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three-dimensional XY analysis of x-ray and Cp data
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X-ray data are reported for the nematic phase near the nematic (Ã) —smectic- A l (Sm- 3 1) transition in

a binary mixture of pentylphenylcyanobenzoyloxy benzoate (DBSCN)+cyanobenzoyloxypentylstilbene
(C& stilbene). These data and x-ray data from four other X—Sm-Al systems, plus the corresponding
high-resolution C~ data, are analyzed using the exact solutions of preasymptotic three-dimensional (3D)
XY theory. The correlation volume giigi, smectic susceptibility o, and heat capacity C~ are in good
agreement with preasymptotic theoretical predictions. First-order corrections-to-scaling terms were
known previously to be important for describing C~; their importance for fiick'i and tr is demonstrated
here. Many universal features of the 3D XY model are confirmed by the present self-consistent analysis,
but the critical anisotropy of the individual lengths gii and g, and the fact that C~ exhibits a normal XY
amplitude ratio rather than the theoretically predicted inverted ratio are still unresolved issues.

PACS number(s): 64.70.Md, 61.30.—v, 64.60.Fr

I. INTRODUCTION

The nematic (X)—smectic-A (Sm-A) transition in
liquid crystals involves the development of a one-
dimensional density modulation in an orientationally or-
dered Quid of long rodlike organic molecules. The criti-
cal behavior at second-order N —Sm-A transitions is one
of the most challenging unresolved problems in the sta-
tistical mechanical theory of phase transitions. Extensive
theoretical [1—6] and experimental [7—15] studies of the
N-Sm-A transition have been carried out over the past 20
years. The most detailed theoretical treatments predict
that this transition belongs to the three-dimensional XY
universality class (d =3,n =2 vector model), albeit with
an inverted C amplitude ratio [2,3]. However, there are
diKcult and not fully resolved issues of Landau-Peierls
instability (yielding d =3 as the lower marginal dimen-
sionality) [3], coupling of the smectic-order parameter
with nematic director fiuctuations (implying crossover to-
ward an anisotropic fixed point) [3,6], coupling of the
smectic- and the nematic-order parameters (driving the
transition first order via a tricritical point) [1],and possi-
ble anisotropic corrections-to-scaling terms (not yet con-
sidered theoretically).

Experimentally, one must distinguish several Sm- A
structures. Nonpolar molecules exhibit only a single type
of a smectic-A phase, to be denoted by Sm-A . Polar
molecules, especially those with long aromatic cores and
strongly polar head groups, can exhibit smectic-A po-
lymorphism: a monolayer Sm-A i phase (d =L), a partial
bilayer Sm-Az phase (L (d (2L), and a bilayer Sm-A2
phase (d =2L), where d is the layer thickness and L is
the molecular length [5]. A wide range of investigations

of N —Sm-A and N —Sm-A& transitions have shown
system-dependent nonuniversal critical behavior [7—10].
However, recent calorimetric studies of several N —Sm-
A i transitions [13,14] show that the behavior of C is in
excellent agreement with orthodox (noninverted) three-
dimensional (3D) XY theory, and these C data clearly
demonstrate the importance of including corrections-to-
scaling terms in the analysis of the critical behavior. The
nonuniversal behavior observed previously for N —Sm-

and X—Sm-Az transitions [7—10] seems to be related
to coupling between smectic and nematic order since the
nematic range is small in such systems (T~t —T~„40
K, where I denotes the isotropic phase). As first pro-
posed by de Gennes [1], smectic-nematic coupling can
cause a crossover to tricritical and first-order transitions,
and this has been observed when the nematic range is
sufficiently small [8,9]. In the case of the X—Sm-A, sys-
tems with 3D XY heat-capacity behavior, the nematic
range is wide. Thus the nematic order is close to saturat-
ed near T&„, and smectic-nematic coupling should not

1

play an important role.
In order to establish a global view of N —Sm-A

&
criti-

cal behavior in the systems exhibiting 3D XYheat capaci-
ties, high-resolution x-ray studies are needed to charac-
terize the behavior of the correlation length parallel to
the nematic director gii, the perpendicular correlation
length gi, and the smectic susceptibility cr. Previous
N —Sm-A, x-ray results are available for mixtures of
hexylphenylcyanobenzoyloxy benzoate (DB6CN) +
terephthal-bis-butylaniline (TBBA) [11], for the com-
pounds T7 and T8 where Tn is alkoxybenzoyloxycyano-
stilbene [12], and for octyloxyphenylcyanobenzoyloxy
benzoate (8OPCBOB) [15]. In the DB6CN+TBBA sys-
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TABLE I. Molecular formulas and nematic range T» —T» . y denotes -~- .
1

System

T8
T7

DB5CN
+ C5 stilbene

DB80NO2
8OPCBOB

Nematic
range (K)

189
167
120

(X =0.495)
96
45

Formula

C8H17—0—(p—COO—(p—CH =CH—cp—CN
C7H15 0—cp—COO—(p—CH =CH—y—CN

C5H1)—cp—OOC—(p—OOC—tp—CN
C5H ),—(p—CH =CH—cp—OOC—y—CN
C8H17—0—y—OOC—y—OOC—y—NO~

C8H 1 7 0 tp—OOC—cp—0—CH2—(p—CN

tern, heat-capacity data are lacking, the chemical stability
is poor, and the phase diagram is rather complex. T7
and T8 are less stable than 8OPCBOB, but all three of
these systems provide results suitable for detailed
analysis. We have recently completed a high-resolution
calorimetric and x-ray study of the N —Sm-A, transition
in octyloxyphenylnitrobenzoyloxy benzoate (DBSONO2),
and the results are reported in the preceding paper [16]
(to be denoted as paper I).

The present paper reports in Sec. II the results of an x-
ray study of a mixture of DB~CN (the pentyl analog of
DB6CN) + C5 stilbene (cyanobenzoyl-oxypentylstilbene)
for which heat-capacity data are already available
[13,17]. Thus there are five N Sm A, sy—stem-s suitable
for detailed analysis: T8, T7, DB5CN+ C5 stilbene,
DB8ONO2, 8OPCBOB. For convenience, the molecular
formulas of these compounds are given in Table I. Note
that they are all typical "frustrated" smectics [5,18] with
aromatic cores containing three phenyl rings and strong-
ly polar CN or NO2 end groups. The nematic range,
defined by T&l —T&~, is very large for four systems and

1

moderately large for 8OPCBOB, as shown in Table I.
In Sec. III, an extensive analysis of the N —Sm-A

&
criti-

cal behavior in these five systems is carried out using the
exact solutions of preasymptotic 3D XI' theory [19—21].
This requires the inclusion of corrections-to-scaling
terms, an aspect that has been neglected in all previous
analyses of critical x-ray data in liquid-crystal systems. A
preliminary report of such an analysis has been given pre-
viously for four of these five systems [22]. Section IV
summarizes all the universal features of the 3D XY model
confirmed by the N —Sm- A, data and addresses un-
resolved difficulties such as the critical anisotropy in the

g~~
and gi behavior and the fact that C~ data show a nor-

mal amplitude ratio rather than the predicted inverted
ratio.

