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Dynamic aperture of electron storage rings with noninterleaved sextupoles
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A detailed study of a dynamic aperture is given for electron storage rings with noninterleaved sextu-
pole magnets. As a result of a cancellation of major transverse nonlinearities of sextupoles by —I trans-
formers, other tiny terms such as fringe fields of quadrupoles and kinematical terms of drift spaces come
to limit the transverse dynamic aperture. Results for transverse aperture in simulations can be explained
by a simple one-dimensional model including these terms. In the longitudinal direction, a modulation of
linear betatron motion by synchrotron oscillation is investigated as the source of the aperture limit.

PACS number(s): 41.85.Gy, 29.27.—a, 29.20.Dh

I. INTRODUCTION

The dynamic aperture is one of the major issues in
electron storage ring design for high-energy colliders,
small-emittance light sources, and damping rings for
linear colliders. If a storage ring consists of only nearly
linear elements such as drift spaces and dipole and quad-
rupole magnets, one may expect a large dynamic aperture
for transverse (betatron) motion around the equilibrium
orbit. Unfortunately this is only true for a particle at the
design momentum of the ring, since the focusing
strengths of magnets are always inversely proportional to
the momentum of a particle due to the nature of the
Lorentz force. This change of focusing due to the
momentum deviation from the design momentum is
called chromaticity. The chromaticity of a ring shifts the
betatron tune, which is the number of betatron oscilla-
tions in one turn, for off-momentum particles. Eventual-
ly the chromaticity leads the particles into integer or
half-integer resonances which blow up the amplitude of
the betatron oscillation. The linear chromaticity of beta-
tron tunes g„ is the most significant of all chromatic
effects of the ring. It is defined as the change of the beta-
tron tune hv ~ divided by the relative momentum
change of a particle g—=hp/p. We use x and y to denote
the horizontal and vertical directions of the betatron
motion. The linear chromaticity of focusing elements in
a ring is expressed as

1
fIC(s)P, (s)ds ,4~

where E (s) is the focusing strength and p, (s) the beta
function, and both are functions of the position s on the
design orbit around the ring. The magnitude of g ~ is
determined by the linear beam optics, and becomes large
when the focusing is strong.

To avoid the resonances caused by the chromaticity
one needs to perform chromaticity correction by putting
correctors in a ring. A classical method of chromaticity
correction is to place sextupole magnets at locations
where the horizontal dispersion is not zero. Horizontal
dispersion is naturally created by the bending magnets in

the arc of the ring, so the sextupoles are usually distribut-
ed in the arc. A thin sextupole magnet kicks a particle
according to

Ax'= —k'[(x +gy) —y ]/2, by'=k'(x +rig)y, (2)

where Ax' and hy' are the changes of the angle, g is the
horizontal dispersion, and k ' =jK'ds is the integrated
strength of the sextupole. The terms —k'xgy and k'yqg
in Eq. (2) function as chromatic lenses and accomplish
the chromaticity correction. Therefore the sextupoles
give linear chromaticities

fK'(s)P„,(s)g(s)ds .= 1
(3)

It is possible to choose the strength K'(s) properly to
cancel Eq. (1) by Eq. (3) in both x and y planes. Although
the sextupoles correct the linear chromaticities easily,
this method induces several undesirable effects. The prin-
cipal effect is the nonlinear transverse kick written in Eq.
(2), which is the major source of transverse nonlinearity
and the resulting higher-order resonances. Combinations
of nonlinear kicks by all sextupoles in a ring are also im-
portant.

The best way to remedy the nonlinearity of the sextu-
pole is to make a pair of two identical sextupoles which
are connected by a —I transformer both in the x and y
planes. The parity of the kicks in Eq. (2) reveals that all
nonlinearities are canceled if the signs of positions and
angles are reversed by the I transformer [—1]. The effect
for the chromaticity correction still remains if we put di-
poles inside the —I to make equal dispersions at the two
sextupoles. The performance of the —I transformer
scheme becomes most efficient in the noninterleaved
scheme which eliminates other sextupoles within the —I.
The reason is that in an interleaved —I scheme, coupling
terms between sextupoles remain and are as important as
the single sextupole nonlinearities. This noninterleaved
method has been applied in designs of final focus systems
of future linear colliders [2] which require nanometer
spot sizes at least in one dimension at the focal point.
Works for storage rings also have been performed by the
other authors [3], and this study is an extension of their
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works using a design of a 8-meson factory as an example.
Another problem in the chromaticity correction is the

