dp, 52.35.Sb

I. INTRODUCTION

A large variety of nonlinear structures have been de-
scribed by means of reduced equations obtained in
different asymptotic limits, such as Korteweg —de Vries
(KdV), nonlinear Schrodinger (NS), Kadomtsev-
Petviasvili (KP) equations, etc. It appears, however, that
by using such equations we lose, sometimes, rather im-
portant effects that can change the physical picture.

As an example, we mention a radiation emerging from
the self-focusing wave beams in magnetized plasmas
[1—3] and other gyrotropic media [4], which eventually
leads to defocusing. It has been shown in the mentioned
papers that the radiation is caused by a transformation of
the nonlinearly self-trapped wave into an outgoing un-

trapped mode. The radiation mechanism is similar to the
tunneling in quantum mechanics and, therefore, it was
called the tunneling transformation [1]. This process
does not follow from the NS equation because the un-

trapped mode is lost in the NS equation. It is described
by the full system of Maxwell equations [1—4]. Similar
results are obtained if one adds higher-order dispersive
terms to the NS equation [5]. Evidently, the radiation of
nonlinear structures due to the tunneling transformation
may take place in any number of dimensions. In particu-
lar, one can expect that the tunneling transformation
should appear, under certain conditions, in one-
dimensional nonlinear systems described by higher-order
KdV and NS equations. In the simplest case, they are of
the forms
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These equations have been studied in many papers in
connection with different physical phenomena. Equation
(1) arises in dispersive fluid dynamics (e.g. , shallow water

and plasma waves), while (2) arises in nonlinear optics
and Quid mechanics.

As was first shown numerically by Kawahara [6], Eq.
(1), in certain domains of parameters, has stationary soli-
ton solutions. An interesting analytical example of a sta-
tionary soliton, satisfying Eq. (1), was given by Nozaki
[7]. On the other hand, one can ask what happens with
the KdV solitons at small y. Pomeau, Ramani and
Grammaticos [8], using a modification of the asymptotic
method of Segur and Kruskal [9], have shown that in this
case the solitons emit radiation, and have obtained an ex-
pression for the radiation field, which is beyond all orders
of the perturbation theory based on expansion in powers
of y.

Radiation of NS solitons, satisfying Eq. (2) at small y,
was first found numerically by Wai et al. [10], and then
analytically by Wai, Chen, and Lee [11],using again the
"beyond all orders" approach based on Ref. [9]. Their
results were confirmed by another, but still rather
cumbersome, method, by Kuehl and Zhang [12].

In the present paper we show that the radiation of
KdV and NS solitons is, actually, a tunneling-
transformation effect similar to that found in Refs. [1—5]
for multidimensional systems with high-order dispersion.
First, however, we consider conditions of existence of ra-
diating and stationary solitons. The most definite con-
clusions can be obtained for the higher-order KdV equa-
tions and, therefore, we restrict our analysis to Eq. (1)
(Sec. II). For Eq. (2), the analytical criteria are not so ex-
pressive and, perhaps, a numerical investigation, similar
to that of Kawahara [6], would be more productive.

In the other part of Sec. II we derive, by a "direct" ap-
proach, an asymptotic time-dependent solution to Eq. (1)
describing the radiation of the KdV soliton. We show
that the radiation train may be in front as well as behind
the soliton, depending on the signs of the coeKcients in
(1). Using the obtained expression, we then calculate in a
strict way the change rate of the soliton amplitude due to
the emitting radiation. In the stationary limit, our solu-
tion turns into the one obtained by Pomeau, Ramani, and
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Grammaticos [8], except for an amplitude factor K =20,
obtained in Ref. [8] numerically. The results obtained are
useful for comparison with the tunneling transformation.

