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Phase-field model of solute trapping during solidification
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A phase-field model for isothermal solidification of a binary alloy is developed that includes gradi-
ent energy contributions for the phase field and for the composition field. When the gradient energy
coefBcient for the phase field is smaller than that for the solute field, planar steady-state solutions
exhibit a reduction in the segregation predicted in the liquid phase ahead of an advancing front
(solute trapping), and, in the limit of high solidification speeds, predict alloy solidification with no
redistribution of composition. Such situations are commonly observed experimentally.

PACS number(s): 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp

I. INTRODUCTION

Sharp-interface models of alloy solidification typically
employ the solution to the usual diffusion equations for
heat and solute in the bulk phases. The matching of so-
lutions at the liquid-solid interface is obtained from flux
conditions required for conservation and through consti-
tutive laws for the jump in concentration across the inter-
face and its temperature as functions of interface velocity.
The latter are obtained from a separately derived model
of the atomistics of solute diffusion across the interface.
The dependence of the jump in concentration on veloc-
ity is termed solute trapping and provides a mechanism
whereby the jump vanishes at high rates of solidi6cation
consistent with experimental observations (partitionless
solidification). While this modeling approach has met
with considerable success, it is clear that at high rates of
solidification (1 ms ) the concentration gradient near a
freezing interface may be sufficiently large that gradient
energy terms, as in the Cahn-Hilliard equation, should
be included in the solute-diffusion problem in the liquid.
The phase-field model presented in this paper will pro-
vide a common framework for the incorporation of these
terms into the diffusion equation and at the same time
provide a description of the difFusion in the interfacial
zone, thus avoiding the requirement for separately de-
rived constitutive laws for the interface conditions.

Kinetic theories for solute trapping fall into two cat-
egories, diffuse and sharp interface theories. Baker [1]
solved the dilute-solution-continuum difFusion equation
in a moving reference frame across a difFuse interface with
various assumed spatial variations of energy to predict
solute trapping by rapid growth. Langer and Sekerka [2]
demonstrated that a solution to the Cahn-Hilliard equa-
tion in one dimension exhibits a reduction in the change
in composition across a diffuse moving interfacial region
between two phases as the velocity of the front increases.
Their solution requires a miscibility gap (double-well po-
tential) in the conserved order parameter (composition).

Many sharp interface theories of solute trapping are
typified by the approach of Chernov [3]. Analytic and
Monte Carlo models of trapping based on very similar
principles to Chernov's have been developed by others

[4—7]. In these models, an impurity atom must actively
jump into the solid crystal at levels in excess of the equi-
librium solubility. Thus special assumptions are required
regarding preferential adsorption at the interface. In the
approach of Aziz [8], the impurity may end up in the
crystal on a high-energy site by virtue of the formation
by its neighbors of a regular lattice around it. Hence
to avoid incorporation onto a high-energy lattice site, an
atom must diffuse away. Since the maximum speed of
diffusion can be rather slow compared to the speed with
which crystal-melt interfaces can move [9—11], the atom
may be trapped on a high-energy site by a rapidly moving
interface.

Phase-field models have been used to describe solidifi-
cation of pure materials for many years. In this context
they were developed by Langer [12, 13], Caginalp [14],
and also Collins and Levine [15]. Caginalp has also ex-
tensively studied their mathematical properties [16, 17].
A recent review of phase-field models is given by Fife
[18]. More recently, phase-field models that deal with
alloy solidification have been developed by Lowen, Be-
choefer, and Tuckerman [19] and Wheeler, Boettinger,
and McFadden (WBM) [20].

In previous work [20], the authors have presented a
phase-field model for alloys in which a free-energy sur-
face and field equations were developed for the phase
field P(x, t) and the solute concentration c(x, t) . This
work contained a gradient energy term for the phase field
but not for the solute field. Asymptotic analysis of this
model in the limit of a sharp interface, while recover-
ing the required flux conditions based on conservation
of solute at the interface as well as the Gibbs-Thomson
efFect for curved interfaces, produced a model in which
the jump in concentration across the interfacial zone in-
creased in magnitude as a function of velocity. This ef-
fect, which is contrary to experiments on solute trapping
[21—23], is eliminated in the model presented in this pa-
per. The essential feature that caused this difBculty was
made evident by the parallel tangent condition that arises
in the asymptotic analysis. This condition requires that
the concentrations of the liquid and solid phases on the
two sides of the interface must be given by two tangent
points to the curves for the liquid and solid free-energy

1893 1993 The American Physical Society



A. A. %'HEELER, %'. J. BOETTINGER, AND G. B. McFADDEN

density versus concentration, respectively. The two tan-
gents must be parallel and separated by a energy that is
an increasing function of the growth velocity. The par-
allel tangent condition precludes the possibility of solute
trapping, since the resulting interfacial solid and liquid
concentrations generally cannot approach each other. In
this paper we will show that inclusion of the gradient-
energy term for the solute breaks this condition and al-
lows solute trapping to occur.

The incorporation of gradient-energy terms into the
diffusion problem requires a gradient-energy eoeKcient
not present in phase-Beld models for pure materials or
in the previous model for alloys. This new coefficient,
6, affects the thickness of the thin solute transition zone
between liquid and solid phases independent of the thick-
ness of the phase-field transition zone, which is deter-
mined by the gradient-energy coefficient for the phase
field, s'. Whereas the introduction of the phase field and
its associated gradient-energy coefBcient may be viewed
as artificial and a regularization of the moving boundary
problem, the need for a gradient-energy coefBcient for so-
lute to describe properly diffusion in finely spaced mul-
tilayers [24—26] and during spinodal decomposition [27]
is well documented. It therefore makes sense to consider
an asymptotic analysis for small values of the ratio e/h.
This limit implies that the spatial extent of the struc-
tural disorder is small compared to the spatial extent of
the composition variation across an interface. Through
this asymptotic analysis, we derive a new set of govern-
ing equations that depend only on 6 and that, through
comparison to experiments, may provide a database for 6
without requiring values for e. In order to illustrate our
model we therefore will show results for three values of 6
added to the materials properties used for nickel-copper
alloys developed in our previous model [20]. Further,
from predictions of our model we describe experimental
measurements that could be used to determine values for
6 for alloy solidification.

The present model is for isothermal solidification,
wherein heat How is ignored and the temperature, and
the composition of the liquid far from the interface, would
be controlled parameters. For a steady state, the theory
would then predict the velocity of the interface and the
compositions in the interfacial zone. With this approach,
constant-velocity planar solutions cannot be obtained ex-
cept under special conditions. Experimentally, heat Bow
generally has the role of setting the interface velocity, as,
for example, in directional solidification. Thus it is use-
ful to consider the velocity and the liquid composition
far from the interfacial region as being controlled while
the self-consistent temperature and the interfacial com-
positions are determined by the theory. This approach
allows us to directly inspect the behavior of the model as
the solidifieation velocity is increased through constant-
velocity planar solutions.

In Sec. II we develop the general phase-Geld model
for alloys and give the governing equations, In Sec. III
we study solutions that correspond to a stationary pla-
nar interface and we present the asymptotic analysis that
yields information about surface tension and adsorption.
In Sec. IV we extend this asymptotic analysis to the

case of a planar interface freezing at constant velocity,
and obtain a new set of governing equations, with solu-
tions that exhibit solute trapping. In the last section we
discuss our results and compare them to the Aziz model
of solute trapping [8, 28].

