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Photonic bands in simple and body-centered-cubic cholesteric blue phases
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A procedure is developed for calculating photon bands in materials characterized by tensor dielectric
properties. As a specific example, the cholesteric blue phases are considered, and their respective photon
bands are calculated for simple and body-centered-cubic structures. These noncentrosymmetric materi-
als interact strongly with only one of the two possible circularly polarized radiation modes; however, no
full photon gaps are found even for this mode. The reasons for this are noted. The technique presented
is general and can be applied to all materials characterized by tensor dielectric properties.

PACS number{s): 41.20.Bt, 61.30.—v, 71.25.Cx

I. INTRODUCTION II. THE BASIC MODEL FOR ANISOTROPIC SYSTEM

In the past few years, there has been a series of theoret-
ical and experimental studies [1—6] of photonic band
states in three-dimensional periodic dielectric solids. One
of the motivations for this work has been the possibility
of finding or preparing structures in which there are
"photonic band gaps, " i.e., frequency regions in which
the photon density of states is zero. In such energy re-
gions, electromagnetic wave propagation is forbidden and
there have been suggestions [1,7,8] as to how this proper-
ty could be utilized to explore electromagnetic bound
states and to improve quantum electronic devices. How-
ever, since the desired gaps are at optical frequencies, or-
dinary solids are not suitable for obtaining such effects.
Experimental studies and simulations have therefore con-
centrated on periodic assemblies of isotropic dielectric
spheres, with the filling factor and dielectric constant ra-
tio between the spheres and the uniform background
serving as parameters.

Here we introduce a different possibility —that of ob-
taining photon gaps in materials having tensor dielectric
properties. As a specific example of such materials, we
consider the so-called cholesteric blue phases (BP). These
exist in a narrow temperature region between the disor-
dered and usual helicoidal phases when the cholesteric
pitch is sufficiently short [9,10]. Two structures have
been identified: simple cubic 0 (P4232) and body-
centered-cubic 0 (I4,32). [A second body-centered
structure, 0 (I432), has been discussed, but not ob-
served. ] These phases are particularly interesting as (a)
their unit-cell size is comparable with optical wave-
lengths so that they interact strongly with visible radia-
tion, (b) they lack a center of symmetry and are therefore
sensitive to the sense of circular polarization of propaga-
ting plane waves, and (c) they are naturally existing
phases. We emphasize, however, that the method to be
employed is applicable to all materials characterized by
dielectric tensors.
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All field vectors are now functions of r only. Since
V B=V H=O, H is a transverse wave. (This is not the
case for E.) As noted, the permittivity [e] and its inverse
[e '] are tensors. In reciprocal space, we have

i(K+G) r

G A, =1,2

(2)

where IG] is the group of reciprocal lattice vectors for
the space group of interest, K is a wave vector in the first
Brillouin zone, f&, $2, and (K+Cz) form a local right-
handed coordinate system, and the h G & are Fourier am-
plitudes. We also expand [e '(r)] in reciprocal space,
obtaining

The calculation of photonic states anisotropic systems
such as BP is, in principle, the same as for simple isotro-
pic dielectrics; one seeks solutions of Maxwell's equations
for transverse waves in a periodic structure. However,
there is a fundamental difference —the dielectric proper-
ties cannot be characterized by a simple position-
dependent isotropic constant e(r). Rather, a full tensor
description e,&.(r) (i,j=1,2, 3) is required [10]. We there-
fore begin with a short derivation of the relevant equa-
tions.

For our purposes, the most convenient approach is
that of Ho, Chan, and Soukoulis [6], where H(r, t) [which
is equal to B(r, t) as we ignore the small diamagnetism] is
chosen as the basic electromagnetic field vector. Then,
taking H(r, t)=H(r)e'"', etc. , we have from Maxwell's
equations,
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[e '(r)]= g [e ']oe'G'
G

e &'(G)e e&e'
G a, f3=1,2, 3

(3)
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=
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where F& &. are the elements of a 2X2 tensor [F& G, ]
which is given by

[Fo o ]= gIK+GIIK+G'Ie p'(G —G')
a,P

Cl eaep Cl'
A A A A
42'e ei3'ki'

A A—ki.e.ep 4z

4 e.ep 4
Here j„g2 and g, , g2 denote local axes associated with
the wave vectors (K+G) and (K+G'), respectively, and
e, e& are associated with the reciprocal lattice vector
G"=G—G'. Comparing our Eq. (5) with that of Ho,
Chan, and Soukoulis [6] makes clear the effect of the
medium having tensor rather than scalar dielectric prop-
erties.