In Sec. III, we extend to Eqs. (1) and (2) our theory of
the tunneling transformation [1]. This is done by means
of a modified WKB approach that leads, in a simple and
general way, to expressions describing radiation of the
KdV and NS solitons. The derived formulas confirm
solutions obtained previously by means of much more
cumbersome calculations. Besides that, our approach
gives a physical insight into the soliton radiation, show-
ing that this process is a result of the transformation of a
nonlinearity self-trapped wave into the free-propagating
radiation, similar to what was found in the theory of
self-focusing [1—5].
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the cases

II. RADIATION BY THE KdV SOLITONS
DUE TO HIGHER-ORDER DISPERSION

(3} yP(0, Pa &0, 0(e( ~,
with

(12a)

The subject of this section is the nonlinear structures
satisfying Eq. (1) with small y and approaching the KdV
solitons at y~0. For brevity, we call them KdV soli-
tons. It ~ill be shown that, at yp) 0, they radiate and,
therefore, are nonstationary. On the other hand, Eq. (1)
may have stationary-soliton solutions and, therefore, one
must distinguish between solitons (which may be nonsta-
tionary) and stationary solitons. We start with several
general comments.

The stationary-soliton solution of Eq. (1) can be written

1
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In case (12), for e= —,', , and negative sign in (12b), an
analytical solution of Eq. (1) has been found. It is of the
form [7]

u =aF(g),
where

g=Ia/pI'~'[x —x (r)],
dxo =a, x0(0)=0,

(4)

V(k)= —Pk +yk (13)

On the other hand, necessary conditions for the ex-
istence of stationary-soliton solutions to Eq. (1) can be de-
rived in a very simple way by considering plane-wave
solutions to the linearized Eq. (1). Their phase velocities
are

and a=const. Substituting (3) into (1) and integrating
one time, we come to the equation

sgn(yP)e + +sgn(Pa )( —,'F —F)=0,gdF dF 2

d dg~
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One can show that soliton solutions of Eq. (6) are even
functions: F(g)=F( —g). Their asymptotic behavior at
I/I ~~ is found by neglecting the nonlinear term in (6).
Therefore,

where k is a wave number. From the plots of V(k)
shown in Figs. 1 and 2, it is seen that the fifth-derivative
term in Eq. (1) may bring sufficient qualitative effects at
yp) 0. Indeed, in this case the behavior of V(k) changes
drastically at k )k, where V(k ) = V is the minimum
(at y )0} or maximum (at y (0) of V( k ). From (13), we
have

k =(P/2y)'i, V = —P /4y .

Evidently, the velocity of a stationary soliton cannot be
equal to the phase velocity of any linear free-propagating
mode; i.e., the equation

F(g) =g A,exp( —a.
I g'I ), (8) (15)

where ~ are roots of the quartic equation

sgn( yP )e a. +~ —sgn(Pa ) =0,
with Rerc) 0 and, generally, A„are constants (linear
functions of g) if x are simple (multiple) roots. Numerical
investigation of Eq. (6) has been performed by Kawahara
[6], who came to the following conclusions: soliton solu-

cannot have real roots k. Otherwise, the soliton would
resonantly interact with the wave with phase velocity
V(k) and, therefore, it cannot be stationary. Then, from
Figs. 1 and 2 and Eq. (14), one deduces that the necessary
conditions of the existence of stationary-soliton solutions
to Eq. (1) coincide with (1 la) or (12a).

We see that at conditions (10a), contrary to Ref. [6],
stationary solitons of Eq. (1) cannot exist. Instead, there
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suits that d(lna ) Idt is exponentially small and, therefore,
all corrections containing da Idt are neglected
throughout this section (even if they are multiplied by
powers of t). Then, substituting (17) into (1), we come to
the following equation for f(g, r) in the case (10a)

df af 1 a(f ) afof af af
ar ag 2 ag ag ag' ag'

, a'f,
E —. (20)'a

FICx. 1. Plots of V(k) at yP & 0. (a) P & 0; (b) P & 0.

may be radiating solitons, which can have a long lifetime
at suSciently small e.

