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Ponderomotive focusing in axisymmetric rf linacs
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In many present and planned compact electron sources and linacs, very large rf accelerating fields are
present in the linac structures. A charged particle whose trajectory is parallel to the axis receives no net
focusing from the periodic transverse forces arising from the axisymmetric rf wave. However, if the
lowest-order periodic transverse motion of the particles is included, a net ponderomotive focusing force is
obtained when the momentum transfer is averaged over a period of the motion. Since this force is
second order in the electric-field amplitude, the resultant focusing can be non-negligible in high gradient
structures. In order to produce and preserve high-brightness beams in rf linacs it is necessary to obtain a
better understanding of all the forces acting on the beam and the subsequent beam dynamics. To this
end we examine the lowest-order ponderomotive rf focusing of electrons in axisymmetric standing- and
traveling-wave linac structures. We obtain a generalized paraxial envelope equation which includes the
eftects of the ponderomotive focusing and longitudinal acceleration to describe the transverse beam en-
velope evolution. The implications of our results on beam dynamics in electron linacs are examined, and
extensions of the results to positron and proton linacs are discussed.

PACS number(s): 41.75.—i, 41.85.—p, 29.17.+w, 29.27.Eg

I. INTRODUCTION AND OVERVIEW

The focusing of an electron beam in a radio-frequency
linear accelerator (rf linac) is derived from the periodic
transverse motion of the electrons induced by the trans-
verse Lorentz force on the electrons. Since this force has
a transverse spatial gradient, the net momentum transfer
integrated over a cycle of the motion is nonzero. This
effect is termed a ponderomotiue force, and is of second
order in the field amplitude [1]. All alternating focusing
schemes in the smooth approximation (e.g. , radio-
frequency quadrupole (RFQ) focusing [2]) are based on
this effect. Because of this nonlinear dependence of the
focusing strength on the field amplitude, this effect can
become important rather quickly as the acceleration gra-
dient is increased.

%'e begin the analysis by deriving the ponderomotive
force due to an arbitrary transverse periodic force with a
gradient linear in the dimension of the oscillatory motion.
This is accomplished by writing the force as a sum of
Fourier harmonics, and solving for the motion of the par-
ticle initially by ignoring the effect of the gradient. The
resulting trajectory of the particle then provides a path
over which to evaluate the force, in order to average this
quantity over one cycle of the periodic motion. Because
of the orthogonality of the Fourier series components,
the ponderomotive force can then be written as a simple
series in the harmonic number.

The ponderomotive focusing force on a beam in a cy-
lindrically symmetric rf linac cavity operated in an ax-
isymmetric (azimuthal mode number m =0) TM mode
arises from a periodic transverse Lorentz force, associat-
ed with the nonsynchronous field components, those
modes which have a phase velocity co/k not equal to the
beam velocity u~ =Pbc (where Pb is very near to unity).
This force is approximately linear in transverse coordi-
nate r for particle displacements from the axis which are

II. THE PONDEROMOTIVE FORCE:
GENERAL CONSIDERATIONS

%'e now examine the ponderomotive force due to a
periodic force which has a constant gradient parallel to
the direction of the force vector. Taking this direction to
be x, we write the force as a complex Fourier series,

F =x g A„exp(incor), A „=A„*,Ao ——0 .

This compact notation is of course equivalent to a sum of
cosine (real) and sine (imaginary) components:

F =x g C„cos(neat)+iS„sin(neat),
fl —1

where

C„+iS„
A n

C, —iS„
P2

small compared to the cavity radius. The transverse
Lorentz force due to the rf wave is derived from the form
of the longitudinal field on axis by considering the
Fourier series representation of this field. This analysis is
initially performed for a standing-wave linac structure;
an extension to the traveling-wave case is then presented.