II. EXPERIMENTAL RESULTS

High-resolution x-ray measurements were made on a
DB~CN +C5 stilbene mixture with C5 stilbene mole frac-
tion X =0.495, for which the nematic range T&1—T&~ is

120 K. Both compounds were synthesized and purified at
the Centre Recherche Paul Pascal in Bordeaux. Heat-
capacity data are available [13,17] on an essentially iden-
tical mixture (X =0.492) of materials from the same syn-
thetic batches [17]. The details of the x-ray experimental
work are essentially the same as those described in paper

I. In contrast to the DB8ONO2 system, there is no ob-
servable diffuse Sm-A& scattering at (0,0,qo) in the
nematic phase of DB5CN+C5 stilbene, only a diffuse
Sm-A, peak at (0,0, 2qo), where 2q0=2vr/d and d is the
Sm- A, layer spacing [23]. The temperature-independent
value of 2qo is 0.2115 A ', corresponding to d =29.71
A.

The sample was magnetically aligned in the N phase
and the resulting mosaic spread determined in the Sm- A,
phase was small (0.12' half width at half maximum). The
transition temperature was determined by the appearance
of the mosaicity in the transverse profile. The initial T,
value was found to be 424.302 K, in good agreement with
T, =424. 425 K obtained from the C„data [13]. A slow
linear drift in the transition temperature, dT, /dt = —32
mK/day, was observed over the long period of x-ray data
collection. A correction for this drift was made in deter-
mining the reduced temperature r=(T —T, )/T, to be
used in subsequent analysis of the critical behavior.

Longitudinal and transverse x-ray scans through
(0,0, 2qo) were carried out at 22 fixed temperatures over
the range 2 X 10 + ~ ~ 1.2 X 10 . The scattering
profiles (not shown) look very similar to those shown in
Fig. 1 of paper I. Both scans at a given T were fit simul-
taneously with the structure factor S(q) convoluted with
the instrumental resolution function. The form used for
S (q) was the standard choice discussed in paper I:

~(q) =~/['+&ii(qadi q. '+&lql+ &lql] '

where the coefficient c of the quartic term is a freely ad-
justable parameter. Figure 1 shows the dependence of
the quantities g~~, gi and o on the reduced temperature r
As is conventionally done, the critical behavior of these
parameters will be described at this point using pure
power laws and effective critical exponents:

(2)

The least-squares values of these fitting parameters are
given in Table II, where for later convenience we also
give the parameters for a fit to the correlation volume

&~~&i using

(3)

Note that y =y&~=1.316 but v~~
& v~~) v~, where

6 . so ~v vii v~ 0 + '0 is compara
ble to the anisotropy in other N Sm Asystems [7]. —-

The variations of the quartic term coefficient c and the
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FIG. 1. The dependence on the reduced temperature ~ of the
smectic-2& susceptibility o. in arbitrary units and the correla-
tion lengths gl and g', , as obtained from fitting the x-ray profiles
with Eq. (1). The lines represent least-squares fits to these quan-
tities with the pure power-law expressions given in Eqs. (2), and
the fitting parameters are given in the first line of Table II. The
o. values have been shifted up by a factor of 4 to improve the
clarity.

correlation length ratio g~~lgi are shown in Fig. 2. The r
dependence of c is essentially the same as that obtained
for DBsONO2 (shown in Fig. 3 of paper I) and also that
reported for other N —Sm- 3 systems [10,12]. As dis-
cussed in paper I, we have tested three forms for the
structure factor S(q): a simple Lorentzian, Eq. (1) with
c =0; the non-Lorentzian given by Eq. (1); an empirical
Lorentzian with a power-law correction, given by Eq. (3)
of paper I. The fits to the profiles with Eq. (I-3) are as
good as those with Eq. (1), but the Lorentzian fits are
clearly poorer. Table II shows that the effective critical
exponents obtained using pure power-law fits for

g~~ gi,
and o values are about the same with all three choices of
S(q). Bouwman and de Jeu [15] have proposed an ex-
pression for S(q) in which the quartic term in Eq. (1) is
replaced by g, qi, where g, is a splay correlation length
which is constrained to obey a pure power law near T, .
As shown in paper I for DBsONO2, Eq. (1) and this
Bouwman —de Jeu form yield identical results for gi. Us-
ing the parameters c and gi from our fit with Eq. (1), we

(b)

10 ' 10 ' 10

FIG. 2. Reduced temperature dependence of (a) quartic
coefficient c obtained when Eq. (1) is used to fit the scattering
profile for DB,CN+ C, stilbene and (b) gl /g, ratio obtained
from S(q) fits using Eq. (1) and the c values shown. The best-fit
line in (b) has a slope Av =

v~~
—v~ =0. 16.

find that g, =c .
gi is well described by g,or ' with

(,0= 2.056 A and v, =0.46.

III. PREASYMPTOTIC ANALYSIS

N —Sm-2
&

critical behavior is analyzed below in terms
of preasymptotic 30 XY theory that includes
corrections-to-scaling terms. Renormalization-group
theory [3,19] provides a description of critical singulari-
ties in C, order-parameter susceptibility y, and correla-
tion length g' only in the asymptotic (pure power-law)
limit. Heat-capacity studies of liquid-crystal transitions
show that it is very dificult to access this asymptotic
domain, and correction terms play an important role for
C analysis over the 10 &~& 10 reduced temperature
range [9,13,14]. However, because of the absence of a
theory for anisotropic critical behavior, conventional x-

TABLE II. Least-squares DB5CN+C5 stilbene parameters (with the 95%%uo confidence limits) for pure
power-law fits to gl, g'~, g~~g'~, and o with Eqs. (2) and (3). The units for g~~o and g~o are A and those for
(/~~pi)o are A . The units of oo are arbitrary. The range of all fits was 2X 10 ' ~ r ~ 1.2 X 10 . The y
value applies to the g~~g] fit.