To obtain quantitative results for the case (10a), we as-
sume that 0+q+q —e q =0 . (21)

The function f ( g, r) is a small quasistationary addition to
the KdV soliton profile (19). It has a part f„(g,r),
describing resonant radiation of the soliton. We are
mostly interested in this part. The main contribution to
its Fourier transform comes from the harmonics
exp[i(qg Ar—)] with small Q, because they correspond
to plane waves moving with velocities close to the soliton
velocity. Taking ~g~~~ and neglecting the nonlinear
term in (20), we obtain the dispersion relation in the soli-
ton frame

g «1,
and look for a solution to Eq. (1) of the form

u(x, t ) =a [fo(g)+f(g, r)],
with

dxo
g= /a/p/' [x —xo(t)], =a,

dt

r= [a /p['~ xo(t)sgnp,

(16)

(17)

(18b)

Introducing the phase velocity in this frame

V=0/q,
one obtains the following expression:

q = [1+[1+4(1+V)e ]'i
J .

1

2g2

For harmonics close to the resonance,

/V/ «1.

(22)

(23)

and

fo(g) =3 sech (g/2) . (19)

For a =const, afo(g) is the soliton solution of the KdV
equation, i.e., Eq. (1) with y=0. Actually, a =a(t) [con-
trary to (5), where a =const]. Due to (16), a (t) is a slow
function of t. Moreover, it will be seen from the final re-

Therefore, only the plus in (23) gives a real q, and we ob-
tain for the resonant wave number

1
q

~ +
E

(24)

The branch in question does not exist at e =0.
Performing the Fourier transform of Eq. (20) with the

notations

(a) (b)

gr(q, r}=f dg f(g, r}exp( iqg), —

yo(q) = J dg fo(g)exp( iqg ), —

we obtain

+i ' —&(q)q (q, r). ag(q, r)
a~

(25)

(26)

= s'q'q o(q)+ J ~q' qo(q q')q(q' r)—
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FICJ. 2. Plots of V(k) at yP&0. (a) P&0; (b) P&0.

where the sign before i coincides with that of p, and

Q(q)=e q
—

q
—

q .

(27)

(28)
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According to (21),

Q(q„)=0 .

Substituting (19) into (26), we have

po(q ) = 12m.q csch( n.q ) .

As the initial condition to Eq. (27), we take

(29)

(30)

exp[+i(2r/e )(q —q„)]—1
p"'(q, r ) = ,' e—4q'q, (q)

q
—q„

(37)

Aq=e /2~ . (3g)

From (37) is seen, in particular, that the width of the res-
onant region is

y(q, 0)=0 . (31)

=e q yo(q)+ f dq' go(q q')qr(q—', r) .

We are interested in y(q, r) near the resonance (q =q„).
In this region, y(q, r) is large but, nevertheless, the non-
linear term in (27) can be neglected. This is justified in
the Appendix. Thus, Eq. (27) can be replaced by exp [ + i (2r/e )(q —q„)]—1

q (q, r) =i)'j+(q)
q

—q„

where, for e (&—,',

(39a)

P+(q) = ,'e q go(—q)+3~i exp( —m/e) ~q~yo(q
—q„),

It decreases with time as ~
The complete asymptotic solution to Eq. (32) for

r))e /2 [which, according to (38), means b.q «1] is de-
rived in the Appendix. It has the form

Introducing the new unknown function

4&( q, r) =q&(q, r)exp[+i Q(q)r],
we have

+i q' — dq'yo q
—q' + q'. BN(q, r) q

(33)

(39b)

and the upper (lower) sign is taken for P) 0 (P & 0).
From (25) and (39a), we obtain the following asymptot-

ic expression for the radiation emitted by the soliton in
its reference frame:

X exp [+i[Q(q) —O(q') ]r]
=e q yo(q)exp[+i'(q)r] . (34)

The right-hand side of this equation is a driving term. It
is the most essential in the resonant region where, ac-
cording to (29), Q(q) is small. In this region, we may
write

Q(q ) =0'(q„)(q —q„)+ —,
' 0"(q„)(q —q„)

f(g, r) =+ [ [P+( I /e) —P+( —I/e) ]sin(g/e)

i [P+—( I/e)+ g+( —I /e) ]cos(g/e ) ]