From this, a total effective average focusing strength-of
the ponderomotive force for an arbitrary m =0 TM mode
is obtained, which can be used in a generalized envelope
equation for the rms beam size. This equation also in-
cludes the effects on the beam particle trajectories due to
the longitudinal acceleration provided by the rf wave.
The envelope equation is then numerically integrated for
an example of interest, and the focusing characteristics
examined. The implications of these results on linear ac-
celerator design are then discussed, not only for elec-
trons, but for positrons and protons as well.
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that is, C„and S„are real numbers. It is assumed that
the force is weak, in the sense that a particle of the mass
of interest does not change its position by a large amount
over one period T=2~ /co. Therefore, for the purposes of
deriving the ponderomotive force we solve for the first-
order motion, ignoring the x dependence of the force, so
that we may perform an average over a period. An
equivalent restriction on the validity of this approxima-
tion is that the frequency of the applied force co must be
much larger than the frequency of the oscillation derived
from the averaged force. For a relativistic particle of en-
ergy ymc the equation for the x motion is then, assum-
ing the change in the particle energy over a period is ig-
norably small, approximately

F Xp
x = = g A„exp(incot) .

ym ym „
(4)

The homogeneous part of the solution to Eq. (4) is the os-
cillation about the reference position xp, and the total
displacement in x is written

T

oo

x =xo 1 — g exp(in cut )
/mcus ~= ~ n

III. PONDEROMOTIVE rf FOCUSING
IN STANDING-%'AVE ACCELERATORS

We now consider a periodic standing-wave ~-mode ac-
celerating structure where the electrons have already at-
tained relativistic velocities. The electrons are assumed
to be accelerated by the TM axial rf Geld in the cavities,
which is taken to have the following form on axis:

E,(z, t)=ED g a„cos(nkz)sin(cot+$0) .
n=1

This assumed periodicity is of sufhcient generality to con-
tain all of the physics due to the efFects of the modes un-
der investigation, even though we have allowed no arbi-
trary phases in the arguments of the spatial harmonics.
We will only be considering small displacements r from
the axis, where the transverse fields are linear, or
equivalently the longitudinal field is constant as a func-
tion of r. We take ai to be normalized to unity, so that
Ep is twice the average accelerating gradient in the limit
that Ub =c. The focusing force due to this rf wave can be
derived by considering the constraints of the Maxwell
equations to obtain [3]

It can be seen by inspection that approximation that
x =xp is valid when co is large enough or the A„/ym are
small enough. In order to average the motion to obtain
the second-order change in momentum over one full
period, we substitute the expression for x from Eq. (5)
into Eq. (1):

Ap„= f F„dt (6)
0

„M',
E = ——

2 az

and

The net radial force on an electron is

F„= e(E„u—bB )—
(13)

(14)

=x,f' 1—
oo

exp(incut ) +pb E, , (15)

X g A exp(imcut)dt .

The ponderomotive force in this system is thus

Ap„
X

where we have used

a
c)z pbc Bt

In this way, we reduce the radial force to a single term

F„=e—[1+Pb] E, =er E," az ' az
(17)

Xp

ymco „— n2 2

2x,

ymca „ I n2 2

x ~ C+S0 + n n

2ym~ i n

for pb ——1. For the m-mode structure under consideration
one obtains optimal acceleration for the design or refer
ence particle when

cut+/ =kz+ —.0

a net focusing force for a field which increases linearly in
amplitude away from the symmetry axis. The pondero-
motive force is focusing in this case because the particle,
while oscillating, experiences a slightly larger inward
force during the half-cycle it is farther than xp from the
axis, and a slightly smaller inward force during the oppo-
site half-cycle. Thus there is a net inward, or focusing,
impulse imparted to the particle over the full cycle.

sin(cot+ go) =sin kz+ —+6 P =cos(kz+ b P), (19)

where b,P is the phase difFerence between the particle un-
der consideration and the reference particle. We assume

Since the velocity of the particles after they become rela-
tivistic is such that z =zo+(cu jk )t, i.e., the forward com-
ponent of the fundamental accelerating wave phase veloc-
ity is c, we can write
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that AP does not change appreciably as a result of ac-
celeration. This relation allows us to remove the tem-
poral dependence of axial field that the particle en-
counters, and use z as the independent variable as is cus-
tomary in accelerator physics:

E, =ED g a„cos(nkz)cos(kz+bP) .
n=1

(21)

eEokr —sin(kz+AP) g a„cos(nkz)
n=l

Note that since the force is linear in r in Eq. (17), one
can write its x or y components with the same coefticient
as found in Eq. (17). Staying at this point with the radial
coordinate for the purpose of analysis, we can derive the
Fourier series representation of. F, as follows:

