
PHYSICAL REVIEW E VOLUME 47, NUMBER 1 JANUARY 1993
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We study the probability distribution of a passive scalar undergoing turbulent mixing in the presence
of a mean scalar gradient. Kerstein s model, which describes the turbulent mixing process as a collec-
tion of instantaneous local rearrangements of the scalar, is argued to be a plausible approximation when

the size of the system is much larger than the velocity correlation length, and after the description has
been coarse grained over a correlation volume. In the physical range of parameters, we find numerically
that the fluctuations of the scalar 0 are close to exponentially distributed when a linear mean scalar gra-
dient is imposed. The phenomenological mean-field-like theory of Pumir, Shraiman, and Siggia [Phys.
Rev. Lett. 66, 2984 {1991)]is derived heuristically beginning with the Kerstein model. This theory pre-
dicts strictly exponential tails for the probability distribution of the scalar fluctuations P(0), i.e.,
P(8)-exp( ~8~ ). We also consider a simplified version of the Kerstein model which is analytically fully

tractable and gives qualitatively similar results numerically. Under conditions of spatial homogeneity
and imposed linear mean scalar gradient, this simplified model and the full Kerstein model are described

by the same mean-field theory. However, for the simplified model, the large-~8~ asymptotic behavior of
P(8) is Poisson-like, i.e., P(8)-exp[ —~8~in~8/(const)

~ ].

PACS number(s): 02.50.—r, 05.40.+j, 47.27.Qb

I. INTRODUCTION

Randomness is an obvious feature of turbulent flows
[1]. For this reason, statistical concepts must play an im-
portant role in the understanding of their properties.
One of the simplest questions to ask in this respect con-
cerns the nature of the probability distributions of vari-
ous fluctuating quantities, such as velocity or its deriva-
tives, the local rate of dissipation, or the concentration of
a passive scalar, the latter being the focus of this paper.
Gaussian distributions are ubiquitous as a consequence of
the central limit theorem. They can also be found in tur-
bulent flows. For example, velocity fluctuations in grid
turbulence are known to be Gaussian [2,3], and Ta-
voularis and Corrsin [4] showed that the probability den-
sity function (PDF) of a passive scalar can also be Gauss-
ian under certain conditions.

However, many fluctuating quantities characterizing
turbulent flows are very non-Gaussian. Unlike Gaussian
PDF's, non-Gaussian PDF's can reflect interesting physi-
cal mechanisms and not merely the law of large numbers.
Experimentally, a variety of quantities have been demon-
strated to be non-Gaussian. It was clearly shown by Van
Atta and Chen [5] that the PDF of velocity differences in
atmospheric flows is strongly non-Gaussian. More recent
experimental data show in great detail that longitudinal
velocity difFerences hut(r) —= [v(x+r) —v(x)] r cross over
from an exponential distribution (which decays more
slowly than a Gaussian) when r is small, to a Gaussian
distribution when r increases beyond a coherence length
[6,7]. In the context of turbulent Rayleigh-Benard con-
vection, it has been shown by Castaing et al. [8] and
Sano, Wu, and Libchaber [9] that temperature in the
center of the experimental cell also has a very non-
Gaussian PDF with exponential tails. Recently, direct

numerical simulations of turbulent flows [10,11] have
confirmed the non-Gaussian character of the distribution
of velocity derivatives, while confirming the velocity to be
(one-point) Gaussian.

The extant experimental and numerical data suggest
that the existence of PDF's with exponential tails is a
prevalent phenomenon in turbulence. However, the ori-
gin of exponential tails of the PDF of gradients must be
very different from the origin of exponential tails for tem-
perature fluctuations. Velocity differences are mainly
sensitive to the small-scale structure of turbulence. By
contrast, the distribution of temperature fluctuations in a
convection experiment has more to do with the spatial
organization of the flow. Kraichnan [12] made plausible
that the deviation from Gaussian behavior of velocity
derivatives can result from the combined influence of
nonlinear stretching and viscous diffusion. Various ela-
borations of his ideas have been proposed recently [13].
Castaing, Gagne, and Hopfinger [14] used alternative ap-
proaches, based on cascade ideas.

In this paper, we consider the problem of a passively
advected scalar, which is described by the equation

B,O+v. VO=~V 0
where ~ is the molecular diffusivity, v is the turbulent ve-
locity field, and 0, denotes a partial derivative with
respect to time t. Depending on the particular experi-
mental situation, the scalar, 0, could be temperature or
density of a passive contaminant such as ink. By 0 being
passive, we mean that the dynamics of the velocity does
not couple to O. Thus Eq. (1) is truly linear in O.

Although the passive scalar problem has a long history
[15,16], Eq. (1) remains difFicult to solve directly —in fact
very few interesting solutions have been found to date
(see, g.g. , Ref. [17]). Part of the problem is, of course,
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that the dynamics of the velocity field itself is far from
well understood. Because the PDF of a passive scalar
reQects the spatial organization of the Qow, it is crucial
that any approximation of the velocity field reQects the
key features of the Qow structure.

The striking exponential tails observed in the actively
convected system of the experiments of Libchaber and
co-workers [8,9] have recently led Pumir, Shraiman, and
Siggia [18] to consider the simpler problem of a passive
scalar, Eq. (1), in the case where the scalar has a mean
gradient. A simple phenomenological mean-field-like
theory is constructed which predicts exponential tails for
the scalar PDF. In spite of the heuristic nature of the
derivation, this prediction has recently found some exper-
imental support. Gollub et al. [19] found a PDF with ex-
ponential tails for a passive scalar in a stirred system,
while Jayesh and Warhaft [20] observed exponential tails
in the scalar PDF for grid turbulence in a wind tunnel.
In both cases the passive scalar was temperature with an
imposed linear mean gradient. For Gollub's experiments,
velocity itself was likely strongly non-Gaussian. In Jay-
esh and Warhaft's experiment the velocity was measured
to be (one-point) Gaussian and, in the absence of a mean
scalar gradient, the scalar PDF was found to be slightly
sub-Gaussian. Non-Gaussian (more slowly decaying than
Gaussian) transient scalar PDF's were also found by
Metais and Lesieur [21] in a direct numerical simulation
of a passive scalar field in three-dimensional Navier-
Stokes turbulence. Finally, let us mention that in the
case of a stably stratified Quid, the temperature Quctua-
tions have been found, both experimentally [22] and nu-
merically [21], to be almost perfectly Gaussian. The role
of buoyancy as a restoring force makes the physics of the
stratified Quid very different from that of the convection
experiments. The theory developed in this paper must be
modified to take the effects of stable stratification into ac-
count.

Motivated by the prevalence of non-Gaussian PDF's in
recent experiments and also by the apparent success of
Ref. [18],we consider here a number of models for a ran-
domly advected scalar in the spirit of the simple lattice
models recently introduced by Kerstein [23]. We argue
that it is reasonable to approximate the turbulent Qow by
a random superposition of eddies, of typical size g, (the
correlation length or "integral scale" ), which is assumed
to be much smaller than the size of the system, L. Since
one expects that the details of small-scale turbulence are
not going to be very important to understand the proper-
ties of the passive scalar PDF, we imagine coarse grain-
ing the system to the mesoscopic scale g„.The coarse
graining renormalizes the diffusivity ~ to an effective,
much larger, eddy diffusivity sc, . Consistency of the vari-
ous physical assumptions leads to a relation between the
dimensional parameters that define the model. We will
find that Kerstein's "linear-eddy" model [23] (to be called
the Kerstein model here) reproduces some of the key
properties of a turbulently advected passive scalar when
applied to a coarse-grained description of the Qow.

The remainder of this paper is structured as follows.
Our derivation of the Kerstein model for the passive sca-
lar problem is given in Sec. II. In Sec. III we discuss the

numerical implementation of the Kerstein model and
present simulation results for one and two dimensions.
Deviations from Gaussian behavior, strongly suggestive
of exponential tails, are found in the physical range of pa-
rameters of the model. PDF's are more Gaussian for
another range of parameters. The transition from Gauss-
ian to non-Gaussian is smooth. In an effort to under-
stand better our numerical results, we consider some
analytically tractable simplifications of the Kerstein mod-
el. In Sec. IV we give a heuristic derivation of the mean-
field-like theory of Ref. [18] beginning with the Kerstein
model. It is an easy exercise to derive an evolution equa-
tion for the PDF of 0 when either only advection or only
diffusion acts. The hard and not formally justified step
consists of treating the interplay between advection and
diffusion by simply adding the two effects. In the theory,
the Fourier transform of the PDF has a finite strip of
analyticity predicting strictly exponential tails. Our evi-
dence that this theory is a correct "mean-field" descrip-
tion of the Kerstein model comes from comparing the
analytical solutions of the former with the numerical
solutions of the latter. We also study the mean-field
theory for the case of fixed boundary conditions and, sep-
arately, for the case of large-scale advection which is su-
perimposed on the meso-scale turbulence. In Sec. V we
consider a simplified version of the one-dimensional Ker-
stein model. Under the conditions of spatial homogenei-
ty and imposed linear mean gradient, the model leads to
qualitatively similar results numerically and the mean-
field theory approach of the preceding section cannot dis-
tinguish between this simplified model and the full Ker-
stein model. However, the simplified model is completely
solvable and we show that the Fourier transform of the
PDF is an entire function. The asymptotic behav-
ior of the corresponding PDF of the scalar Quctua-
tions, 0, is a Poisson-like distribution, i.e., P (8)
-exp[ —8 in~9/(const)~]. We summarize and conclude
in Sec. VI.