II. THE MGX)EL

where 0 is the volume occupied by the system, c is the
concentration (mole fraction) of B, and s ) 0 and 6 ) 0
are the eoeKeients of the phase-Beld and solute gradi-
ent energies, respectively. The simplest choice for the
Helmholtz free-energy density f(P, c) corresponds to an
ideal solution and is identical to the one used previously

[20], as given by

&(& c) = c&i3(&) + (1 —c)~~(&)

RT+ [c ln c+ (I —c) ln(l —c)],
Vm

(2)

where B is the universal gas constant, T is the tempera-
ture of the system, which is a parameter in the isothermal
problem, and v is the molar volume, which is assumed
to be constant. The terms proportional to RT/v in this
equation correspond to the contribution to the Helmholtz

In our previous model [20], the Helmholtz free-energy
functional was assumed to depend only upon the phase-
field P(x, t), its gradient V'P(x, t), and the concentration
c(x, t) Thi.s model recovers the standard difFusion equa-
tion in the bulk phases. In the sharp-interface limit of
this model, when a planar interface propagates with a
constant velocity, the process of solute segregation at the
interface results in a solute boundary layer forming ad-
jacent to the interface with a length scale D/V, where
D is the diffusivity of solute in the liquid and V is the
interface velocity. As V increases the associated solute
gradients become correspondingly large, and the length
scale of the solute field diminishes. In fact, for a typical
value of the solute diffusivity of 10 5 cm s, the length
scale D/V of the solute field approaches atomic dimen-
sions for velocities on the order of 100 cm s i, which
is common in rapid solidification experiments. It is well

known that continuum treatments of diffusion processes
that occur on length scales approaching atomic dimen-
sions typically require the inclusion of gradient-energy
effects.

To remedy this shortcoming we generalize the
Helmholtz free-energy functional, P, used in the pre-
vious phase-field formulation to allow it to depend on
V'c(x, t). This, as we show below, results in the char-
acteristic length of the solute profile at high interface
velocities that is larger than D/V This prov. ides a so-
lidification model that is valid to much higher interface
velocities than those based on the classical diffusion equa-
tion. For an isothermal binary alloy with components A
and B we put
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free-energy density of the entropy of mixing of an ideal
solution model. The functions f~(P) and f~(P) repre-
sent the Helmholtz free energies of the pure materials A
and B, respectively, with corresponding melting points

TM and TM . The functions are given by double-well(~) (&)

potentials with respect to P. As in our earlier model, we
employ the forms used by Kobayashi [29]:

fA(4) = ~~ p(» —1)[»
——,

' —PAP')]dp (3)

p(p —I» —
~2

—~&( )]"p

where W~ and W~ are constants. We assume that
T & TM, and that —1/2 & P~(T) & 0

Pg(T) & 1/2 [see Eq. (19) below]. A more complex form
of Eq. (2) might include energy of mixing terms propor-
tional to c(1 —c).

We require that the governing equations ensure that
the Helmholtz free-energy functional decreases monoton-
ically in time, and that the total solute within the system
is conserved. Simple postulates satisfying these require-
ments are

energy is included in the model. For simplicity we con-
fine our attention to planar interfaces; nevertheless, this
still provides a rather complicated situation, and so to
proceed we consider first a stationary interface in which
the relative effects of the two gradient-energy terms are
revealed.

Our extension of the phase-field equations given by
(5) and (6) may be viewed as generalized forms of the
Cahn-Allen [30] and Cahn-Hilliard equations [31], re-
spectively. They are coupled through the energy den-
sity f = f(P, c). The Cahn-Allen equation describes the
motion of antiphase boundaries in chemically ordered
crystal [f = f(P)], and the Cahn-Hilliard equation de-
scribes spinodal decomposition [32] [with f = f(c)]; in
both cases, the appropriate form for f is given by a dou-
ble well in P or c, respectively. In order for a single set
of governing equations to treat the motion of the liquid-
solid interface for alloys and also for pure materials, the
double well in the free energy must exist with respect to
P. For the ideal solution model considered here, the free
energy is convex in the variable c.

III. STATIGNARV INTERFACE

—= V. Mz
i c(l —c)V'

where

bP Of

Of
Oc

(5)
We first consider the solute and phase fields due to

a stationary planar solid-liquid interface situated in an
infinite region, in which the far-field boundary conditions
are given by c ~ c+ and P ~ 0 as z —+ oo, and c ~ c ~
and P ~ 1 as z ~ —oo. We choose the origin z = 0 such
that the liquid (P = 0) lies in the region z ) 0, and
the solid (P = 1) lies in the region z & 0. The aim is
to determine c+ and c, which represent the bulk
concentrations in the liquid and solid, respectively, and
to identify the characteristic length scales associated with
the solute and phase fields in the interfacial zone.

The steady one-dimensional forms of the governing
equations (5) and (6) are given by

The quantities Mi and Mz are positive, and may depend
on c, P and T. Allowing M2 to depend on P can pro-
vide for difFerent solute mobilities in the liquid and solid
phases. In the present work we take Mi and M2 to be
constants. Appropriate boundary conditions for a finite
volume 0 are

(9)

—6c„+f,=A,

where we have integrated the solute equation twice and
employed the far-field conditions that c is bounded. The
boundary conditions are

Op Oc O(V c)
O'fl OA O'll (~ )

(1,c ~) as z ~ —oo)
(0, c+~) 88 z ~ Oo.

(11)
(12)

where n is the outward normal to the boundary of A.
It follows that the highest spatial derivatives that ap-

pear in the phase-field equation (5) are given by the
Laplacian operator, whereas those for the solute concen-
tration (6) with b g 0 are given by the spatial biharmonic
operator. For 6 = 0, the highest spatial derivatives that
appear in the solute equation are given by the Laplacian,
with a diffusion coefFicient given by [20]

Equations (9) and (10) are simply the Euler-Lagrange
equations that minimize P subject to the constraint that
the solute is conserved; A is then the corresponding La-
grange multiplier. WBM considered the case b = 0 and
showed that the concentrations c+ and c were given
by the common tangent construction to the free-energy
densities in each phase, f(0, c) and f(l, c).

It is convenient to recast (9) and (10) in the form

D=M

Our aim here is to study the eÃect of interface velocity
on the segregation at the interface when a solute gradient

~ 4'zz+ I"y = 0,

6 c„+I',=0,
where

(13)
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F(g, c) = Ac —f(P, c),

in which case it is clear that the associated Hamiltonian

~2 $2H= (P) + (c) +F

1728—

1654—

is conserved. Here, the Hamiltonian describes motion of a
particle in the potential Geld given by F, with the spatial
variable z playing the role of time and the gradients P,
and c, playing the role of velocity components. It is
convenient in the present context to retain the coeKcients
c and 6 in the Hamiltonian, rather than rescaling so that
the coefficients are equal, as would normally be done in
a classical description of particle dynamics.