BE,
F, =er

Bz

This focusing strength is of course equal to the focusing
strength in the Cartesian coordinates x and y due to the
linearity and symmetry of the field. For a rf wave con-
taining only the fundamental spatial harmonic, the sum
in Eq. (25) gives unity, . and the phase dependence van-
ishes, since the forward wave does not contribute to the
focusing and therefore cannot interfere with the back-
ward wave which provides all the focusing in this case.
Since the fundamental is the only spatial harmonic which
is in resonance with the accelerating electrons, one usual-
ly optimizes to make all other harmonics quite small, as
they dissipate power in the cavity walls, yet cannot
transfer energy to the beam. Thus for most commonly
encountered structures one can take the sum in Eq. (25)
to be nearly equal to one. On the other hand, for an
unoptimized structure, the sum can be larger. As an ex-
ample, consider a square wave, which using our present
normalization has the Fourier decomposition

+n cos(kz+b, P) g a„sin(nkz)
n=l

(22)
oo

E, =Eosin(cot+go) g cos(n—kz) .
n=1 " (26)

ap=0 . (23)

The results of Eq. (10) can be taken over directly, as the
derivation does not depend on the choice of independent
variables. In this way we obtain the ponderomotive force
in terms of the longitudinal field Fourier components,

(eEO )I'„= r—g [a„,+a~+,
8/mc

+2a„,a„+&[cos(2b P) ]I, ao =0,

(24)

where we have set the index of the series to explicitly
show the frequency components of the motion due to
each longitudinal harmonic. Note that this force is in-
dependent of the rf frequency, but has some phase depen-
dence. The two terms an 1 and a„+1 at a given spatial
harmonic n are due to the backward wave at the lower
harmonic n —1 and the forward wave at the higher har-
monic n+1. The phase dependence of the ponderomo-
tive force is due to the interference of the forward and
backward waves at each spatial harmonic.

We can now define an average focusing strength due to
the rf wave as

F„
ryf3 mc

eEp=1
f3@mc

2

X [a.'-i+a.'+i
n=1

+2a„,a„+,[cos(26$ ) ] ] . (25)

After some manipulation with trigonometric identities,
Eq. (22) can be written as

eEpk
(n + 1)[ a„sin[(n + 1)kz+ b P]2 p

+a„+&sin[(n + 1)kz —AP] ],

In this case, for 5/=0, the sum in Eq. (25) is equal to
(~ /3) —1=2.28, and the focusing is quite a bit stronger
than for a single harmonic.

At this point we must examine the assumptions leading
to Eq. (10) to see where the approximations break down.
First, one must see whether twice the rf wave number is
much larger than the betatron wave number. This can be
quantified by writing

eEp
2k»k&=QIC„=

&8p, c
(27)

eEpm
(& 1

2Pym, c k
(28)

or equivalently p, c ))eEpm/2k, which is very similar to,
but slightly stronger than, the inequality obtained from
comparison of wave numbers. In addition, a related ap-
proximation in the derivation of Eq. (25) is that the parti-
cle velocity is nearly c, which is also true for p, c))1
MeV. One can conclude that for high-gradient standing
wave accelerators in the S band that once the particles
are very relativistic, the results of our analysis should be
valid. This condition must also be satisfied for the
derivation to hold for another reason, the assumption
that f3= 1, which was made in obtaining Eq. (10).

For typical rf wave numbers k=60m ' (f =co/2~=3
GHz), this means that the approximation we have used is
valid if p, c ))eEO/4V2k, or for eEo =100 MeV/m, as in
the UCLA [4] and the Brookhaven [5] rf photocathode
guns, p, c ))1 MeV.

The other approximation we have made in our deriva-
tion is in assuming that the e6'ective mass ym is constant
over a period of oscillation. Thus one expects that if
Ay/y is not much less than unity over one rf cell
(L, =m/k ), then our results may be in error. This can be
quantified as follows:
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IV. PONDEROMOTIVE rf FOCUSING
IN TRAVELING-WAVE ACCELERATORS

V. PONDEROMOTIVE FOCUSING
AND ELECTROMAGNETIC ENERGY DENSITY

Ponderomotive focusing in traveling-wave rf linear ac-
celerators can be considered to be as a subset of the
standing-wave rf field focusing, since, as we have men-
tioned above, a standing-wave accelerating field can be
thought of as the superposition of a forward and a back-
ward traveling-wave field. Some generalization is neces-
sary, however, because traveling-wave linacs are not
operated in the ~ mode, which has a vanishing group ve-
locity. A traveling (forward) wave linac is generally
operated in a mode characterized by a phase shift per
period ofp~/q, where p and q are integers.