nonlocality of the sources of chromaticities including the
correctors. In the case of a high luminosity collider the
natural sources of chromaticity concentrate in the inser-
tions around an interaction point (IP), while the correc-
tors are placed in the arc. In this situation the two dis-
tant chromatic sources, even though they are canceling
each other, generate higher-order chromatic effects
through the small chromaticity of the beam line between
them. The phase relations between correctors also pro-
duce higher-order terms in the chromaticity. Later we
will discuss examples where such higher-order chromati-
cities limit the momentum acceptance of the ring through
couplings between the longitudinal (synchrotron) and the
betatron motions. The magnitude of the higher-order
chromaticity strongly depends on the choice of the
strengths of the sextupoles and their optical locations.
Generally speaking, the number of families of sextupoles
is a practical key to increasing the momentum accep-
tance.

The noninterleaved scheme has many merits for
storage ring design. The machine becomes so nearly
linear in the transverse dimensions that we greatly im-
prove the acceptance for the injected beam. A large
aperture not only results in a high injection efficiency, but
protects detectors from the tail of the injected beam hit-
ting them. It also increases the lifetime of the beam be-
cause it holds large-amplitude particles scattered by
particle-particle, beam-beam, intrabeam, and particle-gas
interactions. After the cancellation of the transverse
nonlinearity of the sextupoles, the transverse dynamic
aperture in the noninterleaved sextupole scheme comes to
be limited by other tiny nonlinearities at least for parti-
cles around the design momentum. In Sec. III, we will
show that the fringe field of the final quadrupoles and so-
called kinematical effects in the drift space at the IP give
a definite limit on the vertical dynamic aperture in the
case of a collider with small P-function insertions.

Generally speaking, the noninterleaved scheme has
large higher-order chromaticities compared to the inter-
leaved, because it has fewer and more nonuniformly dis-
tributed sextupoles. We will show that the main reason
that limits the momentum acceptance of the noninter-
leaved scheme is a modulation of the linear betatron
motion by synchrotron oscillations coupled through the
higher-order chromaticities. This paper will show that
the acceptance in the longitudinal direction becomes as
good as the interleaved scheme, if a sufficient number of
sextupole families are put in the ring and also if the
machine tune is chosen so as to avoid the modulation res-
onances.

II. DYNAMIC APERTURE
WITH NONINTERLEA VED SEXTUPOLES

Hereafter we use the term "dynamic aperture, "or "dy-
namic acceptance, " to mean a set of initial conditions of
a particle which circulates stably in a storage ring for a
certain large number of turns. Since an electron ring has
a damping of oscillations around the equilibrium orbit

due to synchrotron radiation, the dynamic aperture
should be defined as a stability for one damping time,
which typically ranges from a few hundred to a few
thousand turns. This situation is much different from
that in a proton ring where stability for a few million
turns has been discussed [4). In other words, an electron
ring can accept a particle whose amplitudes and non-
linearities are much larger than a proton ring. The
strong nonlinearity makes the analysis of the dynamic
aperture of an electron ring difFicult, and a perturbation
method easily fails. On the other hand, it is not difficult
to estimate the dynamic aperture by a simple particle-
tracking simulation because of the short number of turns.
Therefore, in this study we mainly use results of tracking
to evaluate the dynamic aperture.

We use six canonical variables x, p„, y, p, z, and 5 to
describe the motion of a particle. The independent vari-
able is the location s on the design orbit. Variables p„
and p are transverse canonical momenta normalized by
the design momentum po. The longitudinal variable z is
defined as z:——ut, where t is the difference of the arrival
time from the reference time at the location s. The last
variable is the relative momentum difference 5=bp/po.
The Hamiltonian through the ring is written as [5]

T

H = — 1+—
[ [ ( 1+5) —(p„—e A„ /po )

P
—(p —eA /po) ]' +eA, /po]