Since in the far field the spatial gradients vanish, by
comparing the values of the Hamiltonian as z —+ +oo it
follows that

1580—

1506—

1432

1358
0.0 0.2 0.4 0.6 0.8

Concentration of copper c

I

1.0

F(l, c ) = F(0, c+ ), (15)

and, from the solute equation, it similarly follows that

F,(l, c ) = F,(0, c+ ) = 0. (i6)

A. Asymptotic analysis for e/b (g 1

To investigate the behavior of the stationary interface
in more detail, we consider an asymptotic analysis in the

Additionally, it is required that Fy(1, c ~)
Fy(0, c+0 ) = 0, but this is automatically satisfied from
the assumed form of the free energies fA and fis Equa-.
tions (15) and (16) determine the three unknown quanti-
ties c,c+, and A, and can be rewritten in the form

'""-)-'(''--) =~=f(0. )=f(i. )
&+oo —&—oo

(17)

The identical conditions hold for the case 6 = 0 [20]; in
both cases c and c+ are determined from the com-
mon tangent construction using the free energies f(l, c)
and f(0, c) of the two phases. Thus for a stationary inter-
face, the inclusion of the solute gradient energy does not
disrupt the common tangent construction, which is im-
portant because any dynamical theory of solute trapping
must recover the equilibrium conditions for a stationary
interface. However, the inclusion of the solute gradient
energy does affect the spatial structure of the solute and
phase fields, as we discuss next. In Fig. 1 we show the
phase diagram computed from the present model for the
nickel-copper alloy database given in Ref. [20]. The loci
of c ~ and c+~ as functions of temperature are called
the solidus and liquidus, respectively.

Numerical integration of the governing equations for
various values of s/6 are shown in Fig. 2. It is apparent
from this figure that as s/b decreases, the width of the
phase-Beld transition diminishes compared to that of the
solute Beld. This change in scale of the phase field rela-
tive to the solute field as s/6 decreases is a result of the
decreasing importance of the phase-field gradient energy
relative to the solute gradient energy.

FIG. 1. The phase diagram for the nickel-copper alloy.
The liquidus and solidus are represented by the upper and
lower solid lines, respectively. They are computed from the
common tangent construction (17). The dashed curve repre-
sents the quantity c*, using the approximation A = 0 [see Eq.
(»)]

limit s/6 —+ 0. We can roughly associate the two lengths

Vm
Es = b

as being characteristic of the transitions layer thicknesses
of the phase field and solute field, respectively. In addi-
tion to the characteristic lengths 8, and Es, the free en-
ergy used in the phase-field model involves the energy
densities W~ and W~, as well as the dimensionless func-
tions P~(T) and P~(T), which together determine the
double-well structure of the free energies of pure compo-

1.0

Y)
~ I@+I

0.5—
Q
M

~ 0e~~
~ QQSOSSOS

ae++ee ~ sasees0
~ 0

s 0
~ IIIII

0.5 ~

Q
Q

0

0.0 I

-2
0.4

FIG. 2. Concentration (dashed line) and phase-field (solid
line) profiles across a stationary interface obtained by numeri-
cal integration of Eqs. (9) and (10) for values of (s/6) of 0.01,
0.005, 0.002, and 0.0005. The smallest value corresponds to
the sharpest proGle for the phase Geld. The 2; axis is measured
relative to Es = 6+v /RT; here 6 ='3.3 x 10 J ~ em
and T = 1543 K.
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nent A and B in our model. We previously discussed how
these quantities can be related to conventional material
properties for solidification through the expressions [20]

WAPA(T) (T —TM )

W~ p~ (T) (T —TM(
) )

TBB (8)

s/WAcA= s/W~
&B = (20)

where L A and o A are the latent heat per unit volume and
the surface tension, respectively, for pure component A,
with the analogous definitions for component B. In per-
forming the limit s/6' ~ 0, it is also appropriate to scale
the phase-field parameters WA, W~, pA, and p~ in the
appropriate fashion to maintain finite values of surface
tension and latent heat as the phase-field transition layer
becomes sharp relative to the solute layer.

To proceed we choose units based on the length E~ and
energy density RT/v, and introduce the dimensionless
variables z = z/Eb and f = f/[RT/v~] (quantities with
tildes will be dimensionless). We set s = s/b, and con-
sider the limit Z ~ 0. The scaled energy (2), on elimi-
nating WA and W~ in favor of oA and o~ by using (19)
and (20), then takes the form

f(p c) —cf~(p) + (1 c)fA(p) + c inc
+(1 —c) ln(1 —c),

where

fA(4) = —, fA "(4)+ fA'(4)

with

(22)

fA (Q) = 188'AQ (1 —Q), fA (P) = AFAR (3 —2Q),

(23)

and

WAPA LA (T —TM )
(A}

6[RT/u ] [RT/v ] T(A)

dq (o)
+ f,(l, c( ) = A for S & 0,dz2

dzc(o)
+ f,(0, c+( ) = A for z & 0,

dz

(24)

where A = A/[RT/v~]; note from Eq. (23) that the
free energy f(P, c) has no explicit s-dependence when
evaluated at P = 0 and P = 1. First integrals for these
equations can be determined by integration with the far-
field conditions c+~) (S) -+ c~~ as z —+ Boo:

dc(" —f(l, c( )) + Ac( = F for z & 0,
2 iIz

d (o)
—f(O, c+ ) + Ac+ ——F for z & 0, (27)

2 (dS) '+

where F~ = Ac ~ —f(l, c ~) = Ac~~ —f(O, c+~),
as follows from the common tangent conditions derived
above.

Boundary conditions at the interface z = 0 are found
by matching the solutions in the inner and outer regions.
Expanding the expression c(z) = c+( (z) + s c+ (z) +
O(C ) for z = 8 x with S & 0 gives

()c(Z x) = c+()(0) +Z + (0)x+c+ (0) +O(s~),

refer to as the outer regions, where z is of order unity;
the latter regions are distinguished from one another by
z being positive or negative. We expand the solution in
the outer regions as regular perturbation series in Z, i.e. ,

~=~")()+"~("()+O( ),
and

c = c(0)(S) + szc(z)(S) + O(s4).

In the inner region we set z = 8 x, and write similar
expansions for the variables c(x) = c(z), and P(x)
4'(z)

In the outer regions c varies but P is efFectively either
zero or unity, and we find that, to all orders, P = 0 for
z & 0 and (t = 1 for S & 0. The leading-order problem
for c( ) in the outer regions is then given by

R'A 72OA

[RT/v ]
Zz

Here AFA, the dimensionless free-energy difference be-
tween the solid and liquid phases of pure A, and crA =
oA/(6'gRT/v ), th. e dimensionless surface tension of
pure A, are assumed to be of order unity in taking the
limit. Similar definitions hold for the B component. We
introduce the notation f(") = cf&(") + (1 —c)fA" for
n=. 0, —2.

ln the limit 8 —+ 0 it emerges that there are three
diferent regions in z: one, which we refer to as the inner
region, in which z is small, and two others, which we

d2-(o)

dx (29)

The leading-order solute field is thus linear in the inner

which provides the appropriate far-field boundary condi-
tions for the solute field in the inner region for x & 0.
Similar relations hold for z & 0.