The accelerating field in such a traveling-wave struc-
ture, with spatial periodicity over a length d, can be
specified by the following Floquet form [6]:

E, =ED g b„exp[i(cot —/3„z)],

2knzq

p
'

p
(30)

where now Eo =E„„and p„=pa+ (2~n ld ). The con-
stant pod=1( is the phase shift per period. For relativis-
tic electrons Pa=co/c =k, and bo is unity in this normali-
zation.

Now, setting cut =130z for maximal acceleration
(suppressing an inconsequential constant phase), we can
write

U =—(P'+ c ~g~)
2

(33)

eo 2 (kr)
2 4

(34)

The transverse gradient of this energy density gives a net
inward electromagnetic pressure gradient (force per unit
volume) of

aU ~o= —r—(kEO)Br 4
(35)

In order to convert this quantity to the correct pondero-
motive force [as given by Eq. (25)], one must assign an
effective volume of the interaction between the electron
and the electromagnetic field of

As an alternative to the examination of the microscop-
ic dynamics of the electrons during the fast oscillation
which, when averaged, gives a ponderomotive force, we
now explore the relationship between the ponderomotive
focusing and the average variations in the electromagnet-
ic energy density [8]. This line of thought is of course in-
spired by the Eo dependence of the ponderomotive force.
For the standing-wave case, keeping only the fundamen-
tal spatial harmonic, the average (over one cell) of the
electromagnetic energy density is

Note that since there is not a large-amplitude backward
wave, as is found in the standing-wave case, the pondero-
motive force should be much smaller in a traveling-wave
field. Using Eq. (10) (averaging over a period of the struc
ture), we can write

(2eEO )I'„=—r g ~b„~, n&0 .
Xme~ n= —~

The focusing strength associated with this force is

2eEO
K„= y /b„/', n&0.

gym, c

(31)

(32)

It is apparent that the backward wave that is "missing"
here contributed much of the focusing in the standing-
wave case, as the focusing is much diminished in
traveling-wave linacs. In the limit that there is only the
fundamental spatial harmonic (n =0), then the focusing
disappears completely. Given that traveling-wave linac
structures, like standing-wave structures, are optimized
to make spatial harmonics other than the fundamental
much smaller than unity, the ponderomotive force in
traveling-wave linacs should be much smaller than that
found in traveling-wave structures. It is interesting to
note that a particle traversing a traveling-wave structure
in a direction opposite to the accelerating wave will un-
dergo ponderomotive focusing equivalent to that found in
a standing-wave structure. This effect has been experi-
mentally observed [7].

In this way, the ponderomotive force on an electron can
be envisaged as being due to the gradient of the field den-
sity, with the charged particle tending to move towards
the minimum in the electromagnetic energy density. This
effective volume can be qualitatively justified as follows:
the length r, /y can be thought of as the Lorentz con-
tracted electromagnetic length of the electron, and the
factor 2~/k due to the inherent cross-sectional size of
the classical electromagnetic rf wave (or, equivalently, the
quantum-mechanical photons which make up the classi-
cal field).

The microscopic description of the motion gives some
further insight into the physical mechanism by which the
particle seeks the minimum in electromagnetic energy
density. The fast oscillatory motion allows the particle to
"test" the surrounding regions of space. The field in the
regions with larger energy density will tend to repulse the
beam because of the phase relationship between the force
and the motion (they are n out of phase), as is shown in
Eq. (5).

VI. THE ENVELOPE EQUATION

The strong ponderomotive rf focusing term derived for
standing-wave linacs [Eq. (25)] can be included in the
generalized paraxial rms beam envelope equation for a
cylindrically symmetric system as derived by Lawson [9],
which explicitly includes the effects of acceleration in a
straightforward manner. We obtain
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~-+ y"y'+" +re
4p4y"

2

=0, (37)

where y' =eE„,/mc =eEO /2mc for an optimized +-
mode standing-wave accelerating structure with Ub =c,
the normalized rms beam size 3 =o„&py, e„=pye is
the normalized rms emittance, and Q =I/p y Io is the
perveance of the beam, with Io =ec /r, = 17 kA for elec-
trons.