Here the tensor [e ']G is the Fourier transform of
[e '(r)] and e„&'(G) are its elements in a local right-
handed coordinate system defined by e„e2, and
e3=G/IGI. [We stress the local character of the coordi-
nate systems in (2) and (3); they are defined independently
for each of the wave vectors appearing in the Fourier
sums. ] The right-hand side of (3) is written in dyadic no-
tation.

Substituting (2) and (3) into (lb) formally transforms a
linear differential equation for H(r) into a matrix equa-
tion for the [h& & j. The latter has the form

CO

, hG, ~ (4)
C

III. PHOTON BANDS IN BLUE PHASES

A. General considerations

Physically, it is unlikely that a full photon gap will
occur in cholesteric systems. This is inherent in the
chir al nature of these materials —they interact very
strongly only with radiation having a particular circular
polarization and very weakly with the opposite polariza-
tion [9,10]. Thus a gap would in all likelihood exist, if at
all, only for one sense of circular polarization. This po-
larization dependence is not characteristic of all tensor
dielectric systems but only of those which are, in addi-
tion, noncentrosymmetric.

In order to solve the secular equation
IF~o'o —(~'/c')5o, .o, I=O and obtain the photonic
bands, the Fourier elements e & (G) of the inverse dielec-
tric tensor associated with each reciprocal lattice vector
of the structure are needed. For the BP, these are avail-
able from earlier calculations of the phase diagram of
cholesteric systems, wherein the ratios of the Fourier ele-
ments of the anisotropic part of the dielectric tensor were
determined by minimizing free energies for the cubic
structures [11]. Although there [e] was used as the order
parameter in the Landau —de rennes free-energy expan-
sion, [e '] would have served equally as well. Thus the
element ratios found for [e]G are equally valid for
I& ']G.

To connect with the free-energy studies, we note that
the anisotropic part of the normalized order-parameter
tensor was taken as [11]

[p, (r)]= g N '~ [p,"(o.)]exp[iq(hx+ky+lz)], (6)
h, k, l

with h, k, l Miller indices, O. =h +k +l,
3 11pN= 3!2 /n, !,where no(n, ) is the number of vanishing

(equal) IhI, IkI, III and, for each [hkl],

[p(cr ) ]= g p (cr )e [M (hkl) ]
m = 2
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with p, (o. ) ~0 and P (hkl)= —P (h k 1). The [M ]
basis matrices are defined such that [hkl] is the polar axis
of a local coordinate system, defined separately for each
[hkl]. Further, the lowest-lying states lie on either theI=+2 or —2 branch of the free energy versus wave-
vector spectrum, depending upon the chirality (left or
right handed) of the system. Taking only m =+2 states,
we have

i/2(hkl) A[p;.(r)]=—,
' g N 'r p2(o )e ' (e, +ie2)(e, +ie2)

h, k, l

X exp [ iq ( hx +ky + lz ) ] .

This expression can be compared directly with (3}. Of
course, the isotropic part of the order parameter must
also be included. Its Fourier transform is at R=0 and is
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Fk, 2 —
~

K+ G
~

2&
—1(0) (9)

proportional to the unit tensor 5 & (or, equivalently, the
unit dyadic e e ). Thus it contributes only to the main
diagonal elements of F& &, giving

fpz( 1 ) = (0.6)(0.5)=0.06,1 1

2 N 2 6

1 1

2&N 2&12
—fpz(2) = —(0.6)(0.3)=0.03 .

