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Mean first-passage times for systems driven by gamma and McFadden dichotomous noise

R. F. Pawula
Department of Chemistry, Uniuersity of California, San Diego, La Jolla, California 92093 03-40

J. M. Porra and J. Masoliver
Departament de Fisica Fonamental, Uni Uersitat de Barcelona, Diagonal, 647, 08028 Barcelona, Spain

(Received 17 June 1992)

We consider mean first-passage times (MFPT's) for systems driven by non-Markov gamma and
McFadden dichotomous noises. A simplified derivation is given of the underlying integral equations and
the theory for ordinary renewal processes is extended to modified and equilibrium renewal processes.
The exact results are compared with the MFPT for Markov dichotomous noise and with the results of
Monte Carlo simulations.
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I. INTRODUCTION

The study of mean first-passage times (MFPT's) in sys-
tems driven by dichotomous noise has been a topic of
great interest in recent years [1—6]. The most common
system investigated is of the form

x(t) =f(x)+F(t),
where f (x) is a smooth function and F(t) is a dichoto-
mous noise process. Although existing theory has, in
large part, been derived for the most general situation in
which the noise is non-Markovian, analytical difhculties
arise in applying the results to the non-Markov case. The
exception to this is the free case f (x)=0 because the
governing equations greatly simplify and can usually be
solved. However, there are almost no cases of bound pro-
cesses f (x)%0 in which a complete solution has been ob-
tained. For example, Masoliver, Lindenberg, and West
[2] investigate a first-order system with a linear restoring
force driven by a dichotomous noise whose intervals are
governed by a rectangular probability density function
and are able to obtain the MFPT valid only over restrict-
ed parameter ranges. The goal of the present paper is to
obtain MFPT's for two cases which are distinctly non-
Markovian and which do not appear, to the authors'
knowledge, to have been previously studied. These are
dichotomous noises constructed from ordinary renewal
processes with intervals governed by a gamma probability
density and with intervals governed by a McFadden
probability density function. Although the theory can be
extended to dichotomous noises constructed from general
renewal processes, we show how to extend our particular
results only to the equilibrium renewal case by means of a
simple expression.

Almost all previous work done for systems like (1) with
gamma or McFadden dichotomous noises has been in
connection with the closely related problems of finding
the steady-state probability density function of x (t) or of
finding quantities such as the average numbers of level
crossings of x(t) [7—11]. The methods and techniques
used to obtain these quantities are of interest because of

the insight they provide in studying the MFPT problem.
In addition, there are similarities in the governing equa-
tions and the means for solving them.

One approach is to apply the stochastic trajectory
analysis technique (STAT) [2] which has recently been
applied successfully to study bistability driven by di-
chotomous noise [3]. Although we essentially employ the
results of STAT, we rederive these results in a much
neater and more compact way which does not require de-
tailed examination of all the system trajectories. It is also
possible to formulate these types of problems starting
with Fokker-Planck or master equations [4—6]; however,
it has been our experience that the STAT has an apparent
advantage when it comes to determining boundary condi-
tions for the correct solution. Also, the Fokker-Planck
or master-equation methods appear to work best for Mar-
kov noise processes.

The gamma and McFadden dichotomous noises are
discussed in Sec. II. Derivations of the integral equations
for the MFPT are preseI. .ted in Sec. III. The MFPT for a
linear system driven by the McFadden dichotomous noise
is obtained in Sec. IV and the MFPT for the gamma di-
chotomous noise in Sec. V. Section VI extends the results
to equilibrium processes. Brief mention is made of the
associated probability density functions for the steady-
state system in Sec. VII and Sec. VIII discusses and sum-
marizes the results.