If Ay/y changes by much less than unity over a rf cell,
we obtain an approximate equilibrium solution ( 3 "=0)
to the envelope equation, giving a constant rms beam ra-
dius

1/2 1/2
2en ~~ ~n

eEO
(38)

0..3 s s
(

s s s
)

s s s s
)

s s s s
)

s s s s

0.25

0.2

E
0.15

—-no rf focusing

»» & rf focusing

simulation

0.1

0.05

300 15 25
z (cm)

Figure 1. Comparison of PARMELA simulation to envelope equation results, including

and omitting rf focusing. Parameters of gun: a =.15 mm, 1 nC of charge, E =225 MV/m.
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FIG. 1. Comparison of PARMELA simulation to envelope
equation results, including and omitting rf focusing. Parame-
ters of gun: o., =0.15 mm, 1 nC of charge, E0 =225 MeV/m.

which is independent of energy. For emittances and ac-
celerating gradients typical of proposed superconducting
standing-wave linear colliders [10] (e„=10 m rad,
y' & 60 m '), this gives an equilibrium beam size of
o.„=130 pm, which is nearly the same as present designs
would indicate due to external focusing at the beginning
of the linac.

As an example of an implementation of this envelope
equation description of the beam radius dynamics, we
present a comparison of the results of a PARMELA (a mul-
tiparticle code which models beam propagation under the
inhuence of rf forces, external magnetic fields, and self-
consistent space-charge forces) simulation of the rms
beam envelope with solutions to the envelope equation.
The case we show in Fig. 1 is a 8.568-GHz 12.5-cell
standing-wave rf photocathode gun with a Brookhaven-
style cavity shape, which is currently being designed at
UCLA. The accelerating field Eo =225 MV/m, the beam
length o., =0. 15 mm, and the charge in the bunch is 1

nC. Strong space-charge effects on the beam envelope are
apparent in the simulation, as the beam expands rapidly
in the first few cells. One can also see in the simulation
the oscillations of the beam envelope as it encounters the
periodically varying rf focusing forces, which give rise to

the ponderomotive focusing we have analyzed here. For
comparison with the simulation, we numerically solve the
envelope equation (37), choosing the much less ambigu-
ous rms beam size and its derivative at the end of the ac-
celerating structure as the initial conditions, and in-
tegrate backwards towards the photocathode (the en-
velope equation is invariant under time reversal). The
agreement with the simulation is remarkable, all the way
until the first few cells, where the momentum is below 5
MeV/c, as we might expect from our discussion of the
limitations of our derivation. Also, for comparison, we
integrate Eq. (37), omitting the rf focusing term, using
the final conditions of the previous solution as the new in-
itial conditions for a forward integration. The beam en-
velope diverges to a radius three times as large as the
simulated radius at the end of the accelerating structure,
indicating the importance of the rf focusing term.

For completeness, we write here the extension of the
envelope equation in Cartesian coordinates for nonax-
isymmetric beams in standing-wave rf linacs, without
external solenoid or quadrupole focusing. Terms corre-
sponding to introduction of these effects can easily be in-
corporated [9]. In the horizontal dimension we have

X„+ y' (y2+2) +& X 2/3yQ && 0 (39)
4P'y4 " X+ Y

and in the vertical dimension

Y+ +K Y-
4p4y4 " X+ Y

g2y=0
Y

(40)

VII. rf FOCUSING
OF POSITRONS AND PROTONS

Since positrons possess the same mass as electrons, and
undergo the same forces while accelerating in a linac, the
results of this analysis may be applied without
modification to positrons. An obvious application is in
understanding the transverse dynamics of positron beams
in standing-wave linear colliders, a subject addressed fur-
ther below.

Protons (or equivalently H ions), while having large
mass, have small momenta in standing-wave rf linacs,
generally under 1 GeV/c (at higher momenta it is more
efficient to accelerate protons in a synchrotron) and thus
one must consider the effects of the transverse rf fields on
the motion of the protons. On the other hand, the ac-
celerating gradients in proton linacs are generally low,
since the frequency is generally lower than in electron
linacs. This will of course cause the ponderomotive force
to be smaller in proton linacs. In addition, modifications
must be made in the derivation of the time-averaged
transverse force to more massive particles (cf. Ref. [11]).
The change in particle velocity over the length of a cell is
an important effect in proton linacs. This change in ve-
locity means less time is spent by a proton in the second

Here the normalized rms beam sizes are
X( Y) =(r (y)&Py, and the normalized emittances are
~n (y ) xpy ~x (y ) '
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half of a cell than the first, which causes a lack of cancel-
lation of the transverse forces over the complete cell.