(12)

Note, from (4), that e ' (0) may be taken as a scale factor
for (ni /c ). This then fixes the values of the scaled aniso-
tropic elements iMz(o), whose ratios are, as noted, given
by the free-energy minimization. Moreover, as these ele-
ments are (a, I3) independent, we may use (8) to simplify
(5) to

[FG,G ]= —IK+GIIK+G li z(G"}.' '
2&N

(~ + ~
)

X
4z.(ei-+iez )

X [gi, (ei., +iez„)g'z (ei. +iez-)], (10)

where e,-, e2- are associated with the vector Cx" =Cs —Ci'.
In our numerical calculations, the H-field basis vector

sets [ g; J were generated by choosing a unit vector u, not
parallel (but otherwise arbitrary) to any of the vectors
IK+GI. Then

gi=uX(K+G)/(K+6), g'z=(K+G)Xgi/(K+G) .

The basis vector sets [e, [ have been determined else-
where [11]and are summarized in Table I.

Using the above parameters, we have constructed
FG G matrices up to 294X294 (i.e., 147 plane waves and
two polarizations). Low-lying eigenvalues were calculat-
ed and the resulting photon band structure on the sym-
metry axes is shown in Fig. 1(a). We also give, for com-
parison, the results of a calculation using Fourier ampli-
tudes three times larger in Fig. 1(b). We shall discuss
these results in Sec. IV.

C. Body-centered-cubic 0
This structure, which may exist for sufficiently short

cholesteric pitch [10,13], has not been observed experi-
mentally. However, as it is relatively simple and may be
of future interest, we have calculated its photon band
states also.

For the case of bcc 0 (I432), there is only a single
relevant Fourier amplitude pz(2) associated with the re-
ciprocal wave-vector set (110). The phases lijz=0 for all
these wave vectors. The scaled amplitude is here

The basis vector sets [e; I and phases [Pz] associated
with the Fourier components of the order parameter are
determined by the space-group symmetry characterizing
each of the cubic BP [11].

1 1

2&N 2&12
—fp,z(2}= —(0.6)(0.45)=0.04 . (13)

B. Simple cubic O: Blue phase II

BPII is characterized by the sc space group 0 (P4z32)
[9—1 1]. Free-energy calculations [11] have established
that this phase is well represented by an order parameter
with two nonzero Fourier amplitudes, iti, z(1) and pz(2),
associated with the reciprocal wave-vector sets (100)
and (110), respectively. The phases [with respect to an
origin at the point (000) in the 0 crystallographic cell
with point-group symmetry 23] are gz( ( 100) ) =0 and
gz((110))=ir. These phases are identical for all wave
vectors belonging to a given set. Representative values
for the normalized amplitudes are pz(1) =0.5 and
pz(2) =0.3.

In order to determine the absolute values of these am-
plitudes, we used the following approach: In nematic
liquid crystals (or racemic mixtures of cholesteric liquid
crystals), the value of the normalized order parameter at
the phase transition, p& =0.5, is related to the difference
between the dielectric constants parallel (El) and perpen-
dicular (ei) to the nematic axis by [10,11]
f@~le(0) =&66,E/3e, „, where b,e= ~el ei ~

and—
E(0)=e,„=(el+2ei)/3. The scaling parameter f will be
assumed to be structure independent. Typical values [12]
at optical frequencies for (b,e/e, „) are about 0.40, which
gives f=0.6. We then have for the two nonzero scaled
[with respect to e '(0}]amplitudes,

Wave vector e& ep

[100];[200]
[010];[020]
[001];[002]
[110]
[011]
[101]
[110]
[011]
[101]
[211]
[121]
[112]
[211]
[121]
[112]
[211]
[121]
[112]
[211]
[121]
[1 12]

z

z

—z

—(x+y+ z) /&3
—(x+y+ z) /&3
—(x+y+ z)/&3

(y —z+ x) /&3
{z—x+y) /&3
(x —y+ z) /&3

( —y+ z+ x) /&3
( —z+ x+ y ) /&3
(
—x+y+ z) /&3
(x+y+ z) /&3
(x+y+ z) /&3
(x+y+ z) /+3