II. THE KERSTEIN MODEL OF TURBULENT MIXING

Rather than attacking the full advective diffusion equa-
tion (1) directly, we introduce in this section a simplified,
discrete model of turbulent mixing. Although our
discrete model is essentially the linear-eddy model of
Kerstein [23], we regard it here from a conceptually
different point of view. In particular, we do not pay
much attention to the small-scale motion of the turbulent
Qow, and focus, instead, on a coarse-grained description
at (what will here be) a mesoscopic length scale, the
correlation length, or integral scale, of the fiow, g, .

We make the following assumptions.
(i) The energy-containing eddies of the velocity field

have a typical size g, much smaller than the size of the
system, L. This assumption is very natural in a variety of
experimental situations. For example, in grid-turbulence
experiments, g, would be of the order of the grid size,
typically much smaller than the width of the channel or
wind tunnel.

(ii) The variance of the scalar is determined from fiuc-
tuations at the integral scale, g, , as is the case for the
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variance of the velocity field (in contrast to the variance
of scalar derivatives, VO, which are determined by the
small-scale structure of the flow).

(iii) The velocity field is implicitly assumed to be in-
compressible, i.e., assumed to satisfy V v=0.

The nonlinear interactions of hydrodynamics (vortex
stretching in three dimensions) generate structures in a
self-similar way at smaller and smaller scales down to
some viscous dissipation cutoff. Instead of dealing with
the resulting wide range of length scales, we imagine here
"integrating out" the small scales to get a coarse-grained
description of the flow at the integral scale, or correlation
length g, . This coarse graining renormalizes the molecu-
lar transport coefficients. Since the motion of the fluid at
scales smaller than g„is largely disorganized and ran-
dom, its main effect is to enhance transport properties so
that the renormalized quantities are much larger than the
"bare" ones [24].

We will not literally carry out the renormalization pro-
cedure here. Instead, the renormalized quantities are es-
timated on dimensional grounds. Velocity fluctuations at
a scale smaller than g„canbe taken into account by an
effective eddy diffusivity ~, for the scalar, and an effective
eddy viscosity v, for the velocity field. Let ~, be the
characteristic time scale of eddies of size g„(e.g. , the
eddy turnover time). We then have v, -Ir, -g, /r, so
that the resulting turbulent Prandtl number, v, /~„is of
order unity.

With this coarse-grained picture in mind, consider first
the effect of an isolated eddy on the scalar field, O. The
eddy is characterized by a size g„and a lifetime
~, -g, /v, . Let the eddy be centered on the position xp.
Kinematically, the velocity of the eddy rotates the fluid,
and, therefore, the passive scalar around xp. On average,
the scalar (over a region of size g, ) is rotated by about 2~
before the eddy disappears. Since the effective Prandtl
number is of order unity, the eddy diffuses over a length
of order g, during this rotation. The problem of the ac-
tion of a single eddy of size g„and typical velocity
u —g, /r, on a passive scalar field with a diffusivity
lr, —g, /r, does not have an analytic solution. However,
numerical calculations [25] support our assertion that
such an eddy partially rotates the concentration field as
described.

Once the small-scale motion of the flow has been in-
tegrated out, one is left with a simplified description of
the flow as a random superposition of eddies of size g,
and characteristic time ~, . The fluctuations of 0 are
driven by this flow and diffuse with an eddy diffusivity
«, -g, /r, .

The difficulty of the passive scalar problem lies in the
interplay between advection and diffusion. For our pur-
poses, it suffices to model this process. Consider a one-
dimensional situation. The effect of an eddy is to inter-
change the concentration to the right of xo with the con-
centration to the left of xp (see Fig. 1). During this inter-
change the scalar diffuses. Forgetting about the details of
the exact dynamics, the final result is qualitatively the
same as that obtained from the succession of the follow-
ing two operations.

I

Xp

=X

(1) Move the scalar instantaneously from the right of
xp to the left of xp, and vice versa, i.e., jap the concentra-
tion field (over a region of size g, ) around xp.

(2) Diffuse for a time of order ~„with the effective
diff'usion constant «, —g, /~, .

Since coarse graining led us to consider the flow as a
random superposition of eddies, we arrive at the equation

(t), —I~, V )8=flip term, (2)

where the flip term instantaneously interchanges the sca-
lar to the right of xp for x H —(xp, xp+g, /2), with the
scalar to the left of xp for x H -(xp —g, /2, xp), at a ran-
dom set of space-time locations [(xp 1p) I ~ An important
constraint in this model is that the flip term conserves all
the moments of the scalar, fdx 8", as does the advection
term v V in the original equation for the scalar, Eq. (1).
There are a number of ways this can be done; see Sec. III
for details. As long as this constraint was satisfied, our
numerical results were fairly insensitive to the details of
the implementation of the flip term.

We will consider primarily a system homogeneous in
space and statistically stationary in time. The space-time
locations of the centers of the eddies are therefore chosen
to be uniformly distributed. The dimensional parameters
of the model are the size of the system, L, the integral
length scale g„,the effective diffusivity «„and the space-
time density of the flips p—= (L ~) ', where ~ is the aver-
age time between flips and d is the spatial dimension.
With these parameters two important time scales can be
constructed. First, as we have seen before, the charac-

FIG. 1. The action of an eddy of size g, centered at xp on the
scalar field 0 as modeled by the Kerstein model. The eddy
"flips" the scalar to the right of xo with the scalar to the left of
xo. When 8 has a mean gradient 6, as shown, such a flip pro-
duces adjacent blois of opposite sign and amplitude g„Gin the
fluctuations 0=0—(8). These flips are performed instantane-
ously at a random set of space-time locations. Between Hips, the
scalar diffuses with an eddy diffusivity ~, which tends to smooth
the blobs out.
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teristic time scale of the eddies is given by r, =g, /~, .
The time ~f, defined as the average time that separates
two Hips affecting the same region of space, is given by
rf =(pg, ) '. Assumptions (i) and (ii) above, and their
consequence that the Aow can be described as a random
superposition of eddies, imply that the two times ~f and
~, should be of the same order. If ~f &&~„very few ed-
dies (most of the time, none) are active at a given instant
of time. Clearly, this does not describe the physics of a
turbulent Aow. The other limit, ~f &&~„means that
many eddies (all of size g, ) act on the same region of
space within a single eddy-turnover time, which is not
physically correct either. Rewriting the condition
7f —~„onefinds that for the model to describe the phys-
ics we are interested in, its defining parameters should
satisfy the condition

that is, the dimensionless ratio K should be of order uni-
ty.

In the absence of a source term for the scalar Auctua-
tions (given a fiuctuating velocity field) the PDF of the
scalar fluctuations will eventually relax to a 6 function
corresponding to a completely mixed state without Auc-
tuations. Although transients of such a relaxation pro-
cess can be interesting [26—28], we shall be concerned
with the case where a source term for the scalar leads to a
nontrivial steady-state PDF. To see how such a source
term can be introduced in a natural way, write the scalar
field as the sum of a fiuctuating part, 0(x, t), and a mean
part, (8(x, t)), i.e.,

8(x, t)=0(x, t)+(8(x, t)) . (4)

Note that if the mean profile (8) is linear in x, it is con-
served by the advective diffusion equation. Thus, if we
take

(8(x))=G x

and write Eq. (1) in terms of 0 as

(8, +v. V —Ir, V )0(x, t) = —v Cx, (6)

the linear mean gradient is seen to act as a spatially
homogeneous source of fluctuations, provided v is homo-
geneous.

Some comments about the choice of a linear mean gra-
dient are in order. A nonlinear mean profile at t =0 will
relax to a linear one in the absence of additional forcing.
On the other hand, if some large-scale motion (on scales
much larger than the integral scale) is imposed on the
system, it is possible that the steady state has a nonlinear
mean gradient so that Cr on the right-hand side of (6) has
x dependence. (Such is the case, for example, in the ex-
periments of Libchaber and co-workers [8,9], where
large-scale motion across the cell persists. ) This loss of
spatial homogeneity will clearly infIuence the statistics of
the Auctuations and can itself be sufficient to lead to non-
Cxaussian behavior [29]. We concentrate here mainly on
a linear gradient so that we do not have to disentangle

the more complicated effects of spatial inhomogeneity
from the intrinsic effects of the turbulent mixing.