Type of
S(q) fit

Eq. (1)
c&0
Eq. (1)
c=0
Eq. (I-3)
g~&0

Clio

7.91
+0.34
10.42

+0.70
8.56

+0.46

0.73
+0.03

0.74
+0.05

0.75
+0.04

kio

1.84
+0.08

2.37
+0.16

1.17
+0.06

0.57
+0.03

0.59
+0.04

0.59
+0.03

Oo

1.22
+0.05

2.13
+0.11

1.67
+0.09

1.30
+0.05

1.32
+0.07

1.30
+0.06

23.20
+1.11
59.68
+3.69
13.32

+0.71

3veff

1.88
+0.09

1.94
+0.12

1.95
+0.10

2
Xv

1.50

1.73

1.65
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ray analysis has neglected correction terms and used pure
power laws with adjustable effective critical exponents, a
procedure which yields v~~) vj. We shall argue below
that an analysis using corrections-to-scaling terms may
nevertheless be used successfully for the correlation
volume /~~(i.

Bagnuls and Bervillier [19—21] have carried out an ex-
act nonperturbative analysis of the P field-theory model
for three-dimensional n vector models with n =1,2, 3.
They have reported detailed numerical evaluations of the
universal aspects of the preasymptotic (first confluent
corrections) regime [19] and have tested their predictions
for the 3D XY' (d =3,n =2) model with experimental C
data for liquid helium near its A, transition [21]. This
preasymptotic isotropic theory shows that corrections-
to-scaling terms for C, correlation length, and suscepti-
bility all depend on a single nonuniversal temperature
scaling parameter 00 that can be evaluated from the C
analysis alone. Thus, it is internally inconsistent to ig-
nore correction terms in the x-ray analysis when they are
known to be large for C . The essential features of
preasymptotic 3D XY theory are summarized below, and
the theory is then utilized for the analysis of C, o., gi, gi,
and the correlation volume /~~(i.

For a scaling analysis of critical behavior there are two
dimensionless theoretical scaling fields t* and h *:

t*=8& and h "=PH, (4)

go =goo(

1+going+.

. . )

where ~ is the experimental reduced temperature and H is
the experimental field conjugate to the order parameter,
and one coupling parameter g0 with the dimension in-
verse length. The experimental free energy per unit
volume F,„,( T) is given by

F,„,( T) =ks TF,h„,(t ')+F„s(T),
where F„(T) is the regular background contribution and
the critical theoretical free energy F,h„, has the dimen-
sions (volume) . Taking into account analyticity, one
obtains near a critical point

t *=&.=8o(1+8ir+. . . )r,

t*=00~(10 . It is usual to expand the expression in
Eq. (8) to obtain

f*(t*)—=X, (t*) '[1+(X~X3+X4X,)(t*) ']+X6 . (9)

Although this approximate form is adequate over the ~
range of experimental interest for C, it is not sufficiently
accurate for g and X due to the large values of Xf and Xf
[24]. For j and X, one can expand only the term
[1+X2(t*) '] ' in Eq. (8).

Presented below is an analysis of C and the x-ray data
for five liquid-crystal systems exhibiting well-
characterized N Sm A—, tr-ansitions: DBsONO2 (paper
I), DB5CN+C5 stilbene (present paper and Ref. [17]),
8OPCBBOB (Refs. [13] and [15]), T7 (Ref. [12]), and T8
(Ref. [12)). The heat capacity will be analyzed first in or-
der to determine the value of 00. This value will then be
used in the analysis of the x-ray data.

A. Heat-capacity analysis

X(8or) '+D2, fry]+X6 J,

where X', = —i i8, (X,'X,'+X„'X,')= —0.461,
X6 =112.7, and b, i=0.524 [19]. AC&/ks =pbC&/king,
where p is the mass density and the excess heat capacity
5C in J K '

g
' units is given by

b, C =C (obs. ) —C (background)

=C (obs. ) —[B„+E ( T —T, ) ] .

The usual expression for AC —,where the superscripts
denote above and below T„is

This section presents a reanalysis of previously pub-
lished C data using nonasymptotic XY theory. The
theoretical 3D XY value of the critical exponent for C is
a= —0.0066+0.0030 [19], and the nonasymptotic ex-
pression for the critical heat capacity above T, per unit
volume AC is given by

AC
=goo8o[X, (8or) [1+(X2X3+X4X, )00 0 1 0

Within the preasymptotic critical domain D „„for the
model, 8o, g, and goo are the only adjustable

(nonuniversal system-dependent) parameters and
t* =00~,g0=g00. Higher-order analytic correction terms
can arise due to nonzero 0& and g0& as well as the factor T
in Eq. (5) [21]. Bagnuls and Bervillier [19] show that the
preasymptotic form for a dimensionless function f*(t*),
such as g*(t*),X*(t*),or C~*(t*), is

f*(t*)=X,(t*) '[1+X2(t*) '] '

b, Cq =A —r [1+Di r '+—D2,ttr]+B, ,

from which it follows that

A+ = —118goo8o (k~/p),

B,=112.7goo8o(ka/p) i

and

D I+ = —0.46100

(12)

(13a)

(13b)

(14)

X[1+X~(t*) '] '+X6,
where e is the appropriate critical exponent and X6 is
nonzero only for C . The corrections-to-scaling exponent
b, i =0.524+0.004 for a 3D XYmodel [19],and the values
of X; are well determined numerically in D „„aslong as

+ cD2, tran =d ~ (8or) + A i
7— X6 ~o

Xc (15)

The correction term Dz,z~ represents a combination of
several higher-order terms that have almost the same ~
dependence:
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where the analytic correction terms have coeKcients 2 I

and Az that are functions of a, 9, , and go, [21]. Previous
analysis of Cz(XA, ) with Eq. (12) using slightly difFerent
a and Ai values [13] shows that the D2,&r term becomes
important for ~) 5 X 10 or, as we shall see,
t' =0O& & 2 X 10 typically. It should be noted that set-
ting Dz,~=O has only a small eFect on the other parame-
ters, primarily inAuencing the D

&
/D i ratio [13].

Figure 3 presents the temperature variation of the ex-
cess heat capacity ECp for all five systems and shows the
quality of the fits to these data with Eq. (12). The fitting
parameters obtained when a and 6& are held fixed at the
theoretical 3D XY values are given in Table III. It is
clear from Fig. 3 and the y values in Table III that the
fits are of good quality. The amplitude ratios 2 /3 +

are in good agreement with the 3D XYuniversal theoreti-
cal value A /2+=0. 9714+0.0126 [20] and are incon
sistent with an inverted XY value of 1.0294 (see Ref. 13
for a detailed discussion of this point). The ratios
D, /D,+ are close to +1, the theoretically expected
value [25]. A further test of the universality of the C
fitting parameters is the dimensionless ratio R~+ defined

by

of Oor alone), this bound on D „„,will vary with the sys-
tem. As a typical example, the curve generated using the
DB5CN+ C~ stilbene value D z,&

=0.87 is also shown in
Fig. 4. For this system, D „„ends around
0O&=2 X 10

0.1

0.1

~+=~+~D+~ 'a ',
C

C (16)
0.5

which has the 3D XY value —1.057+0.022 [19]. The
Rz+ values given in Table III are in excellent agreement

with this universal theoretical value. Note that for the
preasymptotic domain, where D2,&~ is not important,
there are three fitting parameters for T )T, . The univer-
sal ratio Rz+ could be used to reduce these to two in-

C

dependent variables, in agreement with the presence of
two nonuniversal quantities goo and 80 in Eq. (10).