To leading order the solution in the inner region satis-
fies

d2 "(0)
+ 72 (~' c"' + a„'[& —c"'])

dx

x~("(~(') - 1)(~("- -,') = o, (28)
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P(o) (x) =
2 [1 —tanh(3o*x)],

where

(30)

o'* = c*o'~2 + (1 —c*)cr~2 (31)

is a dimensionless weighted average of the surface ener-
gies of the two components. This shows that the char-
acteristic dimensional length associated with the phase
field is actually s2E&/o*. The first-order problem is

i(—2) (y(0) *)y(2) i(—2) (y(0) *) (2)
2 (2)

,2c(2)
18(y(0) )

2 (1 y(0) )
2 y 2 g 2

]dx (33)

This provides a solvability condition obtained by inte-
grating Eq. (33), which after matching to the outer solu-
tion gives the following interfacial condition for the jump
in the leading-order concentration gradient across the in-
terfacial layer,

where

(O)
dC+

dz
z=O+

dc'"
dz

z=O

(34)

(35)

Employing Eqs. (26) and (27), we deduce that the
interfacial concentration c* is related to the interfacial
concentration gradients at leading order by

dc("
2 dZ

z=O

dc+(O)

+ d.
z=O+-

(36)

or

—S(1,c.) + gS —F(0, c*)A

2

= i(') (0, c*) —i(') (1,c*). (37)

If ~A~ && 1, then Eq. (37) would be approximated by

f( (O, c*) = f( )(1,c*), (38)

and so c* would be the concentration for which the

region,

c (x) = a( x+c*.
To match with the leading-order outer solution it must
be a constant, c( )(x) = c*. The value of c*, which we
will eall the interfacial concentration, is found through
the matching procedure at next order. The leading-order
phase field in the inner region is then found to have the
explicit form

Helmholtz free-energy density is continuous across the in-
terface, and from Eq. (34), the derivative of the leading-
order concentration would be continuous across the in-
terfacial layer as well. The quantity A may be roughly
estimated by (o z —8'~)/2, which for a nickel-copper alloy

[20] is given by 10 7/b, where b has units J cm
Below we illustrate the results of our model for three val-
ues of 6 all greater than 3.3 x 10 J cm /', in which
case ~A~ && 3 x 10 2 and so we expect this approximation
to be reasonable. In the light of this, and for simplic-
ity, in the remainder of the treatment of the stationary
interface we will henceforth set A = 0, although incorpo-
rating the effects of nonzero values for A would present
no essential difBculties.

We now summarize our findings under this assump-
tion. The form of the free-energy function f(P, c) de-
termines the far-field values c and c+ through the
common tangent construction (which does not depend
on the value of A), and determines the constant value
c* of the leading-order concentration in the inner re-

gion. The leading-order phase field P(0)(x) in the inner
region is given by Eq. (30), with far-field values given by
P(0) —+ 1 as x ~ —oo, and P( ) ~ 0 as x ~ +oo. In
the outer regions the leading-order concentration c( ) (z)
satisfies Eqs. (24) and (25) with P(0) = 0 for z ) 0 and
P(0) = 1 for z & 0. The far-field boundary conditions

are c+ (z) —+ c+~ as z —+ oo and c (z) —+ c ~ as(O)— (O)-
z —+ —oo. At the origin the solute field and its deriva-
tive are continuous, and the solute concentration is given
by c(o)(0) = c*. The value of c* is the concentration
for which the Helmholtz free-energy density of the liquid
and solid are equal. The dependence of c* upon the tem-
perature is shown in Fig. 1 by the dashed curve. [The
curve c"(T) is often referred to as the To curve, [33]].
Prom this analysis we see that a complete separation of
length scales of the solute and phase field occurs in the
limit Z —+ 0: the solute varies only in the outer region
where z = O(1), and the phase field varies only in the
inner region where x = O(l), and, to leading order, the
transition from P = 0 to P = 1 is sharp on the length
scale of the solute field.

B. Solute surface excess and surface tension

Solutions to the phase-field model with h P 0 provide
an example where we can calculate the alloy surface ten-
sion and surface excess quantities associated with Gibb's
notion of a diffuse interface [34]. In Gibbs' treatment,
the system is assumed to consist of two bulk phases that
are separated by a thin transition region whose thickness
is small compared to the dimensions of the bulk sam-
ple. Outside of the transition region, each of the bulk
phases is uniform, and the thermodynamic variables all
assume equilibrium values appropriate to each phase. In
the transition region there is a rapid but smooth change
of the variables in passing from one phase to the other.

The diffuse transition region is then idealized by re-
placing this region by a dividing surface, located at some
position within the transition region. Associated with
the dividing surface are surface excess values of the ex-
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tensive thermodynamic variables. In treatments of the
thermodynamics of surfaces (see, for example, [35]), the
alloy surface tension, o, satisfies

& = fÃ (IAPA+IBPB)
where fx is the excess Helmholtz free energy per unit
area of the dividing surface, I'~ and I'~ are the sur-
face excess solute concentrations of components A and
B, respectively, and pA and pB are the chemical poten-
tials of components A and B, respectively. For a one-
dimensional system with a stationary dividing surface
located at x = 0 and with equal molar volumes v in
each phase, the surface excess solute concentration I'~ is
defined by (see, for example, [36])

o = fx —Av I'B. («)

where the interval of integration extends far enough into
each bulk phase that the solute concentrations assume
their bulk values in the liquid and solid, with c( L—) = cs
and c(L) = cl„with an analogous definition for I'A. It
follows that for our model with equal molar volumes, we
have I ~ = —I'B. We note that the difference of the
chemical potentials of the two components (pB —pA)
is given by v A, where A is the slope of the common
tangent of the free-energy curves given in Eq. (17). The
above expression (39) can then be written

c(z) dz = ~s d~+ cl, dz+ v I'
The excess Helmholtz free energy per unit area associ-

ated with a planar interface that we use in our phase-field
model is given by

sz (dP& b2 (dc&
2 (dz) 2 (dz)[f(»') —f(' '- )]+—

~ ~
+ —

~

—
~

s2 ('dP ) ' b2 f dc &
'

+ [f(4, c) —f(o, c )]+—
I I

+ —
I

—
I

0
' '

2 &dz) 2 i dz)

~ = ~[@l + ~[~I (42)

Employing the definition of f(P, c), after some manip-
ulation we obtain the expression

2BT
[c] =

vm
QF(1, c) dc

where QF(0, c) dc;

and

CJ[y] = E2 f dP'i

(dz) we note that o[~j is the dimensional form of o.*, and
o.[,j is proportional to b. The integrals must be evalu-

2
o[cI = ~

f'dc i
dz.

i, dz) 1728—

In the limit s/b' -+ 0, it is natural to place the dividing
surface at the position z = 0 where P varies from zero
to unity, since there is then no ambiguity about the in-
terphase boundary location. Using the data for a nickel-
copper alloy given in [20], Fig. 3 shows the leading-order
expression for the surface excess of copper, defined by

v r~= [c~ I (z) —c+ ]dz +
0

[cI l(z) —c ]dz,

O'IyI = c*cTB + (1 —c*)FATA,

as a function of temperature between the two pure-
component melting points.