In the following, it will be useful to have in mind an in-
tuitive picture of the steady state, as produced by the
linear mean gradient, in terms of the K.erstein model.
Consider one dimension and suppose O(t =0)=xG. The
action of an eddy on the scalar field, modeled as a Aip in
8 of size g„moves a blob of higher mean concentration
into a region of lower mean concentration and vice versa,
as depicted in Fig. 1. In the fluctuations, 0, this produces
adjacent blobs of opposite sign and amplitude of order
g, G. The amplitude of the blobs decreases in the subse-
quent diffusion which spreads the blobs out. A statisti-
cally stationary state is achieved when the rate at which
Hips produce blobs balances the rate at which they are
destroyed by the smoothing action of diffusion. In the
physical regime of the model, K —1, diffusion has on
average just enough time to smooth out a given blob be-
fore it is created again. Hence we expect the root-mean-
square (rms) value of 0, o, to be of order g, G in this re-
gime. The unphysical regime, K »1, corresponds to the
case of rare eddies, or equivalently, to strong diffusion be-
tween Aips. We expect the corresponding variance of the
PDF to be very narrow. The other unphysical extreme,
K «1, corresponds to the case of many eddies acting on
the same region of space within a single eddy-turnover
time. This is modeled here by weak diffusion between
successive Aips so that a given region is visited randomly
by many "up blobs" and "down blobs" within one
diffusion time r, . Thus, at any given x, 0(x) undergoes a
random walk of many steps per ~, . We expect exact
Gaussian behavior and diverging variance in the limit
E~O. For small but finite K the PDF should have a
well-defined Gaussian core.

III. NUMERICAL STUDY OF THE KERSTEIN MODEL

We implemented model (2) numerically in one and two
dimensions (1D and 2D). Consider first 1D; the generali-
zation to 2D is then straightforward. The system has
length L and is discretized into a lattice of X evenly
spaced points, labeled by n. We impose a mean gradient
and periodic boundary conditions on the fluctuations, i.e.,
0„=0,+&. At each of a set of randomly chosen, uni-
formly distributed times, a single Aip acts on a randomly
chosen position. The requirement that the times at
which a Rip occurs be uniformly distributed implies that
the time between Aips, At, is distributed according to the
distribution

where r=(pL )
' is the average time between successive

Hips.
Between fIips, the system evolves according to the

diffusion equation, (8, —~, V )0=0. This equation is
efficiently and accurately integrated for a time t by using
fast Fourier transforms (FFT's) to multiply the spatial
Fourier modes, 0„,by exp( Ir, tk ). We set—0(x, t =0)
and evolve the system until a statistically stationary state
has been reached. Subsequently, the values of 0 at the %
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points of the lattice are recorded preciselprecise y every 'T 5v
and accumulated in a histogram o

'
1

mation to the PDF, P (8). This is done sufficiently many
times to obtain good statistics down to P(8/rr)-10
Error bars on P (8) were estimated from the fiuctuations
between several histograms (typically ten), each comput-
e or a different realization of the space-time distribu-
tion of flips.

To complete the numerical implementation of the
mo e, we need to specify precisel h fl'

ormed. To do this, it is sufhcient to specify an area-
preserving mapping x—+x' of th d'e coor inates in the re-
gion to be affected by the eddy, onto themselves. The full
concentration O(x, t) is then simply carried along by the

tions
mapping, i.e., 8'(x')=O(x), or in terms of th fio e uctua-

8'(x') =8(x) + (x—x').Cx .

The area-preserving property of the mapping ensures the
conservation of the PDF of the scalar, i.e., of all the mo-

Perhaps the simplest and most literal way to imple-

ment a flip in one dim'p dimension is to simply reflect the full
concentration O(x, t) about the midpoint of the "eddo e e y,

"

x~x =2x xP 7

(8„,~„+I)~(8„+I+aG, 8„—aG), (10)

where a =L/N is the lattice constant. Multisite im-
plementations follow analogously. If I = /2=a as in (10),
we can expect some artifacts in P(8) due to the very
discretized nature of this flip. On the oth
arge, t e refiection flip (9) introduces shar d's arp iscontinui-

a i s edge. Although we shall find that these discon-
tinuities have no adverse eff'ect on P (8
ge ri o t em, especially if one were interested (like
Kerstein) in the spatial spectrum f th fio e uctuations. One
way to accomplish this is to mix th d'

xp —'andx +la
ix e coor inates between

p
—l p according to the triplet map T, defined

as follows:

for x —l~x ~
p xp + I where It is the "eddy radius. " The

minimal lattice representation f (9) (o minimal in terms of
number of lattice points involved) is to take

+3[x —(xo —l)]+xo —I if xo —I x &xo —l/3
Ix~x = ~

—3[x —xo —l/3)]+xo+l if xo —l/3 x &xo+l/3
+3[x —(xo+I/3)]+xo —l if xo+l/3&x &xo+l .

The map T is not invertible. It stretches the scalar on the
three subintervals, (x —1,x —1/3) (

—l/,o o xo /3 xo+1/3)

cessfully by Kerstein to model all sorts of turbulent mix-
ing processes [23]. As a minimal lattice representat' fen aiono

1.0 I I I I I I I I

seen to have a well-defined Gaussian core. However,
large fluctuations are slightly more probabl th h

of a Gaussian distribution. The PDF
smoothl

e changes
oothly as K is increased. In Fig. 3(b), K =1.660-1

(8 8n& n+1&8n+2&8n+3)

~ ( 8~ +3+2QG 8~ +3 +2aG, 8„—2aG, 8„+I
—2oG)

(12)

Again, multisite discrete versions follow inow in an analogous
fashion from the full mapping. A natural choice for
or all the Qips discussed is to take g:—21. Bef

sing e imp ementation of the Kerstein model in 2D
let us look at the numerical results in 1D.

In all our nnumerical simulations we have adopted units
such that lr, =1, G =N/2m, and L =2'. (In these units,
a o. of g, G will have the same numerical value as g„in
units of lattice spacings. ) We consider first a 32-site sys-
tem with the simplest possible kind of fli E .in o ip, q. (10), and
~~,

—=a. Figure 2 shows the correlatio fon unction
( ( )8(r) ) as a function of r for K =8.300 X 10
and 16.6.60. The correlation length for the s 1

, 1.660,

seen tobe a o
e sca ar, ~z, is

en o e a out one lattice spacing almost d d 1in epen ent y
us, in the presence of a linear mean scalar r-

as we might have expected. Figures
3(a)—3(c) show the corresponding PDF' Th hs. e unphysical
case of rapid flip rate EC =8.300X 107 ~ « 1, [Fig. 3(a)] is

CQ

0.5

0.0

I I I I I I I I I I I I

5 10 i5

FIG. 2. The correlation function (8(0)8(r) ) /(Il') vs r g g
is the lattice spacing) for a 32-site system with the simplest pos-

q. . was computed withsible reAection Aip (1,2)~(2, 1), E . (10). E
, —=a. The three curves are for three diferent values of E. The

solid line is for E = 16.60, the dotted line for K =1.660, and the
dashed line for I( =8.300X10 . Th fie gure implies a correla-
tion length for the scalar , ~q, o about one lattice spacing so that
gq- g„,virtually independently of It.
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and the PDF is seen to be strongly non-Gaussian. The al-
most straight lines on the semilogarithmic plot for large
~8~ suggest exponential tails. Close to the center, small
shoulders have developed. When Aips are rare,
K =16.60»1 [Fig. 3(c)], the PDF narrows and shoul-
ders become more pronounced. Note that the shoulders
(the points of high curvature) are located at integer multi-
ples of aG which is the amplitude of blobs created by
each flip [see Eq. (10)]. In a more realistic system, the
amplitude of blobs generated by the eddies would be
smoothly distributed and such shoulders would be absent
from the PDF. The shoulders are an artifact of discreti-
zation and we shall demonstrate below that they disap-
pear if the Rip size is distributed smoothly.

Next, we consider a 64-site system with the simplest
possible triplet-map flip, Eq. (12), and g, =3a. We find
that the correlation function again has virtually no E
dependence and infer a scalar correlation length ga-3a,
so that again gs-g, . Qualitatively, the situation here is
the same as it was for the simple two-site Hip of the
preceding paragraph. Figures 4(a) and 4(b) show the
steady-state PDF's in the regimes K —1 and K »1, re-
spectively. The main shoulder is seen to be located at
2aG as expected from the blob amplitude of the Aip, Eq.
(12). We attribute the smaller shoulder seen in the rare-
flip regime, E »1, [Fig. 4(b)] at 8~ -0.6aG, to the more
complicated spatial structure of the Aip.