+ [(1+5) +(mc/po) ]'
Uo

where p is the horizontal bending radius, (A„, A~, A, )

the vector potential of magnets and rf cavities, and uo the
design velocity at the design momentum. We have
neglected terms of vertical bending magnets and the elec-
trostatic potential because we do not have them in the
model ring in this paper. Although the number of turns
for tracking is small, it takes considerable computer
power to survey the entire six-dimensional phase space of
the initial condition of a particle. In this paper we limit
the initial conditions to p o =0, p 0=0, z =0, and y =ax,
where a is a constant. We usually choose a so that the in-
itial value of action J 0 is always equal to J o. The action
J is defined by the Courant-Snyder invariant

2J„=P (s)[p„+xa„(s)/P„(s)] +x /P„(s),

which is a constant in the limit of linear betatron motion.
We define J~ similarly. We carry out the tracking by a
code named sAD [6], which performs fully symplectic
transformations in six dimensions. Synchrotron radiation
is neglected in the tracking. Our criterion for stability is
that x and y never exceed 10 cm, roughly the physical
aperture of a typical ring, during 1000 turns of tracking.
The dynamic aperture does not depend strongly on the
precise numbers for the criterion, since particle loss is
typically the result of exponential growth of the ampli-
tudes. As an example for this study, we select a ring
designed for the asymmetric B-meson factory in the
TRISTAN [10] tunnel. Table I shows the main charac-
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TABLE I. Machine parameters of the model ring.

Beam energy
Circumference
Betatron tunes

Synchrotron tune
Horizontal emittance
Bunch length
Momentum spread
Momentum compaction factor
Momentum damping period
Beta functions at the IP

Chromaticities

Vy

Vz

&x

cog/C
p III

p
III

3.5 GeV
3010 m
39.12
39.15
0.049

1.86 X 10 m
6.7 mm

7.8X 10
8.9X 10
3950 turns

1 m.

0.01 m
—61
—87

teristics of the model ring.
First we show in Fig. 1 comparison of dynamic aper-

tures obtained by tracking for the noninterleaved and the
interleaved schemes. The vertical axis is the transverse
acceptance for the initial condition, expressed in terms of
the initial actions (a) J„O=J o and (b) J„0=10Jo. The
horizontal axis is the initial momentum deviation 6o. We
see a big improvement in the transverse acceptance with
the noninterleaved scheme, keeping the longitudinal ac-
ceptance almost unchanged. The reason that the im-
provement is greater in (b) than in (a) is that in the nonin-
terleaved scheme the dynamic aperture is limited in the
vertical plane by residual nonlinearities around the IP.
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FIG. 1. Comparison of the dynamic aperture of the noninter-
leaved (solid) and interleaved {dashed) schemes. The numbers at
the curves show the number of sextupole families. When the in-
itial vertical action is —, of the horizontal (b), the difference of
the two schemes is larger than in case {a).

We discuss the mechanism in Sec. III. Although the re-
sult depends on rnachine tunes as we discuss later, for
most tunes we get an improvement in the transverse ac-
ceptance of at least a factor of 2.

Figure 1 also shows the dependence of the dynamic
aperture on the number of the sextupole families. For
both schemes a larger number of families brings a wider
momentum acceptance, with no damage in the transverse
direction. In the case of the model ring, the noninter-
leaved scheme has a unit cell of m/2 phase advance in
both x and y planes in the arc. This structure is suitable
for placing as many of the sextupole families as possible.
The maximum number of the families for the model ring
is limited to 18 by the size of the arc. Each family con-
sists of four sextupoles, since this ring has a mirror sym-
metry around the IP. The interleaved has a m/3 unit cell,
where each quadrupole accompanies a sextupole. Sextu-
poles of m. phase differences are paired to cancel their
lowest order of the transverse nonlinearity to each other.
The interleaved scheme has a maximum of 24 families of
288 sextupoles. In the rest of this study we use 18 fami-
lies as the standard of the noninterleaved scheme.