Finally, we have used Eq. (14) to determine the 80
values, and these are also given in Table III. The uncer-
tainties in 00 values have been estimated by stepping 0o
through a set of values and using the F test. Since the C
data above T, are of poorer quality for T7 and T8, these
0o values are more uncertain. The value of 0O is especial-
ly ill-defined for T7, where C data extend only 0.7 K
above T, . We have chosen 0o=0.23, in part because of
its internal consistency with the x-ray data analysis re-
ported below.

With values established for 00, we can demonstrate the
role of the first corrections-to-scaling term (and the Dz,zr
term) for C . Shown in Fig. 4 is a scaling plot of
~(&&~/kiigoooo) —XP —= ~(AC~+ B, )Xi /2+Ho~ —versus
the scaling field 00~. The solid line represents the
preasymptotic 3D XY expression, i.e., Eq. (10) with
Dz,~=O. The dashed line is the asymptotic pure power
law ~X, ~(00r) =118(00r)+ . Figure 4 shows that
the first-order correction term is important for
00&) 5X10 . Note that almost all the liquid-crystal
data lie at 00~ values greater than this. The upper bound
on the preasymptotic domain D„„„for C corresponds
to the 0o~ value at which the higher-order correction
term Dz,z becomes important (see Fig. 4 of Ref. [19]).
Since Dz,zr is an extra nonuniversal term (not a function
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FIG. 3. Excess heat capacity AC~ near the N —Sm-A
&

transi-
tion in five liquid-crystal systems. Note the use of different AC~
scales. The maximum reduced temperature range for the Ats

with Eq. (12) is +10;fitting parameters are given in Table III.
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TABLE III. Least-squares values of the adjustable parameters (with their 95% confidence limits) for fitting AC~ with Eq. (12). For
C~ (background), E =0 for all fits and 8„(JK '

g ') =2.93 (T8), 2.53 (T7), 2.00 (DB&CN+C5 stilbene), 2.05 (DBSONO2), and 1.75
(8OPCBOB). a =uzi = —0.0066 and 6& =Az& =0.524 were held fixed. The units for 3 + and 8, are J K '

g

System

T8

T7

DB5CN
+ C5 stilbene
DBSONO2

8OPCBOB

T, (K)

367.170
+0.003

401.87
+0.003

424.426
+0.001

404.351
+0.001
394.661
+0.001

A+

—3.34
+0.20
—1.93
+0.24

—18.59
+0.23

—13.19
+0.17

—31.45
+0.41

w-yw+

0.990
+0.004

0.983
+0.004

0.994
+0.003

0.986
+0.003

0.988
+0.003

D+

—0.06
+0.10
—0.21
+0.4
—0.288
+0.05
—0.314
+0.07
—0.282
+0.04

Di /Di+

0.74
+1.5

1 ~ 32
+0.20

0.69
+0.17

1.01
+0.15

D jeff

—1.56
+4.0

1.51
+4.0

0.87
+0.13

1.27
+0.32

0.69
+0.10

D2.a
+D2.a

—0.49
+1.0

1.25
+3.0

2.02
+0.30

1.26
+0.32

1.96
+0.29

21v

0.94

3.20 0.99
+0.20

1.86 1.09
+0.24
17.74 0.96

+0.24
12.61

+0.17
29.95 0.83
+0.40

—1.076
+0.064
—1.058
+0.064
—1.064
+0.029
—1.062
+0.027
—1.067
+0.030

0.02
+0.03

0.23
+0.50

0.41
+0.06

0.48
+0.11

0.39
+0.06

It should be noted that the magnitude of Oo is relatively
large in these polar liquid crystals compared to the value
in helium near its normal-superAuid transition. An
analysis of helium C data in Ref. [20] yields

0O =0.015-0.016.
X [I+X4~(8or) '] (17)

the intensity cr from Eq. (1), which is proportional to X]
are

(=goo'Xf(80') [)+X(X((8or) '+D(r]

B. X-ray analysis

The theoretical 3D XF values of the correlation length
critical exponent v and the susceptibility critical ex-
ponent y are v=0. 6689+0.0010 and y =1.3160+0.0020
[19]. The nonasymptotic expressions for g and X [also

and

(=for [1+0.3754(80') '+D(~]

X [1+29.76(8or) ']

X=g' g Xx(8 ~) [F1+X Xx(x8 r) '+Der]

X [I+X/(80~) '] (19)
2.07

Ogx
C4

osymptotic

r +
D~eff&Or

opreos

~ 2.03
tu

preosymptotic

O

O

2OI—

log (8p)
lo

' T?
' 8OPCBOB
I

DB~CN+C@tilbene
DBSONO2

-2

FICx. 4. Scaling plot of ~(AC~/kzgoo80) —X6 )~ vs 80~. The
solid line is the preasymptotic (D2,&=0) expression given by
Eq. (10), and the dashed line is the asymptotic pure power law.
The dash-dotted line is the nonuniversal curve for DB5CN+C5
stilbene with D2,&=0.87. The ranges 80~ of available C~ data
for five liquid-crystal systems are also shown.

o =o.or ~[1+0.5119(8or) '+Der]

X[1+24.55(8or) '] ' (20)

where b. , =0.524 as before, Xf =0.392 and Xf =0.185,
and goo and g are system-dependent nonuniversal ampli-
tudes [19]. The nonuniversal parameter 80 will be held
fixed at the value determined above from fits to C . The
higher-order correction terms D (r and Der represent a
combination of second corrections-to-scaling terms

1 048(-r '=r" ) and analytic correction terms ( —r):

D(r=d((8or) ' —(v8, +go, )r,
Dx2r=dx2(8or) —(y8, —3go, )r .

251

(21a)

(21b)

Both of these terms should be negligible in the preasymp-
totic domain D„„„,and they are retained in Eqs.
(17)—(20) for completeness.