Xg+(g, r),
where

g+ (g, r) =1, 0 & g& 2r/e',

=0, /&0, g&2r/e',

(40)

(41a)

(q —q„)+2
(q —q„) = (q —q„),2 g (g, r)=1, 2r/e' &—

g &0,
=0, g&0, g & 2~/e' . — (41b)

where

(35a) The derivation of (40) is given at the end of the Appen-
dix. Substituting (39b) into (40), we come to

sgnq„=sgnq . (35b)
f(g, r) =+24m@ exp( —m/e)[sin(g/e) —3m cos(g/e)

+O(e )]g+(g, r) . (42)

Therefore, instead of (34), we write

+i ' — J dq' go(q —q')4(q, r). B4(q, ~) q
B7 2& —oo

2l
Xexp +—(q —q')r

E

2l=e q po(q)exp +—(q —q„)r

where (35b) is assumed. Equation (36) can be solved by
successive approximations. In the lowest approximation,
we neglect the second term in the left-hand side of (36)
and, taking into account (31) and (33), we have
q&(q, r) =p' '(q, r), where

One can see that the main term in (42) comes from the
lowest approximation (37) and may be obtained if one re-
places (37) by

exp[+i(2r/E )(q —q„)]—1
y(0)( q (43a)

where

P' '(q„)= —,'e q„po(q„)= 12~@ exp( ~/F)sgnq„. (43—b)

[See (A15) and (A21).] Note the connection of this result
with the vanishing of the width of the resonant region at
g/g~ —+ Oo.

In the units used, the group velocity of the resonant ra-
diation is
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e(z)=I, z&O,

=0, z&0. (45)

At P) 0, this coincides, except for a numerical factor,
with the expression found by Pomeau, Ramani, and
Grammaticos [8]. (Their amplitude contains an extra
factor K=20, found numerically. ) The attenuation rate
of the soliton amplitude, caused by the radiation, can be
found from the conservation law

f" u'dx =0,—oo

which follows from Eq. (1). Substituting here (17)—(19)
and (42), and taking into account that, at r&)e /2, the
radiation edge is well separated from the soliton, we have

d lna = —32vr e exp( 2n/e), —
d~

where e and ~ are given by (7) and (18). Equation (46)
defines a(t). The change rate, estimated in Ref. [8], is
proportional to e, instead of e in (46).

Thus, we have shown that, at

yP&0, a/3&0,

the stationary-soliton solutions of Eq. (1) do not exist.
Instead, we found radiating solitons that turn, at e~O,
into the KdV solitons (19). Evidently, the effect of the
soliton radiation and, respectively, the change rate of the
soliton amplitude, described by (42) and (46), is beyond
all orders of the perturbation theory based on expansion
in powers of e. In other cases, (1 la) and (12a), Eq. (1) has
stationary-soliton solutions, found numerically by
Kawahara [6].

III. SOLITON RADIATIGN AS A TUNNELING

In this section we consider the soliton radiation by
another approach, from which follows that the radiation
is a result of a tunneling of the self-trapped wave field due
to its transformation into the free-propagating radiation,
similar to what takes place at the self-focusing [1—5].

Starting with Eq. (1), let us consider its solution in the
form (17) with initial conditions at r= —~ (instead of
r =0 as in Sec. II):f(g, —oo ) =0. Then one can expect a
quasisteady state at finite ~, with ~ entering only through
a and, respectively, e. In the lowest approximation we
may assume @=const. The nonlinearly self-trapped wave
is described by Eq. (19); it is the KdV soliton. The free-
propagating radiation in the presence of the soliton is de-

V (q„)=(sgnP)Q'(q„)=+2/e

[the sign of V (q„) is in agreement with Fig. 1]. Thus, the
factor g+(g, r) in (40) describes the propagation of the ra-
diation edge with the group velocity. Returning to the
original variables (x, t), we see that the radiation train is
ahead of the soliton for P & 0 [Fig. 1(a)] and behind it for
/3 (0 [Fig. 1(b)]. At w~ ~, from (42) and (41) follows

f(g, ~ ) =+24ne exp( —m/e)sin(g/e)e(Pg), (44)

where

+ +If (k) —1]f(k)
dg dP dg

+5(sgnP)f(g)=0 . (47)