In addition, because the velocities are not close to c
there is a strong phase-dependent transverse effect arising
from the fact that the protons are nonrelativistic and do
not feel strong effects of the magnetic field of the rf wave.
In the frame of the rf wave, the synchronous wave's field
is electrostatic, and for a bunch phase chosen to give
phase (longitudinal) stability t)E, /Bz (0, which by sym-
metry and Laplace's equation requires 8E /Bx
=BE» /By & 0, and the synchronous forward wave's
transverse electric field is actually defocusing. The non-
synchronous components in general do not overcome this
effect unless the synchronous phase of the rf is alternated
along the linac structure, giving a class of ponderomotive
focusing known as alternating phase focusing [11]. These
considerations, combined with the relatively low ac-
celerating gradients found in heavy-particle linacs, will
cause the ponderomotive rf focusing to be a less impor-
tant effect in these devices.

The existence of strong ponderomotive focusing due to
the rf cavities also has some implications for linear collid-
er design, especially linear colliders based on high-
gradient standing-wave superconducting structures. In
addition to modifying the basic focal properties of the
beam line, if optical elements are misaligned from the
design axis, the beam will also be steered. Chromatic
effects in the subsequent particle trajectories may dilute
the transverse phase space, either directly or through
enhanced wake-field effects (beam breakup), thus increas-
ing the small emittances needed for achieving high lumi-
nosity collisions. Schemes which correct these effects
[12,13] may be stressed by the fact that the misalignable
cavities are not localized, but in fact occupy most of the
beam line. These potential problems may be aggravated
by the relative difficulty in aligning superconducting cavi-
ties inside large cryostats. These effects should, however,
be relevant only at the low-energy end of the collider,
since the rf focusing strength scales as y, while conven-
tional quadrupole focusing strength scales as y

' [14,15].

VIII. PRACTICAL IMPLICATIONS

It is interesting to observe that the focusing strength
given by Eq. (25) has the same momentum dependence as
that derived from solenoidal [9] focusing,

+r, so]

eB,
2Pym, c

(41)

Comparing this to Eq. (25), we can see the ponderomo-
tive force due to the transverse rf fields in a standing-
wave linac are equivalent to those of an applied
solenoidal field of effective strength

Eo
eff (42)

For the accelerating field amplitude used in our rf photo-
cathode source example, ED=225 MV/m, and B,ff-—5.3
kG, which is a very strong solenoid (to practically obtain
a dc field much stronger than this probably requires use
of a superconducting magnet). If one has the first ac-
celerator section attached directly to the rf photocathode
to provide a long focusing length, the ponderomotive
force may make external solenoidal focusing superfluous.
This is the scenario illustrated by Fig. 1. In this case a
strongly diverging beam with non-negligible space-charge
defocusing has been controlled only through the natural-
ly occurring ponderomotive rf focusing. The marriage of
the rf photocathode source and the major part of the
linac would therefore seem to be a beneficial design philo-
sophy for high-brightness electron sources.

IX. CONCLUSIONS

The physical effects explored in this paper are of most
interest in describing beam particle trajectories and beam
envelopes in high-gradient standing-wave electron (or
positron) linacs. The implications of these effects may be
either positive —rf focusing mitigates the necessity for an
external focusing system —or negative —a superconduct-
ing linear collider may have tighter alignment tolerances
for cavity placement. In any case, the arrival of higher-
gradient standing wave structures, driven by rf photo-
cathode source development, as well as interest in high-
gradient superconducting linacs, means that these effects
are or will be non-negligible in many present and future
linear accelerators. We have presented here a description
of these phenomena and a framework for obtaining the
beam envelope when the rf focusing is important. More
analysis for rf waves without axisymmetry (e.g. , rf quad-
rupole, or higher, modes), or extensions to include non-
linear radial dependences of the fields, is of course neces-
sary to more completely describe the transverse dynamics
of beams under the influence of rf fields in high-gradient
linear accelerators.
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