An excellent way of visualizing the important role of
first-order corrections-to-scaling terms is to display the
variation of e+ectiue exponents v,~ and y,a defined by
v,tt—= —d in//d ln(8or) and y,z——d InX/d ln(80&) and
obtainable from Eqs. (17)—(20) with D( =DE =0. The re-
sulting values shown in Fig. 5 are valid for
t'=Oo~ 10, the limit of the Bagnuls-Bervillier numer-
ical evaluation of X; values, or to the limit of the
preasymptotic domain D „„,which is estimated to lie at
a smaller Oo~ value of about 2X 10 . In any event, it is
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0.68
I

'
I I

0.6689

0.64—

0.60—

0.56
l.3(6

l.2—

1

-6
I

-4
Og(o )

clear that the liquid-crystal data lie in a 00~ range outside
the limiting asymptotic regime.

Since pure power-law fits to N —Sm-A
&

x-ray data yield
experimental effective exponents v~~

& viz & vi as shown
in Table IV, it is obviously difficult to apply isotropic
theory to the correlation lengths. Table IV also shows
that preasymptotic (i.e., D(:—0) fits are quite poor for
both

g)~
and gt when 8o is held fixed at the value obtained

from the heat capacity. This is especially true for the

FIG. 5. Effective critical exponents v,~ and 7',~ representing g'

and y. The true asymptotic 3D XFvalues are given by the hor-
izontal dashed lines. The dependence of v,z and y,z on the scal-

ing field t*=00~ is due to first-order corrections-to-scaling
terms.

more anisotropic systems. One might speculate that the
experimental anisotropy is completely due to large aniso-
tropic second-order terms D(r, and we have tested
empirical fits with 8o fixed by the C data and D(WO as
an independent adjustable parameter for gl and gi. Ex-
cept for 8OPCBOB, there is no significant improvement
in the gi fits and only a modest improvement in the g~)

fits.
For 8OPCBOB we find D (1

= —69(X„=1.98 ) and

D(~ =136(X,=2.3), but those D( values seem physically
questionable and the y values are still much worse than
those for pure power-law fits. Another empirical fit was
to hold D( =0 but allow 8o to be freely adjustable. The
results were not encouraging for

g~~ (8o ~ nonphysical

negative values) or gi (8o ~ large values, 11.6 in the case
of 8OPCBOB) since the X values were still large. As a
final ad hoc attempt to represent the experimental anisot-
ropy with Eq. (17), we allowed goo and the coefficient
X(X( to be freely adjustable parameters with D( =0 and
00 fixed at the C value. These two-parameter fits are sta-
tistically equivalent to two-parameter pure power fits
within 95% confidence limits, but the physical
significance of the fitting parameters is unclear [26]. As
far as we are aware, the only previous analysis of a quan-
tity related to the correlation .length that utilized
corrections-to-scaling terms is data fitting for the nematic
elastic constant K3 [27]. This bend constant is given by
K 3 K 3 +6K3, where 5K 3 is expected to vary like

and fits were made with the form Ar '(I+Dr )+K3.
For three nonpolar N-Sm- A systems when D was fixed
at zero, p3 -—0.8 in good agreement with x-ray vi~ values.
When D is allowed to be a free parameter, p3-—0.67 and
D = —20. However, such a large negative D is puzzling
since it implies that 5%3 changes sign at ~=2. 5 X 10

In spite of difficulties in analyzing the individual corre-
lation lengths, we believe that one can use the theoretical
preasymptotic results for the isotropic 3D XY model to
analyze the correlation volume g~)gt (as well as the smec-
tic susceptibility o ) of liquid crystals near the N Sm A, —-
transition. The correlation volume is related quite direct-
ly to the free energy per unit volume via two-scale-factor
universality, as we shall show just below. Thus, it is pos-

TABLE IV. Least-squares values of the adjustable parameters for fits to gl and g~ with a pure power law and with Eq. (18). Quan-
tities in brackets were held fixed at the given values. The units for glo and /~0 are A. The range for these fits is

2X10 '&r& 1.2X10 . The values quoted for T7 and T8 (Ref. [12]), DB,ONO2 (Ref. [16]), and 8OPCBOB (Ref. [15]) were ob-
tained from the reanalysis of published data. In the case of 8OPCBOB, our vj value is somewhat smaller than the published value of
0.56+0.05.

System

T8

T7

DB5CN+
C5 stilbene
DB8ONO2

80PCBOB

14.55
17.20
14.83
16.24
7.91

10.97
8.74
9.33
6.76
9.42

0.699
[0.669]
0.694

[0.669]
0.732

[0.669]
0.694

[0.669]
0.721

[0.669]

0

[o)
[0.02]

[o]
[0.23]

[o]
[0.41]

[o1
[0.48]

[o]
[0.39]

2
Xv

0.84
1.26
1.37
2.84
1.82
6.33
1.59
3.64
1.23
5.83

J.O

1.49
1.31
1.94
1.18
1.84
0.76
1.75
0.89
1.73
0.545

Vj

0.654
[0.669]
0.612

[0.669]
0.566

[0.669]
0.593

[0.669]
0.547

[0.669]

[o)
[0.02)

[0.23]
[o]

[0.41]
[ol

[0.48]
[0]

[0.39]

2
Xv

0.84
0.79
1.96
2.21
0.89
3.24
1.00
1.67
1.21
4.52
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sible that g~~g~ may exhibit effectively isotropic behavior
even though gl and g~ separately are anisotropic (i.e.,
vl ) vt ) . More precise statements are not possible in the
absence of a convincing theory for this anisotropy [3,4,6].
The usual statement of two-scale-factor universality is
F„„g /kz T = Y, where F„„s is the singular free energy
per unit volume and Y is a dimensionless universal con-
stant whose value is independent of the system studied in
a given universality class [2S]. The quantity F„„sis k~T
F,h„„ that appears in Eq. (5), and g is replaced by pig~ in
the case of an anisotropic liquid crystal system. Thus,

Q1 3

Q1 1

10'

10'

10'

~ T8
o T7

2=
klkl Y theor (22)

Note that Ftheor =0 at Tc and Ftheor & 0 for T ) Tc which
means that Y' is a negative number [29]. The value of
Fth„,(r) can be obtained by integrating the preasymptot-
ic XY heat-capacity expression once the nonuniversal
fitting parameters g00 and 80 are known (for which the
mass density p is required).

Precise values of p are not known for the investigated
systems, but we can use p = 1.0 g cm with some
confidence since several other polar liquid crystals have
densities in the range 0.99—1.04 [30]. Figure 6 shows the
variation of pig~ with r for DBsONO2 and DBsCN+Cs
stilbene. The line represents Y/F, h„„where Y is a
temperature-independent adjustable constant. The values
of Y were —0 267 for DB8ONOz and —0 285 for
DB5CN+C5 stilbene. Fits of comparable quality were
also obtained for T7, T8, and 8OPCBOB, which yielded
Y= —0.299 (T7), —0.310 (TS), and —0.13 (SOPCBOB).
Since the C variations are well described by the isotropic
3D XY model, the good fits shown in Fig. 6 clearly indi-
cate that the temperature dependence of glgj can be
represented empirically by this model.