For the reflection flips, Eq. (9), we have also studied the
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FIG. 3. The PDF of L9 for a 32-site system in 1D with the simplest reflection Aip (1,2)~(2, 1), Eq. (10). As a reference, a Gaussian
of the same variance is shown (gray line). Each PDF was obtained from ten realizations of the Hip distribution. For a given realiza-
tion, the system was evolved until 5X10 fiips occurred. E was computed with g, —=a. (a) E =8.300X10 « l. 0 has a rms value o
of 1.906 and a kurtosis of 3.131. The PDF is close to Gaussian with large fluctuations slightly more probable than for a pure Gauss-
ian. (b) K = 1.660-1. 0 has a rms value o. of 0.4568 and a kurtosis of 4.552. The PDF is strongly non-Gaussian. The nearly straight
lines on this semilogarithmic plot for large

~
g~ suggest exponential tails. (c) E = 16.60 && 1. 8 has a rms value o of 0.1488 and a kur-

tosis of 15.85. The PDF is strongly non-Gaussian. The shoulders of the PDF occur at approximately integer multiples of aG {at mul-
tiples of ~0/cr

~

—6.7). The shoulders are a result of the extremely discretized nature of the two-site eddy.
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P(1)=
1/2

exp[ —
—,'(1 jlo) j, 1~0 .

~to

effects of a Hip size l which is distributed with the half-
Gaussian probability density

The main motivation for doing this is to mitigate any ar-
tifacts due to discretization. Other than a marked
suppression of the shoulders of the PDF for E ~ 1, we
find no qualitative changes from the previous two cases.
Figure 5(a) shows the PDF for a 2048-site system with
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FIG. 4. The PDF of 0 for a 64-site system in 1D with the
simplest triplet-map flip, Eq. (12). As a reference, a Gaussian of
the same variance is shown (gray line). The PDF was obtained
from ten realizations of the flip distribution. Each realization
was run until 5 X 10 flips occurred. K was computed withg:—3a. (a) K =0.7378 —1. 0 has a rms value cr of 0.6920 and a
kurtosis of 4.983. The PDF is strongly non-Gaussian and the
nearly straight lines on this semtlogarithmic plot for large ~8~

suggest exponential tails. (b) K =9.837))1. 0 has a rms value
o. of 0.2002 and a kurtosis of 28.55. The PDF is strongly non-
Gaussian. The pronounced shoulder is located at 2QG as ex-
pected from the blob amplitude of the flip. We attribute the
smaller shoulder at -0.6aG to the more complicated spatial
structure of the flip.

FIG. 5. The PDF of 0 for a 2048-site system in 1D and a
reflection-map flip, Eq. (9), whose size, I is half-Gaussian distri-
buted with a rms value of lo = 16a. As a reference a Gaussian of
the same variance is shown (gray line). The PDF was obtained
from ten realizations of the flip distribution. Each realization
was run until 5X10 flips occurred. K was computed with
g,:—2(l ) =&8/~lo. (a) K =0.6536-1. 8 has a rms value cr of
15.82 and a kurtosis of 4.972. The PDF appears to have well-
defined exponential tails. Shoulders are barely detectable since
the Gaussian-distributed eddy size mitigates any artifacts due to
discretization. (b) E =13.07)) 1. 0 has a rms value o. of 4.082
and a kurtosis of 30.18. Note the striking absence of any shoul-
ders and the near-exponential tails for

~
0/cr

~
& —6.
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lo = 16a in the regime K —1, and Fig. 5(b) shows the PDF
for the same system in the rare-Hip regime, K))1. E
was computed with g„:—2(l ) =&8/mlo. A scalar corre-
lation length of gs—-22a-g„was determined from the
scalar correlation functions. Shoulders are barely detect-
able and their absence is particularly striking in the rare-
flip regime, K »1, for which Fig. 5(b) suggests exponen-
tial tails beyond about six standard deviations. Note that
for K —1, o =15.82 is of the order of g„G=25.53 as ex-
pected [30]. For large lo & 4a we find that the variance of
the PDF is approximately 2.3 times larger than it would
be if (13) were replaced by 5( I —

1~ ).
To make sure that the qualitative features of P (0) do

not depend on dimensionality, we have also implemented
the Kerstein model in 2D. The system is taken to be an
L XL square discretized into an NXN square lattice.
Just as in 1D, only one Hip acts at a time with the times
between flips exponentially [cf. Eq. (7)] distributed. The
fiip or eddy consists of a rotation by 90' about the center
of a square unit cell with a random sense of rotation. The
square on which the Aip is centered is chosen randomly
for each Hip. In our simplest version of this Hip, only the
four sites of the square are involved in the rotation (a
"four-site flip" ). In a slightly more elaborate version (a
"12-site flip"), used to mitigate discreteness effects, the
eight nearest neighbors attached to the central unit cell
are also rotated (by the same angle in the same sense).
Explicitly,

X X 1o Xo
g

=S + (14)x +&a yo

where s =+1, chosen randomly for each Hip. The lattice

0
1P s I ~ I I

1
~ I
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sites involved in this mapping for the two variants of the
Rip implementation are shown in Fig. 6.

The main upshot of the simulations in 2D is that the
qualitative behavior of the PDF's generated by the Ker-
stein model does not depend on dimensionality. For the
unphysical rapid-Hip case, K « 1, the PDF's are close to
Gaussian as expected. For the regimes K —1 and K &) 1,

10

10 -15 -10 -5 0 5 10 i5

FIG. 6. The sites of a square lattice involved in the flip im-
plementations for 2D. The "four flip" (top) involves the sites of
an elementary square of the lattice. The "12 flip" (bottom) in-
volves the sites of a four flip as well as the attached nearest
neighbors. The flip itself consists of rotating the scalar on these
sites randomly either clockwise or counterclockwise by 90. A
counterclockwise flip is indicated by the arrows.

FIG. 7. The PDF of 0 for a 32X32-site system in 2D with
four-site flips. As a reference, a Gaussian of the same variance
is shown (gray line). The PDF's were obtained from ten realiza-
tions of the flip distribution. Each realization was run until
2 X 10' fiips occurred. K was computed with g', —=a. (a)
K =1.328-1. 0 has a rms value o of 0.3967 and a kurtosis of
5.318. The PDF displays the expected close-to-exponential tails
for large ~9~, (b) K =13.28&&1. 0 has a rms value o. of 0.1316
and a kurtosis of 23.16. The PDF is strongly non-Gaussian with
shoulders at integer multiples of aG, the blob amplitude of the
flip.
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the results of the numerical simulations are shown in
Figs. 7(a) and 7(b) for the four-site lips and in Figs. 8(a)
and 8(b) for the 12-site Aips. To determine K, we took
g, =—a and g, =2a for the four-site and 12-site Aips, re-
spectively. In the rare-flip regime, K))1, the four-site

flips produce shoulders at integer multiples of aG which
is the blob amplitude associated with the flip. For the
12-site flips, the main shoulder is located at 2aG, and a
smaller shoulder develops at aG, as expected from the
blob amplitudes associated with the outer and inner sites
of the flip, respectively. The PDF's are seen to be quali-
tatively similar to those obtained in one dimension.

IV. MEAN-FIELD THEORY
OF THE KERSTEIN MODEL

io
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In this section, we will try to understand better our nu-
merical results. The discussion here is restricted to the
one-dimensional case. The main idea is to derive the phe-
nomenological model of Ref. [18] as a mean-field-like
description of the Kerstein model, Eq. (2). Our deriva-
tion remains at a heuristic level, and involves a very
essential, ad hoc approximation. We find qualitative
agreement between the solutions of the mean-field-like
model (and its rapid-Aip generalizations for K «1) and
the numerical solutions of the preceding section.