The asymptotic analysis given above shows that to
leading order a[~~ is the contribution to the surface ten-
sion associated with the inner layer where only P changes
and o.[,j is the contribution associated with the outer lay-
ers where c alone changes. These are given by

1654—

1580—

1506—
C4

~Q

1432—

1358 I I

-iO-4 0.0 10
Surface excess of copper I ~

FIG. 3. The dimensionless surface excess of copper,
f'c„= u I'c„/lq, as a function of temperature between the
melting points of pure nickel and pure copper, as computed
from the leading-order terms in the asymptotic analysis.
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where c+ and c are the concentrations far from the
interface in the liquid and solid respectively. Examina-
tion of these equations indicates that they include four
associated length scales, given by

~m Vm=b

Vv~ M2RTM'= MiRT™=
Vv

(46)

The two length scales E, and Eg arose in the case of
the stationary interface discussed in the previous sec-
tion, where E~ was chosen to nondimensionalize the gov-
erning equations. They are thus representative of the
widths of the phase field and concentration fields in the
interfacial zone, respectively, and are a result of the de-
pendence of the Helmholtz free-energy functional P on
their corresponding gradients. The two length scales EM,
and EM, are directly associated with the motion of the
interface. In particular, EM, is associated with the dy-
namic response of the interface to nonequilibrium, and
EM„on employing (8), is given by D/V, and is there-
fore the length scale on which the diffusive and advective
transport balance in the standard diffusion models of so-
lidification.

In this section we seek to extend the analysis of the
stationary interface discussed in Sec. II to a nonstation-
ary interface. As in the case of the stationary interface
we choose Eg as our reference length scale by which to
nondimensionalize the governing equations (43) and (44),
which become

with interfacial boundary conditions

c(0+) = c(0 ) = X(V, T), (52)

x=0+

dz - 0
(53)

S=p+

dZ p

= f'"(o X(V T)) —f.'"(& X(V T)) (54)

and

z=p +

x(j -x)' (55)

c-+c+ as z —+ooandc~c as z-+ —oo.

kinetics; this requires that s2Mi is of order unity in this
limit.

The details of the expansion are similar to those given
in Sec. III, but the analysis is more complicated. For
brevity we just state the results, which show that there
is an layer of thickness O(P) about z = 0 where P varies
from zero to unity and c is constant at leading order.
The leading-order solute field outside the interfacial layer
satisfies the governing equation

—
~

c(I —c)——,+f(0& ~+, +V==0,d ( d dc -0 i dc -dc
dz i dz dz2 ' j dz2 dz

(5i)

-2d 0 -2 V d4' r(—2)- 2 r(0)2+ = — Jp +Jp =0)
dz rn dz Here the interfacial concentration, x(V, T), satisfies

(56)

d d2c(,( )) '~(f( ~)f ~y f)o))
z z'

A dc
2 dZ p

dc+
dZ p+

a+ (1 —x)p

where

+ 2+V—=0, (48)
d2c - dc

dz dz

(49)

= f'"(o x) —f"'(& x) (57)

We note that when the interface is stationary (V = 0),
this reduces to the same expression (36) for c* given in
the previous section for the stationary interface. Using
the above expression for pure A, we may relate rn to the
dimensional interface kinetic coefficient for A, p~, as

and

$2
m =

~My ~My
(50)

are nondimensional representations of the interface veloc-
ity and mobility of the interface relative to that of solute,
respectively. Here z = Eqz and s' = s/b, as defined earlier.

B. Governing equations for s/6 « 1

We have conducted an asymptotic analysis of the gov-
erning equations (47) and (48) in the limit s' ~ 0, with
the remaining parameters of order unity. In particular,
the parameter m may then be associated with interfacial

pA&ATM
{A)

L~D

A similar expression can be obtained for pure B, but in
general would lead to a different value for rn. However,
because we have assumed Mi does not depend on com-
position, the values for p~ and p~ must be related, as
described in Ref. [20]. Then the values for rn calculated
for either pure A or pure B would be the same. Using the
material parameters for the nickel-copper alloy given in
WBM we find that rn - 500. The fact that rn is large will

play a role in the interpretation of the subsequent results.
It should be emphasized that the dimensionless constants
appearing in the above equations are then independent
of e, and can be computed solely from a knowledge of
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conventional material parameters and b.
The governing equation (51) and its associated bound-

ary conditions (52), (53), (54), (55), and (56) provide a
model for a continuous solute field across a structurally
sharp interface located at z = 0, where the interfacial
boundary conditions have been derived by taking the
limit of the phase-field model as the interfacial thickness,
E„be come svanishingly small compared to the thickness
of the solute layer, Ep. The boundary condition (52) rep-
resents continuity of the solute concentration at the in-
terface, which arises because the transition layer in P is
much thinner than the length scale associated with the
solute gradient energy in the limit 8 = l~/lb ~ 0; this
property was also observed for the stationary interface
in the same limit 2 —+ 0. Boundary condition (54) in di-
mensional units states that the quantity f, —62d2c/dz~ is
continuous across the interface. This quantity is 6'E/6c,
and is the generalized interdiffusion potential including
the gradient-energy contributions [27]. The interdiffu-
sion flux is proportional to d(f, —b2d c/dz2)/dz and
hence (53) and (55) taken together ensure that the inter-
difFusion Aux is continuous across the interface, which,
along with continuity of solute concentration there, en-
sures that the solute is conserved across the interface.

We integrate (51) once, which, on applying conserva-
tion of the solute across the interface and the far-field
boundary conditions, yields

c dc3
—c(1 —c) + —+ Uc = Vc~,

dz
(58)

where the two far-field concentrations c+ and c must
also be equal for this steady-state solution; their common
value is denoted c~. The appropriate boundary condi-
tions are (52), (53), and (54) at the interface z = 0; they
may be written as

c(0+) = c(0 ) = y(V, T), (59)

z=o+

C. Numerical solution of the asymptotic
governing equations

To investigate the dependence of the solute profile,
c(z), and the system temperature, T, on the dimension-

0.09- 0.09-

V =0.5

V 008- Q 008-

0.07
-10 0 10 20 30 40 50

z/lq

0.07
-10 0 10 20 30 40 50

0.09-

V=1.0
0.09-

V=5.0

for which the right-hand side of (57) is positive. Fur-
ther, we observe from Eq. (60) that in this case the first
derivative of the concentration is continuous at the inter-
face. All subsequent computations for the moving inter-
face have been done with A = 0.

We now discuss the properties of the solute field given
by the solution of (58)—(62) as the interface velocity in-
creases. If for a given V, both the system temperature
T and far-field concentration t"~ are specified, then the
boundary conditions overprescribe the problem, and in
general a solution will not exist. However, if we only
specify c~ and V the above problem determines both the
solute field and the system temperature, T. Below we
first discuss the results of a numerical integration of the
governing equations (58)—(62) and then proceed to inter-
pret them in the light of further asymptotic analysis.

dz -
o

u 008- 0 008-

z=O+
d c = AF~ —AFp.
dz =0-

The far-field boundary conditions are

0.07 I I I I I I

-10 0 10 20 30 40 50
z/l~

0.07
-10 0 10 20 30 40 50

z/lq

c —+c as ~z~ ~oo. (62)

As discussed in the previous section, A is small and
we henceforth set it to zero, in which case (57) may be
manipulated to show that the interfacial concentration
y(V, T) is given uniquely in terms of the interface veloc-
ity and system temperature by the root of

0.09-

Q 0.08-

V =10.0
0.09-

0 008-

V = 100.0

AF a —EELY +y 2 AF'z (AIla —6Fz) 0.07
-10 0 10 20 30 40 50

z/lq

0.07
-10 0 10 20 30 40 50

21

,

(Vs~ l
Hl,

= 0, (63)