z

{x—y)/&2
(y —z) /&2
(z —x) /&2

—(x+y)/&2
—(y+ z)/+2
—(z+x)/+2

(y —z) /&2
(z —x)/&2
(x—y)/&2
(y+ z)/&2
(z+ x)/&2
(x+y) /&2

—{y+z)/+2
—(z+x)/&2
—(x+y)/&2
( —y+ z) /+2
( —z+x)/&2
( —x+y)/&2

TABLE I. Reciprocal lattice vectors and their associated lo-
cal axes e„ez. The sets [ ( 100), ( 110)], [ ( 110)], and
[(110),(200), (211)] are relevant for sc 0, bcc 0', and bcc
0', respectively. For the inverses of the vectors given in the
table, replace e2 by —e2.
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The set [e, ] for the (110) reciprocal lattice vectors are
given in Table I.

Using the amplitude given in (13), we have constructed
Fo o, matrices up to 282X282 (i.e., 141 plane waves and
two polarizations). As before, low-lying eigenvalues were
calculated on symmetry axes of the unit cell; the resulting
photon bands are shown in Fig. 2(a). We also give the re-
sults for a Fourier amplitude three times larger in Fig.
2(b). These results will be discussed in Sec. IV.

D. Body-centered-cubic O'. Blue phase I

The BPI structure belongs to the bcc space groups 0
(I4&32) [9—11]. It is more complex that the two groups
described earlier and at least three nonzero Fourier am-
plitudes are needed in its order parameter. These are as-
sociated with the reciprocal wave-vector sets ( 110),
(200), and (211) and will be labeled p2(2), p2(4), and
pz(6), respectively. [In the free-energy calculations, a

fourth amplitude, associated with (220), was also con-
sidered [11]. It was found to be much smaller than the
other three and we shall neglect it here. ] The phases [all
with respect to the point (—,

'
—,
'

—,') of the crystallographic
unit with symmetry 32] are as follows:

Qz(110)= —Qz(110)——,'m=0,

$2(200) = —
—,'~,

$2(211)=$2(211)—,'n= ——Pz(211)—

=$2(211)=0 .

(14)

All other phases may be found from (14) by cyclic permu-
tation and the relation $2(hkl ) = —gz(h k l). For the am-
plitudes, the free-energy minimization results [11] are
equivalent to
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FIG. 1. Photon bands in the simple cubic structure 0
{P4&32) with dielectric tensor components (a) appropriate to
cholesteric blue phase II (b) three times larger than in (a). The
energy is given as a function of wave vector on the special lines
in the first Brillouin zone in units of co/cn, where n =Qe,„ is
the average index of refraction. The band gaps relevant to opti-
cal frequencies are between the first and fourth bands (with in-
creasing energy) for the circular polarized radiation mode
strongly interacting with the material and between the second
and third for the oppositely polarized mode.

FIG. 2. Photon bands in the body-centered-cubic structure
0' (I432) with dielectric tensor components (a) appropriate to
the free-energy minimization for this structure (b) three times
larger than in (a). The energy is given as a function of wave vec-
tor on the special lines in the first Brillouin zone in units of
co/en, where n =Qe,„ is the average index of refraction. The
band gaps relevant to optical frequencies are between the first
and fourth bands (with increasing energy) for the circular polar-
ized radiation mode strongly interacting with the material and
between the second and third for the oppositely polarized mode.
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1 1

2 N 2 12
—fp,,(2)= —(0.6)(0.60)=0.05,

1 1

2 N 2 6
—fpz(4) = —(0.6)(0.45) =0.06,

1 1

2 N 2&24
—fp~(6)= (0.6)(0.3)=0.02 .

(15)

The relevant basis vector sets [e; } are given in Table I.
As for the other structures studied, we used (15) to ob-

tain the F& G. matrix. Up to 141 plane waves were used
(i.e., the maximum matrix investigated was 282X282)
and the low-lying eigenvalues were calculated. The re-
sulting photon bands for points on the symmetry axes are
shown in Fig. 3(a) and the results for amplitudes three
times larger are given in Fig. 3(b). These will be dis-
cussed in the next section.