The nonasymptotic expression for /~~$3 that is a gen-

10 10 ' 10 '
e w

10 10

eralization of Eq. (1S) is

g~~gt =(flgj )0r [ 1+1. 126(80%) +D2T]

X [1+29.76(80') '] '

with D2 =D(1+2D(J and

(g g2) g
—3(gt)38 —3v —0 060g

—38—2.0066

(23)

(24)

Fits to o and gift data have been made with pure power
laws, Eqs. (2) and (3), using eff'ective exponents and 3D
XY exponents, and with nonasymptotic expressions Eqs.
(20) and (23). In the latter case, three variants were test-

FICi. 7. Scaling plot for the Sm-A
&

correlation volume: L90~

is the thermal scaling field and F, (Opr): g'lg'tl(g~~g't)p8p ~ The &p

values were determined by C~ fits, see Table III, and used
without further adjustment. The solid line represents the
preasymptotic 3D XY expression given by Eq. (23). The dashed
line is the asymptotic pure power law that will hold suSciently
close to T, where corrections-to-scaling terms can be neglected.

'l0

10

10 10'

10'

10

10 10 10 10
10 10 ' 10 4

8 7

Q
2

FIG. 6. Temperature dependence of the Sm-Al correlation
volume gift for DB,ONOz and DB,CN+C, stilbene. The solid
fitting line Y/F, h has only one adjustable parameter, the
temperature-independent constant K The data points for the
DB5CN+C5 stilbene mixture have been shifted up by a factor
of 5 in order to improve the clarity of the display.

FICx. 8. Scaling plot for the Sm-A& susceptibility o'. Oor is
the scaling field and F2(8pr) =0'/0'pg ~ The 8p values are the
same as those used in Fig. 7. The solid line represents the
preasymptotic 3D XY expression given by Eq. (20), and the
dashed line is the asymptotic pure power law.
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TABLE V. Least-squares values of the adjustable parameters for fits to fiick~ and o with Eqs. (23) and (20), respectively. Quantities
o 3

in brackets were held fixed at the given values. The units for (fiick~)0 are A; those for oo are arbitrary. The number of data points N
in each fit and the limiting value of F for y„(fit 2)/y (fit 1) at the 95% confidence limit are N =20,F =2.2 ( T8); N =39,F= 1.7 ( T7);
X =22,F =2. 1 (DB&CN+C& stilbene); N =33,F=1.8 (DB,ONO2); and N =17,F =2.4 (8OPCBOB). The uncertainties for free 00
values are 95% confidence limits.

System (kii480

Correlation volume

3v 00

Susceptibility

80 D2

T8 37.99
31.28
28.49
28.71
29.06

1.978
[2.007]
[2.007]
[2.007]
[2.007]

[0]
[o]

[0.02]
[0.02]
0.013

+0.028

[o]
[o]
[0]
1.27
[o]

1.87
1.84
1.75
1.84
1.84

0.386
0.267
0.254
0.239
0.231

1.262
[1.316]
[ l.316]
[1.316]
[ l. 316]

[0]
[0]

[0.02]
[0.02]
0.214

+0.15

[0]
[0]—22. 1

[ol

1.32
1.66
1.28
0.96
1.08

T7 55.27
26.56
21.45
21.43
21.45

1.911
[2.007]
[2.007]
[2.007]
[2.007]

[o]
[0]

[0.23]
[0.23]
0.231

+0.16

[0]
[o]
[o]—0. 17
[o]

1.74
2.19
1.76
1.76
1.76

0.648
0.312
0.281
0.275
0.256

1.225
[1.316]
[1.316]
[ l. 316]
[1.316]

[o]
[0]

[0.23]
[0.23]
0.925

+0.51

[0]
[o]
[o]—14.3
[o]

0.88
2.76
1.36
1.40
1.14

DBSCN
+C& stilbene

23.20
8.64
6.74
7.03
6.98

1.883
[2.007]
[2.007]
[2.007]
[2.007]

[0]
[o]

[0.41]
[0.41]
0.308

+0.21

[o]

[0]
5.26
[o]

1.50
2.93
1.76
1.72
1.83

1.22
0.980
0.825
0.820
1.07

1.300
[ l. 316]
[1.316]
[1.316]
[1.316]

[0]
[0]

[0.41]
[0.41]
0.01

+0.02

[ol
[0]
[0]
14.2

1.10
1.13
1.64
1.31
1.05

DBSONO2 26.92
8.94
7.07
7.24
7.04

1.872
[2.007]
[2.007]
[2.007]
[2.007]

[o1
[o]

[0.48]
[0.48]

0.494
+0.23

[ol

[0]
3.67
[o]

1.71
4.09
1.98
1.98
2.04

1.33
0.937
0.849
0.858
0.832

1.284
[1.316]
[1.316]
[1.316]
[1.316]

[o]
[o]

[0.48]
[0.48]

0.286
+0.15

[0]
[0]
[0]

6.51
[0]

1.75
2.54
1.56
1.54
1.53

80PCBOB 21.75
3.05
2.98
2.84
2.33

1.805
[2.007]
[2.007]
[2.007]
[2.007]

[ol
[o]

[0.39]
[0.39]

4.49
+ 1.92

[o1
[ol
[o]—35.1

[o1

1.50
4.93
3.25
2.22
1.52

0.187
0.370
0.316
0.365

1.402
[1.316]
[1.316]
[1.316]
[1.316]

[o]
[o]

[0.39]
[0.39]

[o]
[0]
[o]
41.3

1.15
2.14
4.46
2.86

'To achieve a good fit, a negative value of 0& would be required. Since Oo is constrained to be positive, this fit gives a result identi-
cal to the Op=0 fit.

ed: 00 fixed at the C value with Dz =0, Oo fixed with D2
freely adjustable, and Oo freely adjustable with D2=0.
The results are compared in Table V. We are most
confident about the recent measurements on DBSONO2
and DB5CN+C5 stilbene, but the general trends seem to
hold for all the systems except perhaps 8OPCBOB. All
three variants of the nonasymptotic fits exhibit compara-
ble g values, which is related to the fact that when 0O is
free its value is reasonably close to the value determined
from C and when D2 is allowed to be nonzero its value is
small. Furthermore, the preasymptotic fits to fiick'~ and cr

with Oo fixed (and D2=0) are one parameter fits that -are
statistically equivalent to two-parameter power-law fits
within 95% confidence limits, as shown by comparing
X„(preas)IX„(pure power) to the limiting F values given in
the caption to Table V. These preasymptotic fits have the
great additional advantage of being consistent with 3D