FIG. 5. The solute profile computed for different values
of the dimensionless interface velocity V. Distance has been
nondimensionalized with respect to Ep, which does not depend
on the interface velocity. The material parameters are those
for the nickel-copper alloy given by WBM and b = 3.3 x
yp

—4 g1/2 —1/2
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less interface velocity, V, we have computed solutions of
the governing equation (58) and its associated boundary
conditions (59)—(62) using the NAG subroutine D02GAF

[39], which employs a finite-difference discretization al-
lied to Newton iteration. We performed computations
for the case of the nickel-copper alloy for a range of
values of V. The far-field concentration c~ was set to
7.17441 x 10 z, which is the value of the solidus concen-
tration at a temperature of 1700 K (see Fig. 1). Compu-
tations were performed using three values of 6 given by
b=33x 10 J cm ~ 33x10 J~ cm ~ and
3.3 x 10 s J cm i~; the solute profiles, however, are
not sensitive to the value of 6 used, and for purposes of
illustration we will show results for 6 = 3.3 x 10 4 Ji~2
cm i~2. The system temperature does depend strongly
on the choice of 6, as we describe below.

In Figs. 5 and 6 we show the solute profiles for
V = 0.1,0.5, 1.0, 5.0, 10.0, and 100.0. In Fig. 5, the
abscissa is z/Es, which is proportional to physical dis-
tance and is independent of velocity. Figure 6 shows the
same solute profiles but with distance scaled with respect
to EM, = D/V, the conventional difFusion length. From
Fig. 5 it is clear that the degree of segregation and the

characteristic physical length of the solute field in the liq-
uid ahead of the interfacial region (z ) 0) monotonically
decrease as the interface velocity increases. Although the
length of the solute pro6le decreases, we see from Fig. 6
that it does not decrease as rapidly as the classical diffu-
sion length, D/V.

In order to assess the dependence of the segregation on
the interface velocity V we computed the maximum value
of c(z), denoted c „, and the interfacial concentration
y, as well as the corresponding temperature, T, for each
value of V. In Figs. 7 and 8 we show the loci of the pairs
(c „,T) and (y, T) superimposed on the phase diagram;
these loci are parametrized by V. Results are shown for
the same three values of 6' given above. In all three cases,
as the velocity increases, the value of cm~„approaches the
prescribed value c = 7.17441 x 10; this limiting case
corresponds to partitionless solidification.

The rate of change of c „with velocity is independent
of the particular choice for b, as can been seen by the
vertical alignment of the solid circles on the curves in
Fig. 7. On the other hand, the manner in which the
temperature first increases and then decreases as V is
increased does depend strongly on b.

0.09" 0.09-

V=05

D. Discussion of the numerical results

Velocity dependen-ce of the solute profile

O.OS- Q OOS- At low velocities (V (( 1) the degree of segregation
in the liquid is greatest, with the maximum value of the
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FIG. 6. The solute profile computed for different values
of the dimensionless interface velocity V. Distance has been
nondimensionalized with respect to the diffusion length, D/V.
The material parameters are those for the nickel-copper alloy
given by WBM and 8 = 3.3 x 10 J cm

FIG. 7. An enlargement of the phase diagram given in

Fig. 1. The upper and lower solid curves are the liquidus
and solidus, respectively. The dashed curve is the locus of
c*. Also indicated by solid curves are the loci of the max-
imum concentrations, c „. These curves correspond (from
top to bottom) to three values of 6 = 3.3 x 10 J ~ cm
3.3 x 10 J cm, and 3.3 x 10 J cm . The solid
circles on each curve represent (from right to left) data points
corresponding to V = 0.05, 0.5, 5, 50, and 500. The data
points for a given velocity are approximately aligned in the
vertical direction, and some of the data points at high veloc-
ities are ofI'-scale and not indicated in the figure.
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concentration approaching the liquidus concentration as
the interface velocity tends to zero. It is straightforward
to conduct an asymptotic analysis of (58) and its bound-
ary conditions in the limit V ~ 0. This shows that a
layer forms about the interface of thickness Eb which sep-
arates the two outer regions, one in the solid and one in
the liquid. In the liquid outer region, the solute varies on
the length scale, EM, = D/V()) Eg) In the ou. ter regions
the solute concentration simply has, at leading order, the
classical form associated with directional solidification of
a planar interface:

c(z) = c + (cl. —c ) exp( —Vz)

in the liquid region z ) 0, and

(64)

FIG. 8. An enlargement of the phase diagram given in
Fig. 1. The upper and lower solid curves are the liquidus
and solidus, respectively. The dashed curve is the locus of
c*. Also indicated by solid curves are the loci of the interfa-
cial concentrations, y. These curves correspond (from top to
bottom) to three values of 6=3.3 x 10 'J ~ cm '~, 3.3 x
10 J' cm ', and 3.3 x 10 J cm The solid circles
on each curve represent (from right to left) data points cor-
responding to V = 0.05, 0.5, 5, 50, and 500. The data points
for a given velocity are approximately aligned in the vertical
direction, and some of the data points at high velocities are
o6'-scale and not indicated in the figure.

FIG. 9. The solid curve is the classical solute profile which
is the leading-order solute profile as V ~ 0. The dashed
curves represent numerical solutions of (58)—(62) for diferent
values of V with 6 = 3.3 x 10 J cm . The dashed
curves correspond to V = O. l, 0.5, 1, 5, 10, and 30, in order
of decreasing maxima.

c c + As exp(rsz), (67)

as z ~ —oo, where ri, r2, and rs are the three roots of
the cubic

(64) and (65). It clearly indicates that the classical result
is achieved as V —+ 0+.

The length scale of the solute field diminishes mono-
tonically as V increases and the classical form of the
solute field that is found at low interfacial velocities is
disrupted at high velocities when its length scale D/V
is comparable to the length scale of the interfacial layer,
8~, i.e. , when V = 1. We also observe from the numeri-
cal calculations that at suKciently large values of V the
solute field in the liquid develops a decaying oscillatory
form. The solute profile in the far fields can be given
explicitly by the expressions

c c + Ai exp(riz) + A2 exp(r2z),

in the liquid as z ~ +oo, and, in the solid,

c(z) = c —c~(1 —c~)r + r + V = 0. (68)
in the solid region z ( 0. In the layer the concentration
varies between the solidus concentration cg in the solid
phase and the liquidus cl. in the liquid phase, and the
system temperature is given by the solidus temperature.
In the outer regions the efI'ect of the solute gradient en-
ergy is weak and only provides a regular perturbation
to the classical exponential solute profile. However, in
the layer centered on the interface the solute gradient
energy is comparable to the Helmholtz free-energy den-
sity. In Fig. 9 we compare the computed profiles for
6 = 3.3 x 10 3 cm /, some of which are plotted in
Figs. 5 and 6, with the leading-order asymptotic solution

The quantities r1 and r2 have negative real parts, and
are either distinct and real, or are a complex conjugate
pair; the third root r3 is real and positive. The quantities
W, and X, are two real or complex co~j~ga~e co~s~an~s
and A& is a real constant.