II. GAMMA AND McFADDEN DICHOTOMOUS NOISES

The only types of dichotomous noise which we consid-
er here are those resulting from a binary process whose
times of state occupation are a renewal process [12]
whose intervals are independent of one another and in-
dependent of the state of the dichotomous noise at the
transition times. As a matter of simplicity, the two states
of the dichotomous noise are taken to be +1 with the
generalization to arbitrary states more or less straightfor-
ward. Although the generalization to dichotomous
noises with diFerent densities for the two states is not
quite as obvious, it will not be considered here. In addi-
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tion, there are dichotomous noises which cannot be de-
scribed by an underlying renewal process like, for exam-
ple, the one resulting from hard-limiting of a Gaussian
process [13]. Such additional complexities will not be ad-
dressed here either.

The only quantities necessary to completely specify the
dichotomous noise are then the starting value of F(t) at
t =0 and the probability density function of the state
switching times, P(r). When this density has the ex-
ponential form g(t)=a exp( ar ), w—e have the case of
Markov dichotomous noise for which there are many
known results in the literature. We desire a departure
from the exponential form but only to a degree which will
enable us to maintain mathematical tractability in our
analyses. The following two densities provide this Aexi-

bility with some measure of success.
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In this case the intervals of the dichotomous noise have
the probability density function

a N+1I. N —at

I (%+1)
For general values of the parameter N, nothing much fur-
ther can be said. However, when N is an integer, the
gamma density has the nice property that it can be re-
garded as an Xth-order convolution of exponential densi-
ties, i.e.,

g(t)=ae "eae "e . . eae (3)

with X convolutions.
If we conceptualize the dichotomous noise as a force

acting upon a particle, say in accordance with (1), then
the implication of the multiple convolution operation is
that the force essentially "kicks" the particle X+ 1 times
in the same direction with each "kick" corresponding to
an exponential density. Herein lies the added complica-
tion and interest accorded by a gamma dichotomous
noise. A closely related noise is the McFadden dichoto-
mous noise.

B. McFadden dichotomous noise

McFadden was one of the first to consider the problem
of determining the steady-state probability density func-
tion of a first-order linear system driven by a non-Markov
dichotomous noise [7]. Through what essentially
amounted to an educated guess, he was able to complete-
ly solve this problem when the interval density of the di-
chotomous noise has the form

e
—at( 1 e

—t)b —a —1(t)=, r &O, b &a+1
B(a,b —a)

where B(, ) denotes the beta function. As in the case of
the gamma density, when a and b differ by an integer, we
can once again represent the overall density as a multiple
convolution. If b =a +%+1,we have

p(r) =ae "g(a +1)e '+'"e e(a +~)e '+

Once again, the hypothetical particle being driven by the

FIG. 1. Illustrations of the exponential (dotted line), gamma
(dashed line), and McFadden (solid line) interval probability
density functions. The first interval probability density function
for the equilibrium McFadden renewal process is also shown
(dashed-dotted line).

dichotomous noise undergoes multiple kicks with each
kick being an exponential but successive kicks having di-
minishing mean application times.

The importance of the McFadden noise lies in the
mathematical tractability it affords when attempting to
apply the STAT theory to calculate the MFPT. As will
be seen in Sec. VII, the steady-state probability density
function is also much simpler for the McFadden dichoto-
mous noise than it is for the gamma dichotomous noise.
In the following, we will treat in detail only the case
%=1 for the gamma dichotomous noise and the case
b =a +2 for the McFadden noise. Because the analysis
is simpler for the McFadden case, although still compli-
cated, it will be treated first. The gamma and McFadden
interva1 probability density functions are illustrated in
Fig. 1 along with the exponential density.