Looking for solutions of (47) in the WKB approximation,
we come to expressions, proportional to

exp i J q(g')dg' (48)

From (47) and (48) follows that q (g) satisfies the equation

e q q+ [fo(g—) —1 —ip] =0, (49)

where p = (5/q )sgnP. In the WKB approach, q(g)
should be large enough and, therefore, we can assume
that p is real and

p~o, sgnp=sgn(PReq) .

The solution of (49) is

(50)

q
= [1+[1+4e(1—f0+ip)]'~ ] .

26
(51)

The negative sign in (51) gives "regular" roots approach-
ing, at e~O and p~O, the solutions of the quadratic
equation

q f0(g)+ 1=0 .—

They do not fit the conditions of applicability of the
WKB approximation. The branch of (51) with the posi-
tive sign gives

q, 2
=+—

[ 1+—,
' [1—f0($)+ip]e +O(e ) ] .1

E
(52a)

To the lowest order, (51) leads to the resonant wave num-
bers (24) with a small imaginary addition. In this case
the WKB approximation is justified (at least for real g).
Retaining the principal terms in (51) and taking into ac-
count (50), we write

q, 2=+I/ +iefisg P,n5~+0 .

Observing that

(52b)

scribed by the linearized Eq. (20) without the right-hand
side, i.e.,

Bf af+Bfof +a3f+ a5f
0

Br Bg' Bg

We look for a solution to this equation of the form

f(k, ~)=e '"f(k) .

To satisfy the initial condition at ~~ —~, we assume
that 0 has an infinitesimal positive imaginary part, i.e.,

Q=QQ+i5, 6~+0 .

The wave, resonantly interacting with the soliton, must
be stationary in the soliton frame. Therefore, we assume
00=0. Then f(g) satisfies the equation
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fo(g) =3 exp[ —Pin cosh(g'/2)]

= 3 exp —f tanh(g'/2)d g'

imp „

and introducing the notation for the square brackets in
(17)

@(g)=fo(g)+ f(g),
one can write

4(g)=3exp i f Q(g')dg'

(53) Re)

+ C, exp i f q, (g')dg
0

+Czexp i f qz(g')dg' '6(Pg),
0

(54)

FICx. 3. Contours of integration in the complex plane g g,
and gz are branch points.

where

Q(g) =i tanh(g/2)+0(e ), (55)

Q(k) =qi(ki » Q(kz) =qz((2) (56)

q, z are given by (52) with 5=0, and 6(z) is defined in
(45). The term containing 6(Pg) describes the emitted
radiation for the present initial condition. Indeed, ac-
cording to (52b) with a finite but infinitesimal 5, the fac-
tors (48) vanish at g~ao (g~ —oo) for P)0 (P(0),
which corresponds to the outgoing waves. On the con-
trary, these factors tend to infinity at g~ —ac (g~ ec),
which corresponds to ingoing radiation. Thus, at 5=0,
the outgoing waves should be expressed by the terms con-
taining 6(Pg).

To find C& and C2, consider the behavior of the ex-
ponents in (54) in the complex plane of g, along the con-
tours L& and L2, rounding roots of the equations

g=t l, $12—l /12

we have, to the lowest order of e,

tan(il, z/2)=+1/e .

Thus,

g) = —m. +5, q2=n. —6,
5=2@ .

