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Analytic and numerical study of two-frequency undulator radiation
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In this paper we discuss the spectroscopic details of the two-frequency undulator, a recently proposed
device to suppress the sideband instability in free-electron lasers. We present an analytic and numerical
approach to the problem and discuss the intrinsic differences between the brightnesses of one- and two-
frequency undulators. We study the dependence of the emission on various physical parameters includ-
ing the electron-beam qualities.
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I. INTRODUCTION Furthermore,

In a recent paper, Iracane and Bamas [1], have pro-
posed a two-frequency undulator (TFU) and have shown
that such a device generates a laser field having both a
large extraction eSciency and a narrower spectrum. The
spectral features of the radiation, emitted by a relativistic
electron moving in a TFU, share some analogies with the
rather complicated recently discussed "spectroscopic"
pattern of undulator radiation when the effects of both
undulator and betatron motion are included in the
analysis [2). In this paper we use the concepts and
mathematical tools exploited in Ref. [2] to discuss the de-
tails of TFU spectroscopy.

The paper contains four sections. In Sec. II we discuss
an analytic approach to the problem. Section III is de-
voted to a fully numerical investigation and comparison
with the analytical results. Finally, Sec. IV contains con-
cluding remarks and comments relevant to the
modification induced in the spectrum by a nonzero ener-

gy spread of the electron beam.

II. TFU SPECTROSCOPY:
AN ANALYTIC APPROACH
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The first of Eqs. (2a) is easily integrated, thus yielding
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and the fact that we have defined K in terms of the period
A.'„"implicitly suggests that we are assuming that "mode"
as the carrier. The longitudinal velocity can be derived
from Eq. (2b), and in the hypothesis of ultrarelativistic
motion, thus retaining the I /2y contributions only, we
find

In the following we consider the electron motion in-
duced on a relativistic electron by a plane undulator ex-
hibiting the following on-axis field: where
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The electron's equation of motion will therefore be pro-
vided by

and
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The equations of motion therefore yield straightforwardly
the electron trajectory, namely
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The next step will be the evaluation of the radiation in-
tegral [3],namely
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Recall that f is of the order of y '. The F(t) com-
ponents are defined below:

and J„(x,y) are two variables generalized Bessel func-
tions discussed in the following. The cross products in
Eq. (9) are explicitly given by
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The exponential in Eq. (8) can be written in terms of
Bessel function expansion as follows:
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and the explicit form of E is reported below:
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The symbol J&„,denotes the following product of Bessel functions:
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The above result confirms how complicated the spectroscopic pattern of a TFU is. To simplify the problem, we limit
the analysis to the on-axis radiated brightness (/=0). In this case the only surviving component is E„,which yields
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To understand properly the spectroscopic characteristics
of the TFU, we should specify a number of rules which
may help to understand the emission and the harmonic
selection mechanisms.

with L„being the total undulator length. The first indi-
cation we obtain from Eq. (18) is that the peaks of the
various harmonics are centered at

Before getting into more specific details, it is worth re-
calling some of the properties of the two-variable general-
ized Bessel functions, namely [2]
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(23)

J„&2(y), n even

()

On axis Z'" =-Z' ' =0; according to (23), we find that
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This arrangement means that we have introduced a prin-

As a consequence, JI+) „,=JI „+,, =0 for (l +m)
even. The problem is now that of combining the various
"quantum" numbers to specify the line structure. We go
back to Eq. (22) and write

TABLE I. "Quantum" numbers and harmonic selections in a TFU.
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FIG. 1. TFU brightness vs frequency, analytical computation
keeping contributions of r harmonics from —1 to + 1 (parame-
ters. K= I, 1,'„"=5 cm, 1,'„'=5.155, L„=166.7 cm, y=54. 772,
a& =1,a2=0. 1819).

1.0 1.2 1.4 1.6 1.8 2.0
14Frequency (10 Hz)

FIG. 3. Same as in Fig. 1 and —6 & r & 6.

III. NUMERICAL ANALYSIS AND COMPARISON
WITH ANALYTICAL RESULTS

cipal number p, defining the center of the line. The num-
ber r specifies the subharmonic structure, and finally q ac-
counts for the contribution of the nearest harmonic. This
last point can be better understood by noticing that

(I +s)co'„"+(rn +s)co'„'=(p+q )co'„"—qco'„' . (26)

The selection rules (24a) and (24b) allow us to fix the vari-
ous combinations as indicated by Table I. From the table
it follows that the line having p=1, has a further sub-
structure provided by the r and q contributions. The nu-
merical handling of the above results is shown in Figs.
(1—3), where the importance of the r contribution is
stressed. The brightness is indeed plotted for p = 1, keep-
ing increasing contributions of r. The line shape does not
change significantly, keeping further contributions with
~r~ )6. The comparison of the above analysis with a fully
numerical treatment will be accomplished in the next sec-
tion.