III. INTEGRAL EQUATIONS FOR THE MFPT

The governing integral equations for the MFPT are de-
rived below in a simpler way than originally done in de-
veloping STAT. Since the system (1) can start at some
arbitrary time which may not correspond to the time of a
switch in F (t), the first interval will be treated differently
and its probability density function referred to as P(t).
Then the switching intervals constitute a modified
renewal process [12]. There are two special cases of in-
terest. If P(t) =f(t) we have an ordinary renewal process
and when

P(r) =—f g(r)dr,
p

where p =mean time between switches, we have an equi-
librium renewal process [12].
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Let us now define the first-passage time probability
density as follows: p (t;xo)dt is defined as the probability
that the process X(t), given that X(0)=xo, crosses z, or
zz in the time range (t, t+dt) without ever having
crossed either of these levels during the time span [O, t]
The existence of two realizations of F(t) then leads us to
define the two conditional probability densities,

p+(t;xo) =q+(t;xo)

+ dt'

X f dt "P(t")p+,(t t—' t—",x, ),
0

(13)

p (t;x—o):p—(t; xo~ F( 0)=+1) . (7) where

If we assume that F(0)=+1 with equal probability, then

p(t;xo)= —,'[p+(t; xo)+p (t;xo)] .

Assuming also that switching times are governed by a
modified renewal process, we can write

p+(t;x, )=5(t r,—)f dt'P(t')
1

+ f dt'P(t')5(t t' —~, )—f dt "g(t") .
0 2

(14)

When p(t)=g(t), then p+(t;xo)=p,+,d(t;xo) and (13)
reads

where

+ f dt'P(t')p, ,d(t t', x, ), —
0

dx
~o f (x)+1

(9)

(10)

p,+,d(t;xo) =q,+,d(t;xo)

+ f dt'g(t')

x f dt "P(t")p.+„(t t' t",x—, )—,
0

(15)

is the ballistic time to reach the upper boundary under
F(t)=+1, and x, —=x(t'~xo) is the distance traveled by
the system during t', starting from x0 and with
F(t)=+1. Equation (9) is easily derived from the con-
sideration that a crossing event occurs either during the
first time interval [i.e., before the first switch in F(t)] or
in later intervals (i.e., after the first switch). Thus, the
first term on the right-hand side (rhs) of (9) assures that
the crossing event has taken place at t =~& before the first
switch in F(t). The second term on the rhs of (9) comes
from the following: If a crossing event has not occurred
prior to the first switch then the switch has necessarily
taken place just after a time interval t', which is less than
the ballistic time r, to reach the upper boundary [recall
we start with F(0)= + 1]. Moreover, when a switch from
+1 to —1 takes place in t', a new renewal process is gen-
erated, but now this process is an ordinary renewal pro-
cess and hence with the density p, ,d(t, x, ). Recalling
that we are dealing now with an ordinary renewal process
and following the above line of reasoning, it is not
difficult to see that p,,d(t, x, ) obeys the integral equation

p, ,d(t, x, )=5(t ~, )f —dt"g(t")
~2

where

+ dt'e " t'
0

X f dt "e "g(t")P,+,d(s;x2), (16)
0

q+(s;xo)=e ' J dt'p(t')
1

+ J dt'P(t')e ' f dt"g(t") .

We can now obtain an integral equation for the MFPT
using the relation

T+(xo)= — P +(s;xo)~,
Bs

where q+,d(t;xo) is given by (14) with P(t) =g(t)
Equation (15) is a closed integral equation for

p,+,d(t;xo). Once we obtain p,+,d(t;xo) from (15) its sub-
stitution into (13) allows us to find p+(t;xo). The time
Laplace transform of (13) is

p +(s;xo) =q +(s;xo)

(11) We finally get
~2+f dt "P(t")p+,(t t",x, ), —

0

where ~2 is the ballistic time to reach the lower boundary
z2 under F(t)= —1 and starting from x„i.e.,

1 ~2
T+(xo)=p+(xo)+ f dt'P(t') f dt "g(t")T,+,d(x, )

0

(19)

dx
x) f(x) 1—

and xz —=x (t"~x, ) is the distance traveled by the system
during t" under F ( t) = —1 and starting from x i. By com-
bining (11) and (9), we obtain