The two essential ingredients of the Kerstein model (2)
are (i) random Aips and (ii) diffusion. We will only con-
sider the simplest possible Aip, (1,2)~(2, 1), Eq. (10). Re-
call that in this version of the Kerstein model, the corre-
lation length g„is approximately equal to the lattice spac-
ing a, which we will take to be unity here. If we ignore
di6'usion for the moment, the model is completely solv-
able. Consider an initial condition without any fluctua-
tions around the mean profile, i.e., O(x, t =0)=Gx and
0(x,0)=0. In the absence of molecular diffusion, a fiuid
element, advected by the random flips, just carries the
scalar along. The flips then induce a random walk in
space. The probability that a random flip occurs between
t and t +Et, and induces a jump from site i to site I + 1

(or i —1) is p =1—exp( —pad t). Although we will even-
tually be interested in b, t —(pa) ', assume for now that
b, t «(pa ) '. Then, up to corrections of order (At), the
equation for the PDF of 0 reads

P (O,i, t +At) = (1 2p)P (0, i,t)—
+P[P(O, i+I, t)+P(O, i —1, t)] . (15)

By taking the Fourier transform of P (0) with respect to
0, i.e.,

Pk(i, t)= f e' "P(O,i, t)dO
(16)

FIG. 8. The PDF of 0 for a 32X32-site system in 2D with
12-site Hips. As a reference, a Gaussian of the same variance is
shown (gray line). The PDF's were obtained from ten realiza-
tions of the flip distribution. Each realization was run until
2X 10 flips occurred. K was computed with g, —=2a. (a)
I( =1.660-1. 8 has a rms value o. of 0.6643 and a kurtosis of
4.678. The PDF displays the expected close-to-exponential tails
for large ~9~. Shoulders here are less pronounced than in the
corresponding case with four-site flips [Fig. 7(a)] because of the
less discretized nature of the 12-site Rip. (b) K =16.60)) 1. 0
has a rms value cr of 0.2308 and a kurtosis of 17.64. The main
shoulder is located at 2aG, . and the smaller shoulder at aG, as
expected from the blob amplitudes associated with the outer
and inner sites of the Rip, respectively (see Fig. 6).

and using the statistical homogeneity of the system, it is
easy to solve Eq. (15).exactly. The result is that P(O, x, r)
tends to a Gaussian distribution with a variance growing
linearly with time. For our purposes here, it is more use-
ful to expand the right-hand side of (15) to obtain, in the
continuum limit, the Fokker-Planck equation

82
P(O, x, r +At)=P(O, x, t)+D P(O, x, r),

where D =pa . Equation (17) makes the connection be-
tween random flips and a random walk process obvious:
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the flips induce diffusion of the PDF.
The other ingredient of the modified Kerstein model is

molecular diffusion. If only diffusion (no fiips) is present,
0(x, t) is easily obtained from any initial value (t =0) as

0(x, t)= Jg(x, x', t)O(x', t =0)dx', (18)

where E=(r, t/a . When t is of the order of the eddy-
turnover time, ~, -g„/~„the truncations we have used,

8(i, t)- —'[8(( + 1,0)+8(( —1,0)], (20)

with e= —,', or

0(i, t) -—,
' 0(i,0)+—,

' [o(i + 1,0)+8(( —1,0)), (21)

with e= —,', although physically sensible, become more
questionable mathematically. While neither of them cap-
tures exactly the details of the diffusion process, they are
both expected to lead to qualitatively correct results. The
equation for the time evolution of the PDF can now be
obtained from any of Eqs. (19)—(21). While the correla-
tion length of the scalar, gz, is of the order of g, —1, we
may consider 0(i+1) and 0(i —1) to be statistically in-
dependent and express P(e, i, t) in terms of one-point
functions. Consider, for example, Eq. (20), which then
implies that

P(8 i, t)= JP(O~', i+1,0)P(20" 0', i —1,0—)dO' . (22)

Spatial homogeneity allows us to write

P(0', i +1,0)P(20 —0', i —1,0)

-P (0', i, 0)P (20—0', i, 0), (23)

where g(x, x', t)=[1/(4'(r, t)' ]exp[ —(x —x') /4v, t) is
the Green function of the diffusion equation. Although it
is an approximation, let us truncate the sum obtained by
discretizing (18) in space (spacing a), and retain only a
finite number of terms. When ~, &&a /~„this trunca-
tion leads to the standard finite difference representation
of the diffusion equation

8((, t) = (1—2E)8(t,O)+@[8(i+ 1,0)+8(( —1,0)],
(19)

tional approximation. We will model the coupling be-
tween flips and diffusion by merely adding up the two
effects, finally giving

P), (x, t +At) =DV P(, (x, t)+P(, )2(x, t)

as obtained from Eq. (24) or

P(, (x, t +At)=DV P(, (x, t)+P), () 2,)P(„(x,t)

(26)

(27)

(28)
k=0

it is easy to check that Eqs. (26) and (27) respect the nor-
malization condition P(, 0(x, t)=1, and that the average
concentration obeys

B2
(8(x,t+at)) =(8(x,t))+D (e(x, t)) .

Bx
(29)

Since (29) is satisfied, it follows that a linear concentra-
tion profile is, indeed, a steady-state solution. Because
our modeling of the combined influence of diffusion and
advection by adding the Fourier transform of the two
effects is completely ad hoc, the best evidence we have
that Eqs. (26) and (27) are correct is a comparison of their
solutions with the numerical solutions of the discrete
model obtained in Sec. III.

We now proceed to find the steady-state solutions of
Eqs. (26) and (27), when (8) is a linear profile, extending
from —~ to + 00. Because of spatial homogeneity, we
look for a solution that depends on x through (8) only,
i.e., for a solution of the form P(O, x)=P(8 —Gx, O)
=P (8 ), or equivalently of the form

as obtained from Eq. (25) [31]. In these equations we no
longer consider At small but of order (pa) ', with the
spatial diffusion term capturing the essential physics of
the fiips. Equations (26) and (27) describe the time evolu-
tion of the PDF in terms of a discrete mapping. Partial
differential equations for the PDF are replaced by map-
pings here as a consequence of coarse graining, which al-
lows us to consider the flow as a random superposition of
eddies which act instantaneously at a discrete set of
space-time points.

Because the nth moment of P (0) is given by
n

( 8(x, t)" ) = i P—„(x,t)

so that after Fourier transforming P with respect to 0,
we obtain P(, (x)=@(k)exp(iGkx) . (30)

P(, (i, t)=P(, q~(i, O)~ .

Parallel steps show that (19) leads to

P(, (i, t) =P(, () 2,)(i,O)P(„(i,O)

(24)

(25) &b(k)(1+DG k )=0& (k/2), (31)

The normalization condition and the equation
(8(x) ) =Gx impose the constraints N(0) = 1 and
BN(0)/(3k =0. Inserting (30) into (26), one obtains

Note that Eq. (25) cannot be correct after many itera-
tions, since it explicitly assumes that the correlation
length remains small [Eq. (23)], which is not the case in a
purely diffusive process. Equation (25) can only be a
reasonable approximation for the effect of diffusion if ad-
vection acts to keep the correlation length sma11, as ex-
pected from our simulations (see Fig. 2).

To take into account the combined action of lips and
molecular diffusion requires, even at this level, an addi-

whose solution can be written in terms of an infinite
product as

cy(k) = / (1+DG k /2 ")
n=0

The absolute convergence of the right-hand side of (32)
can easily be checked for all finite values of k. The func-
tion N(k) is therefore analytic, and has poles for purely
imaginary values of k at k+„=+i2"/GVD. From this
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P(8) =exp — —,~8~ ~~,
G&D

(33)

with a smooth behavior near 8=0. P(8) does not have
any obvious Gaussian form for small 19. It can be
checked directly that the solution (30)—(32) is a stable
solution of the mapping defined by Eq. (26).

Although the algebra is lengthier, the steady-state solu-
tion of (27) can similarly be found to have the infinite
product representation

analytic structure it follows that the large-~8~ behavior of
the Fourier transform is given by [32]

T

In Eq. (26) we will take L =1 since L can always be
scaled out with the substitution D~D'=D/I. . The
coefficient D' can be thought of as the square of the ratio
between the typical size of the eddies, g„and the size of
the system, L. In the steady state, (8(x))=(x —

—,')G,
with G = 1/L =1 [cf. Eq. (29)].

The solution of Eq. (26), with the boundary conditions
(38) cannot be given by (32), since it must involve a singu-
lar contribution in order to match with the 6 functions at
the boundaries. The singular part of the solution can be
identified by its large-k behavior. We write the PDF as a
sum of singular and regular parts as

oo n

@(k) '= + g [1+DG k e t'(1 —2e) '" '] (34)
n =0 p=0

I' =S+R,
where the regular part, R, is characterized by

(39)

The absolute convergence of this infinite product can
again be checked, thus proving that @(k) is an analytic
function. As was the case for Eq. (32), 4(k) given by (34)
has a countable set of poles at a finite distance from the
real axis. The large-~8~ behavior of the PDF is, therefore,
again given by Eq. (33).

We now show that, when e is very small, one recovers
a Gaussian distribution near the center (around 8=0). In
order to see this property, expand the logarithm of N(k)
in powers of k:

In+(k)= g DqG qk ~ 1

q 1 —[(1—2e) i+2e q]

(35)

lim Rk =0,
k~ oo

and the singular part, S, by

lim Sk&0 .
j&~ co

(41)

S„(x,t +3t)=Dd'Sk(x, t)+S~«,(x, t), (42)

To obtain an equation for Sk(x), we substitute
Pk =Sk+Rk into Eq. (26) and consider the k~ co limit.
Then, by definition, terms involving only Rk will vanish.