When V is small the roots of (68) are approximately
given by

ri ——gc~(1 —c~), r2 ——V,

rs = +pc~(1 —c ),
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c c~ + V ~ Pexp —— cos —— + O(V ),3)
(69)

and, in the solid z ( 0,

c c + V z~s —exp(z), (70)

where

2v [c (1 —c )]z~s

3M'
T —TM

B (B)
M

M
A (A)

M

(71)

and z = z[c~(l —c~)/V]i~s. Thus at high interface ve-
locities the characteristic length of the solute profile is
EsV ~ = (I&EM, ) ~, and in the liquid the profile has
damped oscillations, as indeed are observed in the com-
putations (see Fig. 10). Thus, the length scale of the
solute field, although becoming smaller with increasing
interface velocity, is much larger than would be expected
on the basis of the diffusion length EM, = D/V = /p/V
alone, as suggested by our calculations displayed in Fig.
6. Moreover, we note that (c~ „—c;„)decreases like
V /' for large interface velocities. In Fig. 10 we com-
pare the computed solution of Eq. (58) with the asymp-
totic forms (69) and (70) for V + oo, and show increas-
ingly good agreement as V increases.

2. Velocity dependence of system temperuture

We now discuss the dependence of the system tempera-
ture on the interface velocity, under the assumption that
A is zero. As seen in Fig. 7, as V increases from zero the
system temperature initially increases. The temperature
rise is greater for large values of b. This effect is due to
the size of the second term on the left-hand side of (57).
The value of m —500 is large. When V/m is small,

and so the dominant contribution to the far-field con-
centration in the liquid is proportional to exp( —Vz) and
the classical concentration profile (64) is recovered in the
far Beld. Prom the formula for the roots of a cubic it
may be shown that when Vzc~(1 —c~) ( 4/27, all roots
are real; otherwise, the roots ry and r2 form a complex
conjugate pair. Thus we expect a change in character
of the concentration field in the liquid from monotonic
decay at smaller velocities to a damped oscillation when
the velocity is sufBciently large that

2U&
3+3c (1 —c )

We note that since r3 is always real, there are no spa-
tial oscillations in the solute profile in the solid. Further
insight into the solution for large interface velocity can
be obtained by conducting an asymptotic analysis of the
governing equation (58) and its boundary conditions in
the limit V —+ oo, which shows that, in the liquid z ) 0,

0.4-
2w

8
Q
t
Q

-5.0
I

0.0 5.
z[V/c (1—c )]'

I, O.O

FIG. 10. A comparison of the computed concentration
profiles for 6 = 3.3 x 10 J cm displayed in Figs. 5
and 6 for difFerent values of V (given by the dashed curves)
with the asymptotic forms (69) and (70) (given by the solid
curve) corresponding to the limit V —+ oo. The computed
profiles correspond to V = 0.1, 0.5, 1, 5, 10, and 30 in order
of increasing maxima.

this term is small and may be approximated by zero, in
which case the interfacial concentration is well approxi-
mated by y(T) = c*(T). As V increases, the interfacial
concentration decreases due to the presence of the so-
lute gradient energy. This requires the temperature to
increase because c* is a monotonic decreasing function of
the temperature; see Fig. 1. Over the range of velocities
for which V/m, is small, V may become large, and the
concentration at the interface changes from its value for a
stationary interface to approximately c . It is this range
of interface velocities which characterizes the transition
to partitionless growth. A further increase in the inter-
face velocity to values for which V/m is not small results
in very little further change in the interfacial concentra-
tion. Thus, from (57) the temperature decreases linearly
with increasing velocity, which is the result of interface
kinetics (the mobility Mi). The value of b affects the
range of values of V over which the initial temperature
rise occurs because of the factor gycr& + (1 —y)or& in
the left-hand side of (57), which is inversely proportional
to b.

In summary, the effect of increasing the interface veloc-
ity on the solute profile is to cause a progressive reduction
of its characteristic length scale, from EsV = D/V,
when V is small, to EsV i~a at large values of V. In
making this transition, the form of the solute field in
the liquid develops a damped oscillation. The maximum
value of the concentration, and hence the segregation,
decreases monotonically as the interface velocity is in-
creased. Over the range of values of U for which the seg-
regation is reduced, the system temperature increases.
Further increase in the interface velocity results in the
temperature decreasing linearly with velocity, similar to
the effects of linear interface kinetics in a pure material.
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V. DISCUSSION

In the previous sections we have presented and ana-
lyzed a model of solute trapping. In particular we have
considered the properties of the solution to this model
in the limit s/b —+ 0. This we believe is the appropri-
ate limit because the variation of concentration across
an interface is thought to occur on a length scale longer
than the associated change in atomic order, which here
is represented by the phase field. We have shown that
by taking this limit of our phase model we may recover
a new model of solute trapping in which the interface is
structurally sharp. This new model is independent of the
value of the phase-field gradient-energy coefficient z, and
is completely specified by the conventional material and
growth parameters and the value of the solute gradient-
energy coefficient. While the latter quantity does not
appear in classical models of solidificatio, our analysis
indicates that it may be experimentally determined from
a knowledge of the dependence of the interfacial surface
tension on temperature, and thus concentration, or, as
we show below, from the dependence of the partition co-
efficient on the interface velocity.

In the absence of the solute gradient energy, the so-
lute field is given by the exponential profile (64), with
the associated length scale EM, = D/V, which has the
property that EM, —+ 0 as V ~ oo. Employing D = 10
em s as a typical value of the diffusion coefficient of
a binary alloy, it is clear that for values of the interface
velocity in excess of approximately 1 m s, EM, is on the
order of the atomic scale. Such large velocities are com-
monly encountered in rapid solidification, and applying
a model based on a classical solute diffusion equation on
such a small length scale is therefore an important issue.
In the model presented here the solute gradient energy
acts to oppose the contraction of the length scale asso-
ciated with large velocities. Indeed for velocities where
V is large the analysis given in Sec. III shows that the
length scale of the solute profile is EpU ~ . This length
scale in dimensional units, denoted by E~, is given as

(72)

Employing the data for the nickel-copper alloy given in
WBM, we find E~ —6 x 10 s(6z V) i/s cm, where b and
V have units of 3 cm / and cm s, respectively,
in which case E~ ) 10 cm (typical of atomic dimen-
sions) providing that V ( 10 spaz cm s i. Assuming
6 & 10-5 J ~ cm ~~, our asymptotic model should
be valid for interfacial velocities up to 1 km s, which
surpasses the limitation of 1 m s required of earlier
models that employ the diffusion equation without so-
lute gradient-energy terms.

In our asymptotic model, we find that the concentra-
tion is continuous across the interface and that the con-
centration field is described by (58) and boundary condi-
tions (59)—(62). In the limit V ~ 0, appropriate to low
interface velocities, a thin solute layer of size 8p forms
across the interface in which the concentration varies
rapidly. The concentrations at each side of this layer,

in the solid and liquid, are given by the common tangent
construction at small interface velocities, and so there is
effectively a jump in the concentration across this thin
layer at the interface. However for general values of the
interface velocity the concentration is continuous and we
are not able to define the partition coefficient in the con-
ventional manner. To facilitate comparison of our results
to sharp-interface models of solute trapping, and only for
that reason, we define a quantity k* as

(far-field concentration)
(maximum value of the concentration)

The analysis for low velocities indicates that k* —+ k, as
V —+ 0, where k, is the conventionally defined equilib-
rium partition coefficient. In Fig. 11 we plot k* from our
computations of the solute profile as a function of the
interface velocity V.