XY theory and high-resolution C data.
Figures 7 and 8 display plots of the scaled correlation

volume and the scaled smectic susceptibility versus the
scaling field 80~. The quantity shown in Fig. 7 is
F1 (()o'r) =kll~j- (~ilkj. )0()o and that shown in Fig. 8 is
F2(9o~)= cr/cro8$ —In all fi.ve systems, these plots were
made using the Oo values obtained from the Cz fits. It
should be stressed that there is only a single
independent adjustable parameter for these plots, the
nonuniversal amplitude (giigt)o or oo. The value of
(giigf)o is dependent on goo, as shown in Eq. (24); the
value of cr o depends on both goo and f, i.e.,

oo~Xo=gooltt XfOo r, as seen from Eqs. (19) and (20).
The quality of the data collapse is fairly good for
SOPCBOB and excellent for the other four systems. One
can see from the theoretical curves that first-order
corrections-to-scaling terms play a role for Oo~ ~ 10
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C. Amplitude universality

A final test can be made of the universality of these
liquid-crystal C and x-ray results. Although the ampli-
tude A + for Cz and the amplitude (g~~g)0 for the correla-
tion volume are nonuniversal quantities, there is a univer-
sal relationship between them. The ratio R &+ is defined in
an isotropic system by (R &+ ) =ar (b—,C„"/k~ )(g"),
where the superscript ls denotes the leading singularity.
The generalization for an anisotropic system obtained
from Eqs. (10)—(12) and (23) is

(25)

where the final form follows from the hyperscaling rela-
tion 2 —a=3v that is valid for the 3D XY model. From
Eqs. (13a) and (24), one obtains the universal expression
(R

&
) =aX, (Xj), which yields the 3D XF theoretical

value R
&

=0.3606+0.0020 [19]. This value can be com-
pared with experimental values of R& calculated from
Eq. (25) using p= 1.0 g cm as assumed earlier.

The experimental R+ values are given in Table VI
along with a summary of the Ho, 3, (/~~pi)0, and oo
values used for our preasymptotic C and x-ray analysis.
Agreement between theory and experiment is excellent
for T8, DBsONO2 and 8OPCBOB, good for DB~CN+C~
stilbene, and reasonably good for T7 in view of problems
with the T7 heat-capacity data. It should be noted that
the absolute value of (/~~pi)0 depends somewhat on the
choice of structure factor S(q). The values of ((~~pi)o and

R& in Table VI are based on use of the standard S(q)
form given in Eq. (1). Use of a Lorentzian S(q) yields
(/~~pi)0-2. 9 times larger and thus R &+ values —1.4 times
larger. Use of the power-law corrected Lorentzian S(q}
given by Eq. (3) in paper I yields (gigi}o-1.9 times small-
er and thus R& values —1.2 times smaller. However,
one must keep in mind the fact that the Lorentzian fits to
the x-ray profiles are very poor [16], and Lorentzian
(/~~pi)o values are therefore unreliable. The fits with Eq.
(I-3) require empirical i)i values that are less well behaved
then the c values obtained with Eq. (1); thus we feel that

the smaller (/~~pi)o values obtained with Eq. (I-3) are also
less reliable. One could take the view that universality
arguments support the choice of the standard form for
S(q) or, more conservatively, the view that systematic er-
rors in R

&
could be as large as +0.08.

IV. DISCUSSION

In the past, it has been conventional to analyze
N —Sm-A x-ray data using pure power laws for g~~, g'i, and
o. with effective nonuniversal critical exponents even
when it was clearly established that the heat-capacity
data for the system required corrections-to-scaling terms.
This practice developed due to the fact that log-log plots
of g~~, gi, and o versus the reduced temperature r did not
show statistically significant curvature over 2.5 —3 de-
cades in w. Furthermore, there was, and still is, no theory
for the anisotropic critical behavior of

g~~
and gi to guide

the choice of correction terms. In addition, the number
of data points was usually too small for effective range-
shrinking tests. Most x-ray data sets contain 20-40 data
points over the 10 (w ( 10 range, compared to
several hundred C data points. Finally, the effective
volume exponent 3v,z= v~~+ 2vj and the effective C ex-
ponent a,z for S—Sm- A and S-Sm- Ad transitions
seemed to obey hyperscaling (a,s+3v,a=2) within the
rather large (+0.15) experimental uncertainties [7,8].

Recent investigations of several polar Sm-A, systems
have established the following pattern: (1) C has a 3D
XY form with a=uzz= —0.007 and fairly large correc-
tion terms [13,14], (2) pure power-law values of v~~ and vi
do not conform to hype rscaling expectations, as de-
scribed below, (3) the neglect of correction terms for /~~pi
and o. is inconsistent with theory in view of the large C
correction terms that yield substantial values for Ho (see
Fig. 5).

As an illustration of the failure of v~~ and vj values ob-
tained from pure power law as to satisfy hyperscaling,
Fig. 9 shows a plot of

v~~ vs v~ for X—Sm-3
&

systems with
C data that are known to conform to 3D XY theory.
One can write the anisotropic hyperscaling relation in the
form v~~=2 —a —2v~=2. 0066—2v~. This locus of v~~, v~
values that satisfy hyperscaling is shown as the dashed

TABLE VI. Nonuniversal parameters Ho, (g~~g~ lo, and cro used to fit the x-ray data with preasymptot-
ic 3D XY theory. The 00 values were held Axed at values obtained from an analysis of C~ data. Thus
there is a single adjustable parameter for the correlation volume and another for the susceptibility. The
universal ratio R& relating (g~~gf}o with the C~ amplitude A+ is also given; its 3D XY value is
0.361+0.002. The uncertainties quoted in parentheses are 95% confidence limits associated with ran-
dom errors, as determined from an F test.

System

T8
T7

DB~CN
+C5 stilbene

DB8ON02
80PCBOB

0.02(0.30)
0.23(0.50)
0.41(0.06)

0.48(0. 11 )

0.39(0.06)

—A+ (JK 'g ')

3.34(0.20)
1.93(0.24)

18.59(0.23 )

13.19(0.17)
31.45(0.41 )

(4~]kho (A }

28.49( 1.43 )

21.45( 1.03 )

6.74(0.35 )

7.07(0.37)
2.80(0.31)

00 (arb. )

0.254(0.012 )

0.281(0.011)

0.825(0.035 )

0.849(0.036)
0.316(0.030)

0.358(0.009)
0.271(0.012)
0.391(0.007)

0.355(0.006)
0.348(0.012)
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0.9

8S5
I

0.8—

~5C~+ i
C5stilbeney

; 40.7

80PCBOB
f

~)i ~xv
=3

&i ~&x~

DB80NO~

T7 N T8
I

"OXY

0.6—

0.5 0.6 0.7

line in Fig. 9. In addition to the isotropic 3D XY point
and the XY hyperscaling line, we also plot the position of
the effective v~~, v~ values predicted by Patton and An-
dereck [6] for an intermediate temperature regime where

v~~
=v~z but v~ =

4 vz~ =0.502. The Patton-Andereck
calculation predicts an extended crossover from isotropic
(vll vi v») to a isot opic (vll 2v&=2vxr ) fixed
points but does not consider the role of correction terms.
In their model, coupling between the smectic-order pa-
rameter and nematic director Auctuations gives rise to
the intermediate regime described above. The N —Sm-A

&

results given in Fig. 9 could be consistent with an evolu-
tion from very weak-coupling isotropic behavior for T8
toward this Patton-Andereck intermediate anisotropic re-
gime. However, a quantitative calculation of the Patton-
Andereck crossover function would be required to sub-
stantiate this idea.