T+d(xo)=p+d(xo)+ J dt'g(t') f dt"g(t")T+d(x, ),
0 0

(20)

where
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p+(xo)=r, f dt'P(t')
1

+f dt'P(t')(t'+r, )f dt"P(t")
2

+ f dt'P(t') f dt "(t'+t")P(t") (21)
0 0

and p,+,z(xo) equals p+(xo) with P(t) =P(t)
Following a completely analogous reasoning we can

obtain the integral equation satisfied by p (t;xo) and
T (xo). The result is

X,=[f(xo)+1] —a,d
dxp

X2= [f(xo)+ 1] —(a + 1),d
dxp

X,= [f(xo)—1] —a,d

0

X~=[f(xo)—1] —(a+1) .d

0

(27a)

(27b)

(27c)

(27d)

T (xo)=p (xo)+ f dt'P(t') f dt"P(t")T,,~(x, ),
0 0

(22)

The boundary conditions for the correct solution also fol-
low from the integral equation. For critical values in be-
tween the asymptotically fixed stable points, we find

where

where x, =x (t'~xo) is the distance traveled by the system
during t' starting from xo and with F(t)= —1 and

1. T(z, )=0,
2. X,T(z, )= —1,
3. LQ, T(z~)=2a+1,
4. &3&+,T(zz)= —a(3a +2) .

(28a)

(28b)

(28c)

(28d)

+ f dt'P(t')(t'+r, )f dt "P(t")
0 T2

+ f dt'P(t') f dt"(t'+t")P(t") .
0 0

Finally, the complete MFPT is given by

T, , (xo) =
—,
' [T+(xo)+T (xo)] .

(23)

(24)

We will also be interested in the situation in which one of
the critical values is an asymptotically fixed stable point,
say z2=x, . In this case the last two boundary condi-
tions must be replaced by

3'. lim [XzX,—a (a + 1)]T(zz ) =2(2a + 1), (29a)
Z2 ~X

4'. lim [X3X+&+a (a+1))T(zz)= —2a(2a +1) .
Z2 —+X

(29b)

The integral equations for T (xo) can be con—verted to
differential equations by differentiation. The method for
doing this is outlined in Appendix A. We now apply
these results to the McFadden and gamma dichotomous
noises.

IV. MFPT FOR McFADDEN DICHOTOMOUS NOISE

We now apply these to the driftless case and the case of
the linearly bound particle.

A. Driftless case f (x)=0

In this case the differential equation and boundary con-
ditions for the MFPT become

g(t) =a (a +1)e "(1—e ') (25)

In this section we will obtain the MFPT for a McFad-
den dichotomous noise with b =a +2 and we will assume
that we are dealing with an ordinary renewal process.
Since much of our analyses will be concerned with the
starting value F(0)=+1, we will frequently delete the
superscript defining the MFPT and for brevity write
T(xo)= T+(xo). Also, the starting value of the trajecto-
ry xp will always be taken to lie between two of the
system's asymptotically fixed stable points x, and x,+
which the trajectory can never cross. Then, substituting
the McFadden interval density

T' —k T"=2k 0
where k and Q are parameters depending on a,

k —:(a+1)+a
a (a + 1)(2a + 1)

k

1. T(z, ) =0,
2. T'(zi)= —1,

(30)

(31)

(32)

(33a)

(33b)

into the integral equation for the MFPT and performing
the necessary differentiations and limits leads to the ordi-
nary differential equation (see Appendix A)

[X4X3X+,—a (a +1) ]T(xo)=2a(a+1)(2a+1),

3. T"(zz)—(2a+1)T'(z2)+a(a+1)T(zz)=2a+1,
(33c)

4. T"'(z2) —(2a +1)T"(z2)+a (a +1)T'(z2)

=a(a+1) . (33d)

where

(26) For the case z, = —z2 =z, the solution, after a consider-
able amount of algebra, is
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T(xo)—:T+z z(xo)

= A [coshkxo —coshkz+ k (z —xo )sinhkz]+ B [sinhkxo —sinhkz +k (z —xo )coshkz]+z —xo —Q(z —xo )z, (34)

where

2Q 1+(2a +1)z
k k coshkz + (2a + 1)sinhkz

'

k
2a +1

By symmetry, we have

T:,,(xo)=T+, , ( —xo) .