(57)

(58a)

(58b)

Integrating in the first term of (54) along the contour Lz,
we have

closest to the real axis (Fig. 3). gi and g'z are branch
points, where the first term of (54) turns into the second
and third ones and vice versa [1]. It is easy to see that g,
and gz are located on the imaginary axis. Defining

0 s
3exp i f Q(g')dg' =3 exp i f Q(g)dg+i f qz(g)dg exp i f qz(4')dg'

=3 exp f [qz(i') —Q(ir))]dr) exp i f qz(j')dp' (59)

Thus, the first term of (54) is transformed into the third
one [the second term is lost in this transition because it
rapidly vanishes when one moves from the real axis to the
upper half plane (cf. Ref. [13]). From (59), it follows that

"l2

Cz =3 exp f [qz(i') Q(i r))]dr)—

The same result
tegrates along a
/=i' and g=g'z.
L& gives

C) =C2 .

is obtained if, instead of L2, one in-
contour rounding both singularities,

A similar integration along the contour

(63)

Substituting here

qz = —1/e, Q(ii)) = —tan(i)/2),

we have

Cz-(3e /e )exp( —rr/e) .

(61)

(62)

For P(0, one should integrate along Li and Lz in the
opposite direction.

The sign —in (62) means that this relation has been es-
tablished up to a constant complex factor Ce', indepen-
dent of e. This is because we have restricted ourselves by
the main powers of e. The next-order terms, being negli-
gibly small for real g, become of order 1 near /=in, and.
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ij'r(x, t) =ago(g)exp(i r/2),
where pro( f ) is a real function,

(65)

this leads to a difFerent coe%cient in (58b). Besides that,
an imaginary part in (58b) appears. This leads to an addi-
tional complex factor in (62) (cf. with a similar situation
in the overbarrier refiection in quantum mechanics [13]).
Introducing C exp(ia) into (62), we come to the following
expression for the soliton radiation:

f(g)=C(6e /e )exp( n—/e)cos(g/a+a)e(Pg) . (64)

A comparison with (44) gives

C=1.7, o.= —m/2 .

Thus, the present approach gives, except for an ampli-
tude factor of order 1 and a phase shift, a correct expres-
sion for soliton radiation, showing that the radiation is a
result of the transformation of the self-trapped wave into
the free-propagating radiation (the tunneling transforma-
tion).

In a similar way we can treat Eq. (2). At y=0, it has
the NS soliton solution of the form

where yo(g) is given by (68), 5yo is a small steady correc-
tion to the sech/ shape of the soliton, satisfying the equa-
tion

8 5y0 ~ ~V 0 ~~%0

82 +(2 sech g —1)6@&o i E— =is
Bg' Bg'

(73)

a'
Qg2

+(2sech g —I+2ip)p=ie a3
In the WKB approximation, we have

y(g)=C exp i f k(g')dg'
0

(74)

(75)

and y(g, r) is a free-propagating radiation, produced by
the soliton. As before, we take the initial condition
y(g, —~ ) =0 and, therefore, at finite r one can expect a
quasisteady wave function for a resonant radiation. To
find it, we assume

y=y(g)exp(pt), p, ~+0 .

Then, from (70)—(73) and (67), we obtain the following
equation for y(g):

(=ax, r=a t,2

and yo(g) satisfies the equation

d q&o(g)

d 2
+ [2%o(g') —1]%o(g)=0, (67) k(g)= —I/e+O(e)+iv, v —++0 .

where k(g) satisfies the cubic equation
(66)

ek +k —(2 sech g —I +2i p) =0 .

If e « 1, one obtains

(77)

with the regular solution

yo(g) =sech(',

describing the soliton with the amplitude a and width
a '. At yAO, we look for a solution of the form

Two other roots are beyond the WKB approximation.
Now, following the approach used above, we write the

soliton solution in the lowest approximation as

yo(g) =exp( —ln cosh/) =exp i f Q(g')d f, (78)
0

Q(x, t) =a(~)4(g, r)exp(ir/2),

with g defined in (66), and

r= f a2(t')dt'.

(69) where

Q(g) =i tanhg, (79)

and look for the branch point go, which is a root of the
equation

At small y we can ignore, in the first approximation, all
terms with time derivatives of a. Then we have the fol-
lowing equation for @(g,r):

Q(go) =k(go),

closest to the real axis. The root is purely imaginary:

(80)

BN
2i +

2 +(2~@~ —1)@=i@
Bg Bg

where

(70)
ko= iso iso= 5——

2
(81)

6=2@a «1 .