The dynamic aperture greatly depends on the choice of
strengths of the sextupole families. In the case of the
noninterleaved scheme the transverse nonlinearities are
small and, consequently, we can concentrate on widening
the longitudinal aperture. This model ring has one rf sec-
tion on the opposite side of the IP, where the ring has a
mirror symmetry. The algorithm we apply here is to find
a solution which minimizes the deviation of transverse
tunes v, and beta functions P,' at the midpoint of the
rf cavity section, for a given range of the momentum de-
viation —

5& & 6 (5&. The Twiss parameters a' area al-
ways zero because of the symmetry. If we assume that a
particle changes its momentum only at the rf section, the
oscillation becomes stable in the case that the linear one-
turn map from the rf is insensitive to 5. Actually the
change of energy due to the radiation in the arc is the or-
der of 5/(damping turns), which is smaller than the
change by the rf, 5/2+v, . Thus the assumption above is
well justified. We choose seven points of different rno-
menta within +1.6% in this study, and minimize the de-
viations of v, and P„" at these momenta by varying the
sextupole strengths. Figure 2 shows the residual devia-
tions of these functions.

This study has applied the same algorithm to deter-
mine the strengths of sextupoles both in the noninter-
leaved and interleaved schemes. In the case of the inter-
leaved scheme there may exist thousands of methods to
find a good solution [7], but no universal formula is
known yet. Difficulties come from the mixture of all
transverse nonlinearities and higher-order chromaticities.
In our view the noninterleaved scheme has a great merit
since it separates the transverse problems from the
chromatic ones. The algorithm for the noninterleaved
scheme described above is quite simple, yet sufficient to
achieve a practical performance of the dynamic aperture.
Note that the result in Fig. 2 is a comparison between
two schemes with solutions obtained by the same specific
algorithm. We do not deny a possibility of other solu-
tions which increase the aperture for both schemes.
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Another point we have studied is the significance of the
synchrotron motion. We expect that the noninterleaved
scheme has two major sources which limit the dynamic
aperture of off-momentum particles. One is a breakdown
of the —I transformation of sextupole pairs due to the
momentum deviation, and another is a modulation of the
transverse motion by the synchrotron oscillation. To see
these effects, first we turned off the synchrotron motion in
the tracking by setting the rf voltage to zero. The result
in Fig. 3 shows that the dynamic aperture for off-
momentum particles is strongly affected by the synchro-
tron motion. In Sec. IV we identify the cause to be
modulation of the betatron oscillation by the synchrotron
motion. The effect of the synchro-betatron resonances is
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FIG. 3. The dynamic aperture for off-momentum particles
for the noninterleaved scheme worsens in the presence of the
synchrotron motion. The solid line is the aperture with syn-
chrotron motion and dashed without.

larger in the noninterleaved scheme than in the inter-
leaved one. The reason is that the higher-order chroma-
ticities of noninterleaved are stronger than interleaved as
shown in Fig. 2.

It is natural to guess that the performance of the
noninterleaved scheme may be damaged by the machine
errors which disturb the —I transformation. We have
studied the effect on dynamic aperture of errors in quad-
rupole and sextupole strengths. Figure 4(a) shows the
change in the dynamic aperture for 12 random errors of
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FIG. 2. Sextupoles are chosen to minimize the relative varia-
tion in the P functions P„" at the midpoint of the rf section and
the betatron tunes v ~ due to momentum deviations Ap/p. The
results depend on the (a) noninterleaved or (b) interleaved
schemes. The solid lines correspond to the horizontal functions
and the dashed to the vertical.

FIG. 4. The dynamic aperture in the presence of machine er-
rors for the noninterleaved scheme. (a) Strength errors of the
quadrupoles and the sextupoles: The dashed lines correspond to
12 different random numbers for 0.1% relative strength errors.
(b) Misalignments of sextupoles: The dashed lines correspond
to 12 different random numbers for 100-pm transverse and 200-
pm longitudinal misalignments. The solid line is the aperture
without errors.
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O. l%%uo relative strength errors applied to all quadrupoles
and sextupoles in the ring. These errors have Gaussian
distributions with 3~ cutoff. In these simulations with
errors, we have adjusted the transverse tunes each time
by varying quadrupoles in the same way as the actual
machine operation, because the measurement and correc-
tion of tunes are easily done with an enough accuracy.
The decrease of the aperture still looks acceptable, espe-
cially in the transverse directions, since such a strength
error less than 0.1%%uo is not difficult to achieve with con-
ventional technologies. We speculate that the strength
error plays a roll somewhat similar to the momentum de-
viation of a particle. A relative strength error e in mag-
nets has nearly the same effect as an off-momentum parti-
cle of 6-e, or even better than that because of the ran-
domness. In the dynamic aperture without errors in Fig.
4(a), we see that the drop in the dynamic aperture for
5=+0.1% is consistent with the result with strength er-
rors. We have also checked the effect of alignment errors
of sextupoles on the dynamic aperture as shown in Fig.
4(b). The performance of the noninterleaved scheme is
not very sensitive to the misalignments.