~ ~ . ~

Cross terms A. k&2S&&2 vanish also since the limit of S& at
large values of k must be finite if S is to have a meaning-
ful Fourier transform. Thus Sk is seen to satisfy

The Fourier transform of 4(k),

P(8) e
—iko+Inc(k) dk

1

2' (36)

with boundary conditions Sk(x =0)=e ' ~ and
Sk(x =1)=e' . In the steady state, (42) may be rewrit-
ten in terms of the Green function g (x~x') of the Lapla-
cian as

can be approximated with the saddle-point method. Pro-
vided ~8~ ((&D /e, one may retain only the first term of
the right-hand side of Eq. (35) to find

S (x)= xe'" +(1—x)e

+I d x'
g( xi x)[S (kx) —Sk(x')] . (43)

eOP(8)-exp
DG

(37)

P (O, x =0)=5(O+ —,
' ),

P(O, x =L)=5(O ——') .
(38)

The approximation leading to (37) breaks
down for 8-&D /e. When 8-&D /e, the value of Eq.
(37) matches with that of the asymptotic expression (33),
suggesting a crossover from a Gaussian center to the ex-
ponential distribution, Eq. (33). A more thorough study
of Eq. (36), and a numerical calculation of the Fourier
transform of N(k), Eq. (34), confirm this conclusion. To
conclude, under conditions of homogeneity and imposed
mean scalar gradient, we find qualitative agreement with
the numerical solutions of the Kerstein model presented
in the preceding section.

It is also relevant experimentally to consider the role of
boundary conditions. Typically [19], realistic boundary
conditions are a fixed value for the scalar (e.g. , tempera-
ture) at the sides of the cell. If 0=—

—,
' at x =0, and

0=—,
' at x =I., the boundary conditions for the PDF are

Formally solving (43) by iteration shows Sk to be
comprised of a dense set of 5 functions which results
from the repeated (spatial) convolution of the 5 functions
at the boundaries. These 6 functions are located at 0 and
at O =+p/2", where n ) 1 and p = 1, 3, . . . , 2n —1.

To get some insight into the physics of the singular
part of the PDF, we now consider the total weight of the
5 functions, W(x)=Sk 0(x). It follows from (42) that
8'(x) satisfies the ordinary differential equation [18]

(44)

with the boundary conditions W(0) = W(1)= 1. Any
physical solution of (44) must satisfy 0( W ( l. Equation
(44) has a mechanical analog and describes the motion of
a particle of mass D in a potential V( 8') = W /2 —W /3,
x being the "time. " The boundary conditions imply that
the particle must be in the bottom of the potential well at
x =0 and 1. A trivial solution of (44) is 8'=1, uniform-
ly; it describes a solution of (26) made up of 5 functions
only. Other solutions exist provided the half period of
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oscillation in the potential well, n/&D, is larger than
unity, i.e., if D(1/~. For D( 1/n, this nontrivial
solution is the stable solution of the iteration (42). When
D && I/~ (a very light particle), the particle spends
much of its time near 8'=0 and goes from 1 to 0 in a
time of order &D. In terms of the scalar, these solutions
have the following interpretation. The mathematical
transition at (D =1/vr ) occurs when the size of the sys-
tern becomes comparable to the size of the eddies. When
D is very small (a very large system) the physical solution
is~eual to the solution (30), with boundary layers of size
&D near the walls. In other words, the solution adjusts
to its bulk value at a distance of the order of the size of
the eddies. When the system size is very small compared

to the size of the eddies, a completely unphysical limit, no
mixing occurs, and the PDF is made of a set of 5 func-
tions.

We have confirmed this picture by numerically solving
the equation for the complete PDF (singular plus regular
parts), Eq. (26), when the boundary conditions (38) are
imposed. The steady state is found by iterating

(4&)

where n labels the iteration. A cubic spline interpolation
in k was used to compute Pk&z. When D ((1/m, the
solution in the center of the system (x =

—,
'

) can be fit well

(b)
I I I I
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FIG. 9. The solution of the mean-field equation for P(8), Eq. (45), at the center of the system when 6-function boundary condi-

tions are imposed. (At the center of the system, (0)=0 so that 0=8.) Space was discretized into 201 equally spaced points, and 0
was resolved into 200 wave vectors, k, with a spacing hk =n.. Three very different regimes are shown here. In (a), D =0.2) 1/~
and the solution consists of 5 functions only [the central peak (height 16.2) has been truncated]. The oscillations (and occasionally

negative PDF) close to the peaks are a numerical artifact. In (b), D =0.05 and the solution consists of discrete peaks, superposed on

a continuous background [again, the central peak (height 6.64) has been truncated]. In (c), D = 5 X 10;the peaks are no longer visi-

ble and the numerical solution suggests exponential tails.
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by the function @(k), Eq. (32). When D gets closer to
1/m, the solution in real space near x =

—,
' shows peaks,

superimposed on a continuous background. Figures
9(a)—9(c) show the numerical solution of the mean-field
equation (45) with the 5-function boundary conditions
(38), for D =0.2, 0.05, and 5 X 10, respectively, at the
center of the system, x =

—,'. For D =0.2, the solution is
seen to be comprised of 5 functions, broadened in the
figures by our finite numerical resolution. For
D =5 X 10 « I /m, the peaks are invisible with our nu-
merical resolution and the solution is very close to the
bulk solution, Eqs. (32) and (33). Closer to the transition,
the solution for D =0.05 has both a continuous and a
singular part (5 functions). When x approaches the walls
(not shown), the peaks of the PDF become asymmetrical-
ly weighted toward the appropriate boundary value.

In many real experiments, large-scale Bow plays an im-
portant role in the mixing process. For example, in tur-
bulent convection experiments, a coherent large-scale
eddy is known to persist up to very high Rayleigh num-
ber. It is well known [33] that such a recirculating
motion tends to expel the gradients from the center, thus
dramatically modifying the mean concentration profile in
the system. To take into account this large-scale motion,
we assume that the Bow is a superposition of a large,
steady eddy of size L, and many smaller random eddies,
of size —g„as in Sec. II. The large-scale eddy is
modeled by a mapping that first stretches the system by a
factor of 3, and then folds it back onto itself (a version of
Baker's transformation [34]). More specifically, the map-
ping

or, in terms of the Fourier transform with respect to 0,
3

Pk(x)~ g Pk/3(x' ) (51)

a'P„(x,r)
+D

Bx

where 0 & A, & l. Equation (52) properly conserves

fdx O(x). The equation for the equilibrium mean value
of the scalar, ( e ), becomes

t)'(e)
(1—~) (0(x))——' y (e(x ))

Bx
(53)

which shows that the mean temperature depends only on
the ratio D/(1 —

A, ).
The steady-state solutions for the PDF of 0 and for

(e) were found numerically. 5-function boundary con-
ditions were imposed at the walls. As before, the length
of the system is set to unity, so that D is proportional to
(g„/L) . Figure 10 shows the computed average profile
for A, =0.9 and D =0.005. Figure 11 shows the corre-
sponding PDF at x =

—,', the center of the system. The
PDF is seen to have clear exponential tails. Away from

We are thus led to model the combined action of ran-
dom advection, large-scale advection, and diffusion by
writing [18]

3

P„(x,t +r)= A,P„/ +(1—A. ) g P„/(x, )

x ~3x
for 0 ~ x «L, is followed by

(46)
0.5

x for O~x ~L
x~ 2L —x for L ~x «2L

—2L+x for 2L ~x ~3L .
(47)

This mapping is nothing but the inverse of the triplet
map of Sec. II. After one complete mapping, (46) and
(47), heat in a small interval [x,x +b,x] comes from the
three subintervals that have been stretched and folded
back onto this interval so that

0.0

3

e'(x)b, x = g e(x;)b,x; . (48) —0.5
0.0 0.2 0.4 0.6 0.8 1.0

3
e'(x)= —,

' g e(x;) . (49)

Under the action of this transformation, the PDF of 0 is
transformed according to

3 3

r(e, x) I ~de;r(e, ,x;)s e—
—,
' y e; (50)

The sum in (48) may be thought of as extending over the
three "preimages" of x involved in the triplet map. Be-
cause the stretching here is spatially uniform,
kx; =Ax /3, giving

X
FICx. 10. The mean concentration profile (8(x) ) in the pres-

ence of large-scale fiow as modeled in the text. The profile
shown is a solution of Eq. (53) with A, =0.9, D =5 X 10, and
5-function boundary conditions. Space was discretized into 201
equally spaced points, and 0 was resolved into 200 wave vec-
tors, k, with a spacing Ak=~. The crosses indicate a least-
squares fit to the empirical form x'/[I+c( —,

' —~x'~)], with
x'=x ——' and c =0.462&(l —) )/D. We find that (O(x)) can
be fit well by this approximate form with c/&(1 —A. )/D of or-
der unity if D/(1 —X) E -(10 ', 0. 1). For values of
D/(1 —k) & —10, (8(x) ) becomes nonmonotonic.
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10 P (O, x, t + At) = (1 —2p)P (O, x, t)

0.1 =

—0.5 0.0 0.5

FIG. 11. The solution of the mean-field equation for P{8),
Eq. (52), at the center of the system when large-scale How and
5-function boundary conditions are imposed. {At the center of
the system, (8)=0 so that 0=8.) Space was discretized into
201 equally spaced points, and 0 was resolved into 200 wave

vectors, k, with a spacing Ak—= vr. Corresponding to Fig. 10,
D =5X10 ' and A, =0.9.

the center of the system, the PDF has a more complicat-
ed structure.