Finally, for the average MFPT defined in (24), we get

T, ,(xo) =
2

z +Q(z —x 0 )+ A coshkxo —coshkz — sinhkz(2a +1) k

(35a)

(35b)

(36)

(37)

This is shown in Fig. 2 and compared with the same results for the Markov dichotomous noise [Eq. (5.14) of [2]]

T, ,(xo),„~=z+a(z —xo) .

B. Linear drift f (x)= —x

This case is far more interesting than the driftless case. Although the initial equations appear formidable, we will still
be able to find a complete solution. The differential equation and boundary conditions for the MFPT become

(1—xo) T' 4(1 —xo )[(a—+2)xo+1]T"'+2[(3a +9a+7)xo+2(2a +3)xo —a —3a —1]T"

+4(a + 1) [(a + 1)xo+ 1]T'=2a (a + 1)(2a + 1), (38)

and

1. T(z, )=0,
2. (1—

z& ) T'(zl ) = —1,
3. (1—z2) T"(22)

(39a)

(39b)

(1—xo)u'"+2[(a —1)xo+1]u"—2a u'

=2a (a + 1)(2a + 1)(1+xo)' '(1 —xo )'+ ' (42)

or

(1—xo)8"+2[(a —1)xo+1]0'—2a 8

—2(a +1)(l—z2)T'(z2)+a (a +1)T(z2)=2a +1, =2a (a + 1)(2a + 1)(1+xo)' '(1 —xo)'+', (43)

4. (1—z2) T"'(z2) —2(a +2}(1—z2 }T"(zz )

(39c) in which u'=0. A particular solution of this last equa-
tion for all a is

8 (xo ) = —(2a + 1)(1+xo)' '(1 —xo )'+' (44)

and

+(a +1)(a +2)T'(z2)= 1+ 2
(39d)

so that we need only consider further the homogeneous
equation

3'. lim [T"(z2 ) —(a + 1 ) T'(z2 ) ]=a + —,
'

z ~—12

(1 —x o )0"+2[(a —1)xo+ 1]0'—2a 8=0 (45)
(40a)

4'. lim (1+zz)T"'(z2) =0 .
z ~ —I2

(40b)

T'(xo)=(1+xo) '(1 —xo) ' 'u (xo)

which carries (38) into

(41)

In these, boundary conditions 3 and 3' have been used to
simplify 4 and 4', respectively, and the lower asymptoti-
cally fixed stable point is x, = —1. Although (38) ap-
pears formidable, it can be transformed into a second-
order equation by the substitution

which, by the change of independent variable
g=(1+xo )/2 goes into

d20 dO
g(1 —g) + [2—a +2(a —1)g] —2a 0=0 .

dg'

(46)

This is now in the standard form of the hypergeometric
differential equation and two solutions can be written in
terms of hypergeometric functions using classical theory.
The integrals of these solutions can also be expressed in
terms of hypergeometric functions and we will find, com-
bining all of the above transformations, that the general
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satisfied and 8 will be given by applying boundary condi-
tion 2 and is

(1+z, )'(1 —z, )'+'+u (z, )
B(z, )=

u2(z, )
(52)

D
X

Substituting this back into (47), writing z =z„and using
Eq. 2.8 (24) of [14] leads to the final form

T(xo)=T —i, (xo)

=(2a +1)f dx( 1+x) '(1 —x)
Xp

X f dy(1+y)' '(1 —y)'+'

where

+B (z)[G (z) —G (xo )], (53)