Also shown in Fig. 9 are two nonpolar N-Sm-A sys-
tems which have C behavior very close to XY theory. It
should be noted that these two nonpolar systems with
-25-K nematic ranges deviate from hyperscaling in a
different manner than the N —Sm- A

&
systems and exhibit

large y values ( —1.5) [7]. Indeed, it seems likely that
there are two distinct classes of g'll, gi and o behavior in
systems with XY-like heat-capacity behavior. For
N —Sm-2

&
systems, v~~ and y are close to XY values but

v~& v~~. For N —Sm-2 systems, v~ is close to v&z but

FIG. 9. Plot of v~~ vs vj, where these e6'ective exponents are
obtained from pure power-law fits with Eq. (2). Standard devia-
tions are indicated by the error bars. The dashed line gives the
locus of vI~, v, values that satisfy hyperscaling in systems with
XY heat capacit;y behavior (a=a&&). The isotropic 3D XY
point v~~

=v~= v» is indicated by the open square, and the
Patton-Andereck regime [6] where vll= —,v~=vzr is indicated

by the triangle. Data for the nonpolar Sm-A compounds 40.7
and 8S5 are taken from Ref. [7].

vll) vier and yAyzi. It should be noted that for the
splay elastic constant K, =K

&
+5K &, the pretransitional

excess 5K& is large but nonsingular for nonpolar Sm-A
materials while 5X& is close to zero for polar materials
[31]. Since coupling between the smectic-order parame-
ter and director splay deformations is a possible source of
anisotropic behavior [3,6], it is not surprising that a
difference in 5K, would be reffected in the behavior of gll
and gi.

In view of the points discussed above and the fact that
the Sm A, correlation volume gllgi can be well described
with the 3D XY free energy F,„„,determined only from
C data (see Fig. 6), we believe that gllgi and o should be
described with preasymptotic 3D XY theory. Such fits
must be restricted to the preasymptotic domain D „„,
over which higher-order correction terms can be neglect-
ed. The extent of D~„„ is difficult to establish for gllgi
and o. due to the sparse x-ray data. It can be estimated
for the heat capacity [13],and for C a typical D„„„re-
gime extends out to Op7 —2 X 10

An internally consistent analysis of AC, gllgi, and cr

shows that all of these properties can be mell described by
the exact preasymptotic theory of the isotropic 3D XY
model [19,21].Data fitting in the nematic phase has been
achieved with a minimal set of adjustable parameters:
four for b, C~ (only two of which are independent parame-
ters needed for the preasymptotic range) and one addi-
tional parameter for each of gllgi and cr The. essential
nonuniversal parameters are given in Table VI. Figures 7
and 8 show that the scaled correlation volume and scaled
susceptibility agree very well with 3D XY theory. Fur-
thermore, the ratios 3 /3+, D& /D,+, Rz+, and the

C

product R
&

are all in good agreement with universal 3D
XY values; and, of course, hyperscaling is obeyed.
Overall agreement between x-ray experiment and 3D XY
theory is poorest for SOPCBOB (see Tables IV and V),
which may indicate some difhculty with the x-ray mea-
surement or may be due to the fact that the nematic
range is only 45 K in this case compared to ~ 96 K in the
other four systems.

The agreement between experimental and theoretical
values for R+ demonstrates the compatibility between

~ 2the nonuniversal amplitudes for C~ and gllgi. No such
test exists for the amplitude of o. . It should be stressed
that the agreement among values of R

&
is quite remark-

able. Such agreement means that one can quantitatively
predict, with no adjustable parameters, the behavior of
gllgi over 6 decades in magnitude from a knowledge of ex-
perimental heat-capacity data and preasymptotic XY
theory.

There are four major unresolved issues remaining:
and gi diverge differently in the X phase over the
10 (w ( 10 range (see Ref. [6]); the correlation
lengths measured directly with x rays and those deter-
mined indirectly from nematic elastic constant data agree
quantitatively [7,32], in spite of predictions of gauge-
dependent differences [3]; the C~ amplitude ratio

/A + agrees with the normal XY value and is incon-
sistent [13] with the theoretically expected [2]
inUerted-XY value; the behavior of the layer compression-
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al elastic constant 8 in the Sm-3 phase does not conform
to the predictions of the de Gennes model [33]. These
features may be related to problems of gauge dependence
in the asymptotic limit [3], to very slow crossover be-
tween isotropic and anisotropic fixed points [6], or to the
size of anisotropic correction terms that restrict the
asymptotic regime to very small reduced temperatures
(say r ( 10 ). The subtlety of N —Sm- A behavior is indi-
cated by Monte Carlo simulations [34] on a lattice ver-
sion of the de Gennes model that corresponds to the ex-
treme type-II superconductor limit. Renormalization
analysis in the superconducting gauge for such a model
yields an isotropic critical point with an inverted C am-
plitude ratio [2,3]. However, the Monte Carlo numerical
results show anisotropic critical behavior for gl and gj
(gl/gt calculated in the experimental x-ray gauge in-
creases smoothly on cooling toward T, ) and no inversion
of C amplitudes [34].

Further experimental x-ray work on systems exhibiting
3D XY heat-capacity behavior is in progress with a study
of the N —Sm- A 2 transition in 7APCBB [35], which
hopefully will help to clarify the generality of the behav-
ior seen so far only in Sm-A, systems. A detailed syn-

chrotron x-ray study of the Sm- A
&

phase behavior below
T, would also be of value. In terms of theory, the most
important initiatives would seem to be more precise
Monte Carlo simulations and the development of a
nonasymptotic model which allows one to assess the
effects of anisotropy on the correction terms for g'~~ and gj.
Our assumption that one can use isotropic 3D XY theory
for cr and pig~ seems to be validated empirically but needs
to be explored theoretically for a model that explains the
differing behavior of the individual correlation lengths gl
and gt.
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