V. ANALYTICAL SOLUTION
FOR A SIMPLIFIED VARIANT

OF THE KERSTEIN MODEL

In this section we take a look at a simplified variant of
the Kerstein model. Our motivation for doing this is to
get some additional insight into the detailed mechanisms
responsible for non-Gaussian PDF's and to obtain a mod-
el which is directly amenable to analytical treatment
without having to resort to a mean-field-like description.

The Kerstein flip has two ingredients: (i) the inter-
change of the concentration field between adjacent re-
gions and (ii) (in the presence of a linear mean gradient)
the generation of adjacent blobs of opposite sign [cf. Fig.
1]. Since, for a given diffusivity, it is clearly the second
ingredient which is responsible for a nontrivial steady
state, we ask how the steady-state PDF's are affected if
we omit the first ingredient. To that end consider the

Alp

u (t;), (56)

where the Im, , t, ) are the space-time locations of the
flips. The Green function g„(t t') obeys—

+p [P(O+aG, x, t)+P(O —aG, x, t)]

2 a=P(8,x, t)+p(aG) P(O, x, t) . (55)
BO

This is just Eq. (15) with the flip-induced spatial diffusion
replaced by Aip-induced diffusion in O. However, under
conditions of spatial homogeneity and imposed linear
mean gradient, the Aip-induced diffusion term contributes
a term D(Gk) Pk(x, t) to the evolution equation for
Pk (x, t), with D =pa, for both flip models. After adding
the effect of molecular diffusion, the resulting mean-field
theory for model (54) is indistinguishable from that for
the full Kerstein model.

Figures 12(a) and 12(b) show the PDF's obtained when
this model is numerically implemented with the identical
parameters of Figs. 3(b) and 3(c), respectively. For it —1

[Fig. 12(a)], the model gives close-to-exponential tails.
The PDF's of the simplified model are seen to have no
qualitative differences from the corresponding PDF's of
the full model. In fact, the PDF's are virtually identical.
This suggests that the important feature of the Aip in the
Kerstein model is the fact that up and down blobs are
spatially correlated. Indeed, we find that if they are un-
correlated, i.e., if the "flip" consists of ( 9„,9„+„)
~(9„+aG,9„+„—aG), with r a randomly chosen site,
the PDF for the same parameters as in Fig. 12(a) is nearly
perfectly Gaussian. (For larger values of r, non-Gaussian
features appear again even in the uncorrelated case. ) We
note that the important spatial correlations between up
and down blobs, which are equally important for the full
Kerstein model, are completely ignored by the mean-field
theory.

The model (54) has the advantage of allowing us to im-
mediately write down an analytical expression for the
PDF, P(9). Consider a space-time strip of dimensions
L X T, containing M =pLT Aips which are uniformly dis-
tributed. We will take the limit M~~ (fixed p and L)
shortly. Space is discrete with 2% sites, lattice constant
a =L/2X, and time is continuous, as in the simulations.
With 9„(t= —T)=0, we can immediately write down

9„p(t=0) in terms of the Green function g„(t)as

M
9 —p[t Im t] ]=y [gp (t t )gp +](t~ t )]~

i=1

(9„,9„+,)~(9„+aG,9„+,—aG), (54)
(8, —~,h„)g„(tt') =aG5„5—(t —t'),

which we may regard as the simplest reAection Aip, Eq.
(10), without the spatial interchange of the scalar.

If we were to derive a mean-field-like theory for this
model following the methodology of the preceding sec-
tion, we would replace Eq. (15) for the evolution of the
PDF in the absence of molecular diffusion by

, a'„.2

a

For this choice, the Green function becomes

(58)

where 6„is the Laplacian suitably defined for the lattice.
For our numerical simulations we have chosen
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G N 1g„(t)= g e
j=—N

—i (n —m)ak. —k. v t'e ' ' H(t), (59)

0
10

-(a)
I I I ~

I
I I I I

10

where kl =2~j /L and H(t) is the Heaviside step func-

tion. In order to compare analytical expressions quanti-
tatively with the simulations, we carefully specify the
sum over reciprocal lattice vectors to correspond to the
FFT algorithm. This is necessary since with the choice
(58), there is no periodicity in the reciprocal space [35].

Since the Aips are uniformly distributed over the
space-time strip, we have the following expression for
P(8):

M N —1

P(8)= P ~ g f dt, 5(8—8[0, [m, t}]).
1

M N 0
I

(60)

Substituting the solution for 8[t =0, [m, t } ], Eq. (56), we
obtain

P(8) f dq iqe Pa y f Tdt '&m'"
(61)

10 Separating out the q =0 contribution to the term in the
large parentheses of (61), which is equal to unity, we ob-
tain on taking the limit M —+ ~ that

10

0
10

10

0

I
I I i I

I
I I I I

I
I I ~ I

I
I I I I

I
I I I I

P(8„)o=f e'~ P(q),
277

where

N —1

P(q) =exp —pa g f "dt [1 cos[—qu (t)] }
m= —N

(62)

(63)

10

~10

10

From P(q), moments are easily obtained [cf. Eq. (28)]. In
particular, the variance is given by

N —1

(8 ) =pa g f dt[u (t)]
m= —N

(64)

which can also be obtained directly from the expression
for 8, Eq. (56), by using the statistical independence of
the numbers u (t, ). With the Green function relevant

t

for our simulations, Eq. (59), one obtains, for the vari-
ance,

10 —10 0 5 10 15 (82) 2
( G)z pa L +' 1 —cos(hark/X)

47T Ke k — N k2 2
(65)

FIG. 12. The PDF's for the simplified variant of the Kerstein
model, (1,2)~(1+aG, 2 —aG), implemented on a 32-site lattice
in 1D. As a reference, a Gaussian of the same variance is shown

(gray line). Each PDF was obtained from ten realizations of the
Hip distribution. For a given realization, the system was
evolved until 5X10 Hips occurred. Parts (a) and (b) of this
figure have the same parameters as Figs. 3(b) and 3(c) for the
full Kerstein model, respectively. K was computed with g, —=a.
(a) K =1.660-1. 0 has a rms value o. of 0.47286 and a kurtosis
of 4.255. The PDF is strongly non-Gaussian and equally as sug-
gestive of exponential tails as Fig. 3(b). Indeed, the PDF is vir-
tually identical to that of Fig. 3(b). (b) K =16.60))1. L9 has a
rms value o. of 0.14957 and a kurtosis of 15.52. The PDF is
strongly non-Gaussian with shoulders at approximately integer
multiples of aG. The PDF is again virtually identical to the cor-
responding PDF of Fig. 3(c).

lnP(q) = —p f du W(u)(1 —cosqu),—aG

where
N —1

W(u) =a g f dt 5(u —u (t))
m= —N

(66)

(67)

which for the parameters and units of Figs. 12(a) and
12(b) yields o. =0.47280 and 0.14951, respectively, in
four-figure agreement with the simulations. Although
the expressions are more cumbersome, higher moments
can similarly be checked.