1.0

0.8

0.6—

04

0.2—
O

O
{a)

0.4—

0.2—

0-.
N G H

position in zone

I

P D N Z

FIG. 3. Photon bands in the body-centered-cubic structure
0 (I4&32) with dielectric tensor components (a) appropriate to
cholesteric blue phase I (b) three times larger than in (a). The
energy is given as a function of wave vector on the special lines
in the first Brillouin zone in units of co/en, where n =Qe,„ is
the average index of refraction. The band gaps relevant to opti-
cal frequencies are between the first and fourth bands (with in-
creasing energy) for the circular polarized radiation mode
strongly interacting with the material and between the second
and third for the oppositely polarized mode.

IV. DISCUSSION

In Secs. II and III, we showed how techniques
developed to calculate photon bands for materials with
scalar dielectric properties can be modified and applied to
tensor dielectric systems. In practice, the equations for
the band states can be solved via the same approach used
earlier —numerical diagonalization of a relatively large
matrix whose elements are obtained by expanding the
electromagnetic field vectors in a set of plane-wave states.
The material parameters enter the calculation via the in-
verse dielectric tensor, which is expanded in wave vectors
of the reciprocal lattice. It is important that the phase
factors associated with the Fourier amplitudes be ap-
propriate to the given space group. To illustrate the
method and also because of their intrinsic interest, the
method was applied to three noncentrosymmetric struc-
tures which have been studied in connection with the cu-
bic blue phases (BP) found in cholesteric liquid-crystal
systems. Two of these structures [sc 0 (P4z32) and bcc
0 (I4,32)] have been identified [9—11] as characterizing
BPII and BPI, respectively, while the third 0 (I432)
may eventually be found in very short pitch materials.
Two of these structures (0 and 0 ) are nonsymmorphic.

The low-lying photon bands calculated for these three
BP structures are given in parts (a) of Figs. 1 —3. In all
cases, we see that even at some reciprocal lattice points
(e.g., points X and N), there is a gap in the spectrum
essentially only for waves with one circular polarization.
For the opposite polarization, the gap at these points is
negligibly small and cannot be distinguished in the
figures. This is in accord with many studies [9] on the
selective nature of Bragg backscattering at these wave
vectors. However, even for that mode having a gap at
the zone edges, we do not find a full photon gap over the
entire zone. This is not unexpected given the difFiculty in
finding such gaps in artificial fcc structures, particularly
as the latter have two advantages over BP structures.
First, the Brillouin zone for fcc structures is more spheri-
cal (i.e., the relative difference in length between the shor-
test and longest wave vectors from the zone center to the
zone boundary is smaller) than for sc or bcc ones. This is
a purely geometrical factor. Second, cholesteric liquid
crystals have orientational rather than translational or-
der. In such systems, periodic variations in the dielectric
properties are basically due to the di6'erence in electric
polarizability parallel and perpendicular to the axis of the
rodlike molecules rather than to, e.g., the presence or ab-
sence of dielectric spheres. The former are intrinsically
smaller in magnitude than the latter and, consequently,
so are the gaps induced by a periodic potential in the BP
at the band edges.

This second point is illustrated in parts (b) of Figs.
1 —3. Here we have tripled the amplitude of the periodic
part of the dielectric tensor and calculated the resultant
photon bands. Even with such dielectric properties
(which, of course, are much larger than any found in
present-day cholesteric materials) it is clear that we are
still far from a full photon band gap, even for one circular
polarization only, in the observed BP structures, 0 and
0 . For 0, on the other hand, we see from Fig. 2(b) that
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a full band gap (for one polarization only) is almost
present, the overlap between the two relevant bands (the
lowest-lying one at point H and the fourth one at point
N) being about 0.04. Thus we may conclude that while
polarization-dependent photon band gaps are not likely
to occur in the BP, they are not intrinsically impossible.
It would therefore be of interest to also consider cen-
trosymmetric materials (e.g., lyotropics, microemulsions,
colloidal crystals) in which full photon gaps, if they exist,
will not be polarization dependent.

More generally, we have shown that the extension of
previous calculations to the case of materials with tensor
dielectric properties can be carried out straightforwardly.
We have thus opened a way to explore the utilization of

such materials in designing structures with full photon
band gaps. Given the interest, both fundamental and ap-
plied, in finding such structures, these possibilities should
be explored further.
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