III. TRANSVERSE DYNAMIC APERTURE

where K is the strength of the quadrupole, s, the location
of the edge, and 5c the periodic delta function with the
period of the rnachine circumference C. The positive sign
is chosen at the entrance and the negative at the exit. We
have also introduced the canonical variables u =x+iy
and p„=(p —ip~)/2. If we concentrate on the vertical
motion at the design momentum, Eq. (6) is reduced to

Ky PV
H+ =+ 5c(s —s, ) .

The major fringes are the two inside edges, facing the IP,
of the final quadrupoles. The Hamiltonians at those
edges are translated to a Hamiltonian at the IP (s =0) by
replacing y and p in Eq. (7) with variables at the IP as
y =y*+l*pv* and pv=p*, where l* is the distance be-
tween the IP and the quadrupole face. The total effect of
the two fringes is expressed as

Hf=H++H +O(K )

V
= ——(3y+ p+ i++p+~l+ )5 (g)+O(~ )

K
V C

= ——p*l*5 (),V

uu p„
8

3"pu
24

5c(s —s, )+c.c. , (6)

The noninterleaved scheme appears capable of remov-
ing the major transverse nonlinearities which are usually
induced by sextupoles. In this section we discuss the
remaining sources of nonlinearities, which are hidden
beneath sextupoles in the interleaved scheme. In the
noninterleaved scheme these tiny nonlinearities come to
limit the transverse dynamic aperture at least for parti-
cles with small amplitudes of synchrotron motion around
the design momentum. For the time being we concen-
trate on pure geometric terms. In an electron-positron
colliding machine with low P-function insertions, the
vertical dynamic aperture is much smaller than the hor-
izontal one because of a Aat beam scheme with a strong
vertical focusing. In such cases for a particle which has
equal x and y amplitudes of the initial condition, the hor-
izontal and coupled nonlinearities do not contribute
much to the entire dynamic aperture so long as the
machine tunes are not close to coupling resonances.

In the case of a high luminosity collider with a low p-
function insertion at the IP, the residual vertical non-
linearity mainly comes from two sources around the IP.
The first one is a nonlinear fringe field at the edges of the
final quadrupole magnet. The change of the main trans-
verse component of the magnetic field along the orbit al-
ways accompanies higher-order longitudinal and trans-
verse magnetic fields at the edges to satisfy the Maxwell
equations. Although the form of these higher-order fields
depends on the actual design of the magnet, a sharp edge
model is a good approximation to estimate their effects at
a design stage of a ring. A sharp edge of a quadrupole
magnet which has a step function for the primary focus-
ing field induces a higher-order effect expressed by an
effective Hamiltonian [8]

2+ 2
( 2+ 2)2px pV px pV

2(1+5) 8(1+5)' (9)

In the vertical plane this effect is also strong in the drift
space around the IP. We can translate the integrated
effect of the nonlinear part in Eq. (9) over the drift space
of length 2l* into a Hamiltonian at the IP, and obtain

g4( g

Hk = 5c(s), (10)

where we have picked only the vertical term at the design
momentum. The nonlinearity in a drift space may sound
strange, because the map for (x,x',y, y') in a drift space is
linear. A question arises whether there is a merit to re-
move the nonlinearity by choosing (x,x',y, y') as the vari-
ables instead of the usual canonical variables (x,p, y, p ).
The answer is negative, since the map of the rest of the
ring for (x,x',y, y') becomes no longer symplectic in elec-
tromagnetic fields. Therefore the picture with (x,x', y, y')
looks even more difficult in the map of the rest of the
ring. The canonical view of a drift space with the
kinematical nonlinearity is consistent and preferable.