We now ask the question: Does P(8) have strictly ex-
ponential tails as suggested by the simulations and the
mean-field theory of the preceding section? In order to
answer this question we need to examine the analytic
structure of P(q). To do this it is convenient to write
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go (t) =aGH (t), exp
(4~K, t)'"

I a
4r, t

(68)

For purposes of obtaining the asymptotic form of W(u)
for small u we may approximate u (t) by

u. (t)= —a.g,.(t), (69)

is the "density of states" of u (t). In order to determine
the analytic properties of (66), we need to obtain the ana-
lytic properties of W(u). From the analytic expression
for u (t) it is clear that W(u) has a singularity for u =0,
which corresponds to large values of m and t. For a finite
system, the asymptotic behavior of W(u) eventually
comes from large times only since m is then bounded by
N F.or large m and/or t, the asymptotic form of the
Green function can be obtained from (59) by replacing
the sum over reciprocal space by an integral to obtain the
familiar continuum result 8= 2f dg W(g/y)gsinhg .

y 0
(76)

Because of the behavior of the small-u asymptotic form
of W(u), W„(u)[which, with a= —,', we find numerically
to be a good approximation to W(u) even when lul is of
the order of aG], the integral (76) is dominated by its
upper cutoff in the limit of large y. The asymptotic form
of (76) is, therefore, given by

dominate and destroy the integrability of (74). We
proceed via the saddle-point method to obtain the large-

l 0l asymptotic behavior of P (8).
The location of the saddle point satisfies

i8=p2f du W(u)u sinqu . (75)
0

To keep the equations uncluttered, let 0 be positive for
now. The saddle point lies at q =q0=iy, where y is real
and large when 0 is large. We scale out y to find

when N is infinite. For N finite, on the other hand, the
asymptotic behavior of W(u) ultimately only comes from
small m and large t. Expanding for large t, we obtain

aGy

8=(aG) pW(aG)
aGy

1+ G
W'(aG) 1

W(aG) aGy

3

u (t)= —,(2m +1),
8 n (K, t)'/

(70)

or

1

(aGy)'
(77)

AW„(u)=, u ~0 .
lul

' (71)

Interestingly, however, the exponent a and the corre-
sponding amplitude A are different in the two cases.
For N finite, we obtain o:= 3 and

where only I =0 and —1 contribute to the small-u limit
of W(u). The asymptotic form of W(u) is now easily
calculated by substituting Eqs. (69) and (70) into (67).
For both finite and infinite N the asymptotic divergence
of W(u) is given by

W'(aG) 1
ln(8/y ) = aGy —ln(aGy) — 1+aG

W aG aGy

1

(aGy)
(78)

y = ln(8/y) .1

aG
(79)

with y=—(aG) pW(aG). To get the leading behavior, we
ignore the log and higher-order terms and just use

2 a
5/3 3 ]/2(K, )

For N infinite, e= —,
' and

3 2/3
aG

8&~
(72)

Note that, within this approximation, y is really only
defined to within an arbitrary multiplicative constant of
order unity. To leading order, P(0) evaluated at the sad-
dle point now becomes

2
A5/2 =2I ( —)

243

1/4
a

(K )1/2

3
aG

2~Fr

' 3/2

(73) P(0)=B
1/2

exp — lnl0/y laG
(80)

When computing W(u) numerically, a clean crossover
from o.=—', to —,

' is observed when u becomes sufficiently
small so that contours of constant u begin to run into the
spatial boundaries of the space-time strip.

The analytic properties of P(q) are now clear: Since
the integral

1 —cosqu
du

0 u
(74)

is evidently an entire function in the q plane for a either
—', or —', , P(q) is entire in the q plane also. It follows that,
for the simplified model under consideration, P(8) can-
not have strictly exponential tails. Even in one dimen-
sion, the long-range part of the Green function does not

rx& n

p(n) —(P" )
e

—pV —n in(n/epV) —pV
n! v'2~n

(81)

If n Aips are each to contribute an amount u so that
8E(0,0+d8), then these fiips must occur in a region of

with B =1/(aG&2vr), where we have generalized to 0
having arbitrary sign. Thus, for large 8l, P(8) becomes
the PDF of a Poisson-like process.

The result (80) may be interpreted as follows: Given a
volume 0 containing M identical objects, the probability
p of finding n of them in a subvolume V is given by
(„)(V/0)"(1—V/Q) ". Taking 0 and M to infinity,
keeping the density p

—=M/A fixed, one obtains the Pois-
son distribution
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1
( )

' 1/2
—[0/u/1nI /(9/u//[ep8'(u) /6u/ ] Ie

(82)

space time where u(t)E(u, u+5u). The flips must,
therefore, be found in a space-time volume
V = W(u ) ~5u ~. Since n = ~8/u ~, Eq. (81) gives the corre-
sponding probability density P (8) as

The fact that almost all of the tails of the numerical
PDF's for the full Kerstein model show a slight down-
ward curvature on a semilogarithmic plot lends some
support to the presence of corrections to purely exponen-
tial tails. The exact, as yet unknown, asymptotic solution
for the full Kerstein model is likely neither perfectly ex-
ponential nor exp[ —x~ln x/(const)~], although clearly
well approximated by either form. The same is even
more likely to be true for any experimental data.

where we have anticipated that only large n contribute to
the asymptotics and have neglected the exp( —pV) —1

term. As we have seen in the preceding paragraph, all in-
tegrals were dominated by the upper cutoff u =aG, which
means that in order to get a large value of 0, many flips
must each contribute an amount u of order aG. Since
u =aG, the flips must have occurred for small t close to
the point where the PDF is being observed, so that we
may approximate u =aG and ~u~epW(u)~5u

~

=y in Eq.
(82). We thus recover the asymptotic form (80) from a
consideration of elementary probabilities.

Figure 13 shows the tails of the numerical PDF of the
simplified Kerstein model (54) and of the full Kerstein
model (10) for the same parameters [see also Figs. 12(a)
and 3(b) for the complete PDF's]. The asymptotic form
(80), with B and y as fitting parameters, fits both tails vir-
tually perfectly with reasonable values for 8 and y. The
best fit to the noninterchanging flip simulation is obtained
with @=0.0929=0.818(aG) p8'(aG). In practice it is
very difficult to distinguish ~x ln~x/(const)~ from ~x~.

10

10-'

10

10

FIG. 13. Averaged data for the right tail of the PDF of Fig.
12(a) (noninterchanging Kerstein model, lower solid line) and of
Fig. 3(b) (full Kerstein model, upper solid line). The octagons
and diamonds indicate two-parameter fits of the form (80) with
(B,y) =(1.108,0.09290) and (B,y) =(0.7169,0. 1141), for the
noninterchanging and full Kerstein models, respectively.

VI. SUMMARY AND CONCLUSIONS

We have studied the PDF of a turbulently advected
passive scalar. Assuming the integral scale, or correla-
tion length g„to be much smaller than the system size,
the scalar PDF probes the spatiotemporal organization of
the flow on the integral scale and is insensitive to the de-
tails of the flow on smaller scales. We have, therefore,
taken a mesoscopic point of view and coarse grained the
system over a velocity correlation volume g", . The action
of an eddy of the velocity field on the scalar is modeled by
an instantaneous "flip" followed by diffusion. The result-
ing model for the scalar was discretized on a lattice and is
essentially equivalent to Kerstein's linear-eddy model
[23]. We focused on the steady-state PDF of the scalar,
in the presence of a linear mean scalar gradient, as a nat-
ural probe of the intrinsic effects of turbulent mixing.

The Kerstein model was implemented numerically in
one and two dimensions with periodic boundary condi-
tions and an imposed linear mean scalar gradient. The
results were found to be insensitive to dimensionality and
to the details of the implementation of the flip. For the
physical range of parameters (K —1), the PDF was found
to have close-to-exponential tails. For rapid flip rates,
K (&1, the PDF was closer to Gaussian, with a smooth
change from Gaussian to exponential as K was increased
to —1.

The phenomenological mean-field-like theory of Ref.
[18] was derived heuristically from the Kerstein model.
This theory is formulated in terms of a nonlinear discrete
mapping which treats the interplay between diffusion and
advection in an, as yet formally unjustified, ad hoc way.
Nevertheless, the theory appears to be in good qualitative
agreement with our numerical results. For the case of a
linear mean gradient, strictly exponential tails are pre-
dicted. The mean-field theory was also extended to the
case of a finite system (5-function boundary conditions)
and to include effects of large-scale flow.

We also considered a simplified version of the Kerstein
model. Under conditions of spatial homogeneity and im-
posed linear mean gradient, the mean-field theory for this
model is identical to that of the full Kerstein model. For
physically relevant parameters, the simplified model pro-
duces numerical PDF's virtually indistinguishable from
those of the full Kerstein model. The asymptotic behav-
ior of the PDF was shown to be of the form
exp[ —~8~1n~8/(const)

~ ]. The diff'erence between this
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asymptotic form and an exponential is subtle and our nu-
merical data (and certainly all extant experimental data)
cannot discriminate between the two forms.

Recent experimental results [20,19] suggest that the
scalar fluctuations, in the presence of a linear mean gra-
dient, are indeed close-to-exponentially distributed, lend-
ing some support to the approach taken here. At this
point, the relevance of our models to the experiments of
Libchaber and co-workers [8,9] is not clear.
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