It appears from our computations that the maximum
value of the concentration decreases and hence k* in-
creases as the interface velocity increases. At sufficiently
high velocities the concentration is approximately uni-
form everywhere and equal to its far-field value, and so
k* will approach unity from below as the interface veloc-
ity becomes infinite. In fact from the form of the solution
obtained in the limit of large interface velocity given by
(69) and (70) for A = 0 it can be shown that

(74)

where r. = pP/c~ and p = v 3exp[—vr/(3v 3)j/2 —0.47.
The quantity P is given by (71), and after substitution
into (74), the first two terms give the dimensional form
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FIG. 11. The normalized quantity (k* —k, )/(1 —k, ), cal-
culated from our computations, plotted against the inter-
face velocity V, for the case of the nickel-copper alloy with
6=3.3x 1Q J 2cm /=3.3x].0 J / cm '/ an
3.3 x 10 J cm . The solid curve superimposes the
predictions for the three values of b' and are essentially indis-
tinguishable. The dashed curve represents the form of the the
dependence used in the Aziz theory; k = (k + V)/(1+ V);
here A:, is the value of the partition coefficient for a stationary
interface, which for the nickel-copper alloy at 1700 K is 0.8.
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istic trapping velocity, D/E~, from the phase-field model.
In this manner, values of E~ ——10 cm or 6 = 4.2 x 10
J /' cm / can be obtained. This value is significantly
smaller than that used in the present calculations. Since
the experimental determination of V~ was obtained using
solutions to the classical diffusion equation, it would be
interesting to reinterpret the raw data of solute trapping
experiments using the current asymptotic model to de-
termine values of b. However, this reinterpretation would
require the solution of the diffusion equation with the
contribution of the solute gradient-energy coefficient in-
cluded.

In Figs. 12 and 13 we show the comparison of the
dependence of the temperature on velocity obtained in
the phase-field model to the sharp-interface model with-
out and with solute drag, respectively. The temperature
predictions of the present model more closely resemble
the sharp-interface model in which the dissipation of free
energy due to solute drag is included. This similarity
may be due to the fact that the phase-Geld model natu-
rally includes the presence of surface excesses and their
transport with the moving interfacial zone during solidi-
fication.

VI. CONCLUSION

The description of solute trapping using a phase-Beld
model with solute gradient-energy terms is intuitively ap-
pealing. With equilibrium partioning, the solute gradi-
ents in the liquid near the interface become increasingly
severe at high solidification rates. It is natural to sup-
pose that for large enough velocities, the energy required
to maintain the solute gradient becomes too high, and
instead equilibrium partitioning of the solute at the in-
terface is abandoned in order that less severe gradients
can be maintained. The phase-field model described here
provides a mechanism for the realization of these intuitive
concepts: large solute gradients in the system are penal-
ized by the inclusion of the solute gradient-energy term
in the free-energy functional. Kinetic equations based on
variational derivatives of this free-energy functional then
provide a consistent framework for the evolution of the
system under nonequilibrium conditions.

The governing equations described here are based on
an ideal solution model of the bulk phases, allowing the
modeling of simple systems with lens-shaped phase dia-
grams. In addition to the classical materials parameters
associated with alloy solidification, our model requires
the specification of two other parameters that appear as
coefficients of the gradients of the phase field and concen-
tration field in the free-energy functional. The governing
equations then exhibit two additional lengths scales de-
termined by the gradient-energy coefHcients, each char-
acterize the width of diffuse transition layers of these
fields. For an isothermal system with a stationary pla-
nar geometry, these are the only lengths in the system
and, in the bulk regions outside of the transition layers,
the solute field in each phase is uniform and given by
the equilibrium values consistent with the temperature
of the system. For systems with a steadily propagating
solidification front, however, we find that deviations from

equilibrium behavior occur, leading to solute trapping at
high velocities.

We have argued that near the solidification front, the
length scale associated with the transition layer of the
phase field is small compared to the more difFuse transi-
tion for the solute Beld. This scaling defines an asymp-
totic regime in which the phase-field gradient-energy
terms can be neglected, while the solute gradient-energy
terms are retained. The asymptotic governing equa-
tions obtained in this limit have the advantage that the
phase field no longer appears. The transition in passing
from the solid region to the liquid region is then spa-
tially sharp, and appropriate jump conditions across this
surface are derived for the fourth-order solute-diffusion
equation. In particular, we find that the solute field is
continuous across the interphase boundary, but for com-
parison to sharp-interface models we define an effective
partition coefficient k*. We employ a reasonable defini-
tion based on the ratio between the solid concentration
far from the interface and the maximum liquid concen-
tration. This quantity reduces to the usual definition at
low velocities.

We have studied the solutions to the asymptotic equa-
tions both numerically, for a range of solidification veloc-
ities, and asymptotically, in the limits of high and low
velocities. At low velocities, in the regions far from the
interface, the steady-state solute profiles approach the fa-
miliar exponential distributions obtained from the classi-
cal difFusion equation, and the profiles exhibit the charac-
teristic length D/V based on the ratio of the solute diffu-
sivity and the solidification velocity. The solute concen-
trations near the interface satisfy equilibrium partition-
ing. Although the phase boundary is structurally sharp
in this model, at low velocities there is still a transition
region of rapid solute variation near the phase boundary
associated with the solute gradient-energy term. As the
velocity is increased and the length scale D/V becomes
comparable to that of the solute gradient-energy term,
the length scale of the solute field changes from D/V
to a relatively longer scale given by a geometric mean of
these two length scales. As this occurs, the concentration
becomes uniform. In particular, the deviation of k* from
unity is found to decrease as V 2~s as the solidification
velocity is increased. At high velocities, the solute profile
in the liquid is not monotonic, but is found to exhibit a
spatial oscillation that produces concentrations in the liq-
uid that lie below the far-Beld concentration. This profile
is a direct result of the fourth-order diffusion equation,
and is not observed for the classical second-order difFu-

sion equation.
The theory also suggests possible means for the ex-

perimental determination of the solute gradient-energy
coefBcient, which is a quantity that is not contained in
the. usual database of materials parameters.

We have compared the predicted dependence on so-
lidification velocity of the solute partitioning and sys-
tem temperature obtained by using the phase-field model
with the predictions of two other popular models based
on atomistic descriptions of solute partitioning at a mov-

ing interface. If the parameters in the respective models
are identified in an appropriate manner, the predictions
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of the phase-field model are found to be in qualitative
agreement with one of the other two models that includes
the effects of solute drag.

While the asymptotic limit considered here does clar-
ify the mechanism of solute trapping at high solidification
rates, it has the disadvantage that a surface of disconti-
nuity is reintroduced across which jumps in the higher
derivatives of the solute field must be specified. For the
purposes of numerical computation in more than one di-
mension, it is preferable to revert to the full set of gov-
erning equations.

It would be of interest to employ the predictions of the
fourth-order diffusion equation discussed here to aid in
the interpretation of experimental data for solute trap-
ping. Extending the theory to more complex geometries
and to nonisothermal alloys are also important areas of

research. Other extensions of the theory would allow the
treatment of more complicated binary alloys, such as eu-
tectic systems.
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