Since the nonlinear Hamiltonians (8) and (10) have the
same form, we can simply add them to get the total effect.
If we assume the rest of the ring is completely linear, the
total Hamiltonian for the ring is written as

where we have neglected the higher orders of K and used
p*l* ))y*. The last relation comes from l* ))/3*.

The second source of the residual nonlinearity is the
so-called kinematical effect. The general Hamiltonian (4)
of a particle in a ring always has transverse nonlinear
terms which come from the expansion of the first square
root even in a drift space. We write the Hamiltonian of a
drift space up to the fourth order:
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H=Hf+Hk+ Jypy/C
$4J2

=(1——', Kl* ), cos P 6c(s)+J~p~/C,3 pe 2 j'

(12)

and rewrite Eq. (11) to

H'= J' cos $~5I(n)+@~J», (13)

where the independent variable is changed from s to the
number of turns n. The aperture of the motion is now de-
scribed by a simple one-dimensional Hamiltonian (13),
which has only one parameter p . We estimated the
stable region of the motion determined by the Hamiltoni-
an (13) by a simple mapping started at J'=J'II, and ob-
tained the aperture 3 (p ) for J'o as a function of p .
The shape of A (p ) is shown in Fig. 5 for
0&@ /2m. &0.5. The same pattern is repeated in the
range 0.5 (p /2'(1. One can easily see from Eq. (13)
that the perturbed tune increases when the amplitude be-
comes larger. The pattern in Fig. 5 is basically deter-
mined by this positive tune shift and the second, fourth,
and sixth resonances. There are three dips on the curve
of 3 (IM~ ) in Fig. 5 at p~/2' =0. 11, 0.22, and 0.30. These
dips correspond to formation of a Kolmogorov-Arnold-
Moser (KAM) surface surrounding the sixth and fourth
resonance islands around the stable region. If the tune
becomes higher than the dips, a KAM surface is formed
to enclose these islands and the stable region is enlarged.
Figure 6 shows this situation for the sixth-order reso-
nance around p /2m. =0.11. These dips are also seen in

where we have used action-angle variables defined as
y*=(2J P )' sing and p*=(2J //3*)' cosg . We can
scale J and H as

the results of the full tracking. The aperture for the orig-
inal action J„o is written as

Jo= A(p ).
(1—2Kl' /3)l*

(14}

2
-(a)

'~

A(N. ,)

'C

I„O.—

. . C&.

L

0 1 2

Note that the sign of K is negative because the final quad-
rupole is vertically focusing.

Figure 5 shows good agreement between the estimation
(14) and the results of the full tracking. The results by
tracking are converted into A (p ) using Eq. (14). In this
case the parameters are K = —1.4 m and l*=1.5 m,
and the contribution of the fringe term is 2.1 times larger
than that of the kinematical terms. The result in the
dashed curve (J„o=0) agrees very well with Eq. (14)
(solid}. Even the dotted results (J o=J~o) show similar
characteristics. We set p„/2~=0. 12 in the case of Fig. 5
for the full tracking. We find that Eq. (14) is applicable
for P' as large as 2 cm, provided J -30 pm.

We have also studied the effect of the thickness of sex-
tupoles. The thickness of a sextupole gives a higher-

2.0 P(b)
I
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I I I I I I I

1.5—
A(V&)

0.5—
0

Q
0 0.1 Q. 2 0.3

p /2z
0.4 0.5

FIG. 5. The transverse dynamic aperture, especially in the
vertical plane, is determined by the fringe field of the final quad-
rupole at the IP and the kinematical term in the drift space at
the IP. The aperture is given by a universal function A(p~)
(solid) determined by a simple one-dimensional model. The
dashed line is the result of full tracking with zero initial hor-
izontal amplitude, and the dotted curve corresponds to equal in-
itial horizontal and vertical amplitudes.