Without loss of generality, we assume e & 0 and write

@(g',r) =go(g')+&yo(g)+y(g, r),

(71)

(72)

Unlike the case of Eq. (1), we now have only one branch
point, located in the upper half plane. Transforming the
integral in (78) into the one along the contour L2 (Fig. 2,
with /&~go), we write

r

exp i f Q(g')dg' =exp —f Q(iq)dil exp —f k(iq)dg exp i f k(P)dg'
2 0 go 0

7l

=exp f (tang —I /c)dri exp i f k(g')dg'
0 0

(82)
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One sees that the wave function of the nonlinear self-
trapped wave (68) is transformed into that of the free ra-
diation (75), with the amplitude

go
C —exp (tani) —I /e)dr) =ee 'exp( v—r/2e) .

0

(83)

Here C, similar to C2 in (62), is defined up to a constant,
independent of e, for the same reason. The integration
along a contour rounding both singularities, /=i rr/2 and

gives (83) again. Taking into account (71), we
finally have the wave function of the free radiation in the
form (y) 0)

cp(x) =Be(2ya ) 'exp( —m/4ay)exp( ix—/2ya )e(x),
(84)

discussions. This work was supported by the Danish
Research Academy and the Lady Davis Trust at the He-
brew University of Jerusalem.

APPENDIX: SOLUTION TO EQ. (32)

Looking for the solution of Eq. (32) by the successive
approximation method, we write

((p(q, r)= g p((")(q, r) .
n=0

(Al)

To simplify the equations, we first consider the case 13)0.
Then y' ' is given by (37), with a minus in the exponent,
and higher approximations are defined by the recursive
equation

gq)(n+ 1)( )
l

where B is a constant and e(x) is given by (45). Expres-
sion (84) coincides with the results obtained by (much
more cumbersome) direct methods [11,12]. The time
dependence of the amplitude a (t) can be calculated from
the conservation of

f i(I&(x, t)i dx,

with the same results as in Refs. [11,12] (except for a nu-
merical factor).

IV. DISCUSSION

f dq'(po(q —q')exp[i(2r/e )(q —q')]

X e(")(q,r),
p'"'(q, r) =4'"'(q, r)exp[ —i (2r/e )(q —q„)],

n =0, 1,2, . . .

Assuming

e'/2«(1,

(A2)

(A3)

(A4)

The higher-order dispersive effects may cause
significant qualitative changes in the dynamics of non-
linear structures in different space dimensions. We have
shown that the solitons described by the fifth-order KdV
and third-order NS equations may radiate due to a trans-
formation of the nonlinearly self-trapped wave into a
free-propagating mode having the same phase velocity as
the soliton. This is a tunneling effect, similar to the tun-
neling transformation found in multidimensional systems
[1—5 ]. In one dimension, it resembles the soliton
Cerenkov radiation, like that suggested for vortices in in-
homogeneous plasmas or rotating fiuids [14], but for
higher space dimensions this analogy may not hold.

The approach and results of Sec. III, as well as the con-
clusions following from Eq. (15), may be extended to the
solitons of the modified KdV equations with nonlinear
terms u~Bu /Bx (p =2, 3) [15]. For p ~ 4, as well as for the
modified NS equations with nonlinear terms ~g~ 'P, s ~2,
the solitons are unstable with respect to collapse-type
phenomena [16]. The role of radiation in these cases will
be studied in a separate paper.

we look for the solution of (A2) in the form

1 —exp[i(2r/e )(q —q„)]
@(n)(q ) q(n)(q)

q
—

q„
(A5)