In this section we present the results of a fully numeri-
cal integration of the TFU problem and the comparison
with the analysis developed in the previous section.

The numerical integration of (8) has been accomplished
using both the analytical trajectory and that derived by
solving numerically the Lorentz equation by means of the
initial value problem algorithm. For the ranges of
electron-beam energies considered, the two methods did
not provide significant differences. The numerical in-
tegration of the Lienard-Wiechert integral has been ac-
complished using an adaptive algorithm (described in
Ref. [4]) requiring a relative error of the order of 10
The result of the numerical analysis is shown in Fig. 4,
where the dotted line is the result of the integration with
the Bessel-function method and the important conclusion
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FIG. 2. Same as in Fig. 1 and —3 & r & 3.

2.0
FIG. 4. TFU brightness vs frequency (same parameters as in

Fig. 1). Solid line, numerical; dashed line, analytical, keeping
contributions p =1, q =0, —1&s & 1, —12& r & 12. The case
p=1, —1 q &1, —1&s &1, —12&r &12 is almost indistin-
guishable from the fully numerical calculations.
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FIG. 7. TFU brightness vs frequency for different values of
the amplitudes a2 (same parameters as in Fig. 1).

FIG. 5. TFU brightness for a larger-frequency domain.
Same parameters as in Fig. 1.

is that the analysis of Sec. II, with its relevant physical in-

terpretation, is fully reliable. We have already stressed
that the difference with respect to the case of the "one-
frequency undulator" (OFU) is that, e.g. , the first har-
monic splits in a number of subpeaks, determined by the
number r. The width of each subpeak is

(27)

which is essentially the width of the OFU line. The
above relation does not include the effect of the interfer-
ence. The "macrostructure" of the TFU line is presum-
ably due to the forxn factor induced by the J„(A' ')
function. This point will be commented on in the con-
cluding remarks.

A more complete view to the emission scenario is
offered by Fig. 5, where the first, third, and fifth harmon-
ic brightnesses have been plotted for %=1. The higher
harmonic peaks are substantially suppressed with respect
to the fundamental. In agreement with the OFU case, no
second harmonic is radiated on axis. This is, however,
not a general feature of the TFU brightness, as we will
discuss in the next section.
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In the previous sections we have presented a rather de-
tailed analysis of the TFU spectroscopy. The results we
have obtained have indicated that TFU and OFU bright-
ness exhibit significant differences but still share impor-
tant analogies, such as the absence of even on-axis har-
monics and a distinct set of odd harmonics. We have
stressed that this is not a general rule. A first example is
provided by Fig. 6, where the on-axis brightness is plot-
ted versus the frequency for E =2. It is evident that the
first-harmonic line is separated, while the spectrum from
the third to the seventh harmonics is a quasicontinuum.
Such a "strange" behavior is further supported by Fig. 7,
where the brightness is plotted for K =1 in the cases of
a2 &&a, and a2=a, . In the second hypothesis, it is evi-
dent that the peaks are substantially suppressed and that
radiation can be found almost everywhere, including the
forbidden regions of the OFU regime. It is premature to
speculate about the possible applications of this effect; it
seems, however, that interesting possibilities, like that of
operating on a continuous band, are open.

A point not yet touched on is that relevant to the
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FIG. 6. TFU brightness vs frequency (same parameters as in
Fig. 1 but X=2).

FIG. 8. TFU brightness vs frequency homogeneous and in-
homogeneous cases (same parameters as in Fig. 1).



2066 CIOCCI, DATTOI. I, GIANNESSI, TORRE, AND VOYKOV 47

broadening of the emission line induced by the beam en-
ergy spread. Such a problem deserves a deeper analysis,
mainly in connection with the possible use of the TFU in
FEL experiments.

In Fig. 8 we show the result of the integration for a
beam having an energy spread of 1%. The efFect on the
brightness is what one qualitatively expects: there is
indeed a reduction and a broadening of the various lines

with a consequent "smoothing" of the structure induced
by the r-harmonics component.

This paper has been devoted to a preliminary analysis
of the characteristics of the TFU brightness. It was
essentially aimed at showing how many interesting
features it displays. A more detailed study will be
presented in a future publication, where the importance
of the device for FEL operation will also be discussed.
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