-2 Li
-2 -l

I I I I

0
I I I I

1

FIG. 6. The phase space plot of i J~, P ) with the Hamiltoni-
an of Eq. (13). (a) At p~/2~=0. 105 the area between the sixth-
order islands and the main stable area is not stable. (b) At
p~/2~=0. 117 the sixth-order island is surrounded by a KAM
surface and the aperture becomes larger than in (a). This
change of aperture corresponds to the dips of Fig. 5.
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order term which is not canceled by the —I transformer
as

k l,
H, =g — (x +y ) 5C(s —s, ),

cos2$»,
bp„"' (5)

AJ =J
p„'

b p„" (5)
sin2$„»,

2P."',

(16)

where k,', l, , and s; are the integrated strength, the thick-
ness, and the location of the ith sextupole. In Eq. (15) we
have shown only the first-order term in l,-. The transverse
aperture near the design momentum increases as the sex-
tupoles become thicker. The reason is that the thickness
brings a negative transverse tune shift due to the trans-
verse oscillation amplitude. The negative tune shift
somewhat cancels the positive tune shift caused by the
nonlinear terms in (11), and thus increases the aperture.
The amplitude dependent tune shift is lmllvy/Jy +0 0056
and —0.0012 pm ' for (11) and (15) (with the original
thickness), respectively. In the model ring the thickness
of the sextupoles is 15 or 20 cm. We did tracking simula-
tion with different thickness of sextupoles. It results that
the vertical aperture near the design momentum is de-
creased by about 20 1o by making the thickness of all sex-
tupoles zero. If we double the thickness of all sextupoles,
the vertical aperture increases by about 30%%uo. The longi-
tudinal acceptance does not change significantly by the
thickness.

J, bP„'»(5)
5C(s —s„&)sin2$„

2/3,
" (17)

If we neglect subsequent perturbation of the synchrotron
motion by the perturbed betatron motion, important only
when the betatron amplitude is large, the synchrotron
phase P, becomes proportional to the number of turns n
as P, =2vrnv„and also its amplitude becomes constant,
i.e., 5=5&sin2m'nv, . The betatron phase g contains
both the main term 2mnv and the chromaticity term

J 2m b, v dn, but we neglect the latter which only gives a
second order term in Eq. (17). The form of hp„'»(5) re-
sults from the chromaticity correction and has many
terms if expanded in a Fourier series of 2vrnv, . Therefore
the Hamiltonian (17) has resonances at

where b,/3„'» is the change of the beta function at the rf
due to the change of the momentum deviation 5. We
have assumed that the ring has only one rf section at s,&,

and neglected terms of higher-order than O((b.p' ) ).
The transformation of Eq. (16) is also derived from a
Hamiltonian

IV. MODULATION OF LINEAR
BETATRON OSCILLATIONS 2v +mv, =N, (18)

In this section we concentrate on the momentum ac-
ceptance for particles which have large momentum devia-
tions and small betatron amplitudes for initial conditions.
In the noninterleaved sextupole scheme, the momentum
acceptance is limited by several factors. One is the natu-
ral acceptance +5, of the chromaticity correction which
we use during the search for the sextupoles. Beyond
~5~ )5, the linear map for an off-momentum particle be-
comes unstable, as shown in Fig. 2. This acceptance basi-
cally depends on the magnitudes of higher-order chroma-
ticities produced by the sextupoles, and also the number
of sextupole families. It is not easy to give a rigorous ex-
pression for the acceptance, but roughly speaking a larger
number of sextupole families gives a wider range of sta-
bility. We'have already seen an example of the effect of
the number of families in Fig. 1.

Another serious point for the momentum acceptance is
the modulation of the linear betatron motion by the syn-
chrotron oscillation. As the residual of the chromaticity
correction, there still remains a small deviation of the p
functions that causes a change of the one-turn linear map
for an off-momentum particle. Every time a particle
passes the rf section, the change of the momentum by the
cavities produces a mismatch of the particle and the beta-
tron ellipse in the phase space due to the change in the p
function. The amplitude of the betatron oscillation
changes according to

where m and N are integers. These resonances induce an
exponential growth of Jx y because the change of Jx y is
proportional to J as shown in Eq. (16).