I„(q,r)exp i (q —q„)
. ae("+"(q,r) q . 2r

07 277 E
(A6)

where

I„(q,r) = f dq'go(q —q')i)'j(")(q')

exp[ —i(2rle )(q' —q„)]—1
X q' —

q„
(A7)

and sgnq„=sgnq. Introducing a new variable of integra-
tion

A simple analysis of (A2), confirmed by the results, shows
that the main contribution to the integral comes from q'
sufficiently close to q. Then, substituting (A5) into (A2),
we have

p =(2r/e )(q' —q„), (A8)
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I.(q»= f dpqo q
—q, —

(A9)

Taking into account (A4), we obtain

e exp( ip ) —1—
X " q„+ p

7 p
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I„(q,r) =I„(q)=— —virgo(q
—q„)g'"'(q„), (A10) From (A14) and (A15) follows

where we have used

1 —exp( ip—) . sinp
dp =1 dp = l 7T

oo p —oo p

Substituting (A5) and (A10) into (A6), we have

(Al 1)

2
P'"+"(q)= . qyo(q —q„)P'"'(q„), n =0, 1,2, . . . .

l

(„) 1 0'0 qroo ( )

2E 1+i(e /4)q„yo(0)

yo(q„)(1 —3ie sgnq„)
sgnq„

2E' 1+9
1 —3ie sgnq„

exp
E' 1+9@

sgnq„, (A19)

(A12) where we have used (24}, (35b), and

From (A5), (A3), and (37) follows

Substituting q =q„ into (A12) and (A13), we obtain

g2
"(q„)= q„—y.(0)P'"'(q„),

(A13)

(A14)

q)0(0) = 12,

q&0(q„) =24m@ 'exp( m-/—e) .

Substituting (A19) into (A18) and assuming

3e ((1,

(A20)

(A21)

(A22)

g' '(q„)= ,'e q„'y (—q„).

Defining P(q) by

g(q)= g it'"'(q),
n=0

we write

(A15)

(A16)

we have

«q) = P' '(q) 3mi exp—( —m. /e)lqlgo(q —q„) . (A23)

Up to now, we assumed p) 0. For p (0, we must replace
i ~ i U—si.ng (A3), (A5), (A16), (A23), and (Al), and
considering P~w0, we come to expressions (39). To
calculate the free radiation field f( g, r }, we substitute
(39a) into

q(q) =q'"(q)+ y y'"+"(q) .
n=0

Using (A12), we have

(A17)

f(g, r)= f y(q, r)exp(iqg) . (A24)

2 oo

«q) =4"'(q)+ qqo(q —q,.) g 0'—"'(q, } . (A18)
Introducing again the integration variable p given by
(AS), with q instead of q', we have

f(e, r)=f, g+ —+ p—2v/e 2& 6 27-
L

E2

exp ip + 1
2v

. E2—exp i p27
' exp(ig/e)

dp 1 e
+ ——+ p

271 E 2'r

2
. exp ip +1

27

~2$—exp i p
27

' exp( i/le) —.

Due to (A4), this can be transformed to

f(F,r)= [f+(1 /e)exp(ig/e)

+g+( —1/E)exp( i /le) ]J+—,

where

(A25}

Here the upper (lower) sign is taken for P) 0 (P (0). Cal-
culating (A26) and substituting the result into (A25), we
come to expressions (40) and (41). Now, let us estimate
the nonlinear term in (27). Denote

2

exp ip +1
oo dpJ+= 2'

2—exp ip
2v

(A26)

N(q, r) = ,' f dq'y(q —q',r)q(q', r) . — (A27)

Substituting here (37), assuming (A4) and considering, for
definiteness, P )0, we have, after some algebra,
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exp[ —i (2r/E )(q' —
I q„ I ) ]—1

1V(q, r)=12m@ exp( r—r/e) f dq' p(q —q', r)
0 q' —Iq, I

exp[i(2r/e )(q' —Iq„I)]—1

q
—

~q,

Substituting here y(q+q') from (37) and assuming
q=+Iq„I, one can see, after averaging over fast oscilla-
tions, that N(q, r) is negligible in comparison with the
neighboring linear integral in (27), which is approximate-

ly equal to Io, from (A10). At q =q„we have

144m m
Io(q„)= exp ——sgnq„.
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