Figure 7 shows the momentum acceptance 5z as a func-
tion of v, obtained by tracking and also a linear mapping
method based on Eq. (16). We performed the linear map-
ping as follows. First we assumed the synchrotron
motion is sinusoidal, 5 =5~sin2~n v, . Next we obtained
linear betatron maps on a grid in 5 of width +3%, with a
0. 1%%uo mesh size, and interpolated the map using the value
at this mesh. The interpolation is performed for ten pa-
rameters to describe 4 X 4 symplectic matrices, so the in-
terpolated map is always 4X4 symplectic. We used a cu-
bic spline for the interpolation. The result of the tracking
in Fig. 7 exhibits the resonances 2v +m v, =N given by
the modulation, and the linear map method gives an
answer close to the tracking. The agreement between
methods confirms that the modulation of the linear beta-
tron motion is the dominant source limiting the momen-
tum acceptance of the noninterleaved scheme. In Fig. 7
the dips in the acceptance at the resonances look milder
than those predicted by the linear mapping method. One
speculation is that the transverse nonlinearity in the lat-
tice may smear the resonance through the amplitude
dependence of the betatron tunes. The dips look even
milder in y plane, which is due to the fact that the y tune
shift is five times larger than in the x plane.

There is an additional effect from the dependence of
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where coo is the revolution angular frequency of the ring.
The parameter n, the momentum compaction factor, is
the ratio of the orbit dilation —hz around the ring to the
momentum deviation, i.e., Az/C = —u 5, where C is the
circumference. Thus the only one way to decrease v,
while keeping cr„o.&, and C constant is to make a small.
The momentum compaction factor a is expressed as

(b) ' f—'&ds,
C o p

(20)

0
Q Q.Q5 0.10 0.15

FIG. 7. The momentum acceptance depends on the synchro-
tron tune v, . The betatron tunes are v =39.12 and v~ =39.15.
At resonances 2v ~+m v, =N there are significant dips in the
acceptance. (a) is the result of the full tracking, and (b) the
linear off'-momentum mapping.

and basically determined by the structure of the unit cell
in the arc of the ring. Equation (20) shows that a is re-
duced if the horizontal dispersion q is small in bending
magnets of the arc. Such a periodic structure can be
made by putting bending magnets at every m. horizontal
phase advance. This structure is also suitable for the
noninterleaved sextupole scheme because it can place the—I sextupoles efhciently, if we make the vertical as well
as horizontal phase advance per unit cell equal to m. Be-
sides the dynamic aperture issue, a ring with small v, and
n has the merit that the accelerating voltage is low,
since the accelerating voltage is proportional to a if we
keep the bunch length and the momentum spread con-
stant.

V. CONCLUSIONS

the linear map on the synchrotron motion: the fixed
point of an off-momentum linear map changes as a func-
tion of the momentum deviation. In a usual design the
linear dispersion at the rf section is suppressed, but the
higher-order dispersions still remain. The change of the
momentum at the rf shifts the origin of the betatron os-
cillation in every turn, and continually excites the beta-
tron motion through the synchrotron coupling. This
effect, however, is less significant than the modulation
effect discussed in the preceding paragraphs, since it does
not give an exponential growth and is balanced by radia-
tion damping. We have also included this effect in the
linear mapping of Fig. 7(b).

Looking at Fig. 7, we find in the region v, ~0.02 that
the effect of the modulation is weak and the dynamic
aperture is not much affected by the choice of the tunes.
The reason is that since the synchrotron tune is small, the
order of the resonance m v, must be high to satisfy the
resonant condition (18), and the magnitude of the modu-
lation Hamiltonian (17) decreases. From this point of
view, a better way to design a machine would be to make
v, as small as possible. On the other hand, there is a sim-

The chromaticity correction with the noninterleaved
sextupole scheme dramatically improves the dynamic
aperture in the transverse direction. The machine looks
so linear in the transverse direction that only tiny residu-
al nonlinearities such as fringe fields of quadrupoles and
kinematical terms of drift spaces limit the dynamic aper-
ture. We derived a formula (14) for the transverse dy-
namic aperture near the design momentum. This formu-
la is applicable to the case of a ring has with a low P-
function insertion with strong vertical focusing. The dy-
namic aperture in the momentum direction including the
synchrotron motion is made satisfactory if the number of
families of sextupole is large enough. The modulation of
linear betatron motion by the synchrotron oscillation
damages the momentum acceptance at resonances
2v +m v, =N. This resonance can be avoided either by
careful choice of the operating point or by making the
momentum compaction factor smaller with a vr cell ring.
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