0.0—0.5 0.0
Xp

0.5
2

—(a+2)
G(x)= 1+xF a, a*,a;a+1 (54)

FIG. 2. Exact average MFPT's for the driftless case (a =3.5,
z& =0.5, and z2 = —0.5). Exponential case (dotted line), gamma
case (dashed line), McFadden case (solid line), and equilibrium
McFadden case (dashed-dotted line).

solution for T(xo } can be written as
i1

T(xo) = dx(1+x ) '(1 —x)
p

X [Au, (x)+Bu2(x)+C —u~(x)], (47)

in which

Before proceeding further, it is instructive to compare
this with the same result for the case of Markov dichoto-
mous noise which is [Eq. (A18) of [3] ]

T+, ,(xo),„=2a f dx(1+x) '(1—x)
Xp

X f dy(1+y)' '(1 —y)' . (55)

Although there are some similarities, these are not the
same. There had been some hope that they might be
nearly identical since the steady-state probability density
functions with the exponential and McFadden dichoto-
mous noises are the same (see Sec. VII). The double in-
tegral in (53) can be evaluated when a is an integer. For

1+x
u, (x)=F —a, —a*; I —a; (48)

u2(x)=(1+x)'F a —a, a —a*;a +1; 1+x
(49)

and

a=a+ ,'+i +a 2+a——
—,
' (50)

uz(x)= —(2a+1)f (1+y)' '(1 —y)'+'dy . (51)

The first boundary condition has already been satisfied
in writing (47). The constants A, B, and C can now be
found by applying boundary conditions 2, 3, and 4. Al-
though this is straightforward, the equations we get are
messy and complicated and there seems little to be gained
by writing them here.

There is some simplification in the case in which the
second critical point lies at the lower asymptotically fixed
stable point, in which case we need to apply boundary
conditions 2, 3', and 4'. In applying 3', we will find that
it is necessary to equate powers of (1+z2) to ensure that
all terms cancel in the limit as z2 —+ —1. This will lead to
two independent equations and we will find 3 =0 and
C =0. Boundary condition 4' will be automatically

Xo

0.0

FIR. 3. MFPT for the McFadden dichotomous noise with
linear drift f(x}=—x(a =1, z, =0.5, and z2= —1). Ordinary
renewal case (dashed line), equilibrium renewal case (solid line),
and exponential case (dotted line). Circles represent simulation
data for the equilibrium McFadden case.
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a =1,we find g(t)=a te (58)

1 —xoT+i, (xo)=ln +
1 —z 1 —z

2
1 —x 0

into the integral equation for T+(xo) as in Appendix A
leads to the differential equation and boundary conditions

(1—xo)

+ 2(z+1)(z —3)
[ ( ) G( )]

u2(z)
(56)

and the corresponding result for the Markov dichoto-
mous noise is

(X,X,—a )T(xo)=4a3,

1. T(z, )=0,
2. X&T(zi )= —1,
3. XiT(z2)=2a,
4. X3X,T(z2)= —3a

(59)

(60a)

(60b)

(60c)

(60d)

1 —xoT+, , ( x)o,„@=in +
1 —z 1 —z

2
1 —xo

(57)

3'. lim (X& —a )T(z2)=4a, (61a)

and for one of the critical values at the lower asymptoti-
cally fixed stable point

These are shown in Fig. 3.

V. MFPT FOR GAMMA DICHOTOMOUS NOISE (N = 1)

Z2 ~X

4'. lim (X,Xi+a')T(zz)= —4a',
Z2 —+X

(61b)

There are many similarities in calculating the MFPT
for the gamma dichotomous noise with the same calcula-
tions for the McFadden noise, but there are also some
significant differences. For example, in the driftless case,
the treatment is so close that we do not bother to give
any of the analysis but simply state the result. Such is
not the case for the linear drift and in this case we go into
much greater detail.

Substituting the gamma interval density

in which the operators X, and X3 are defined by (27).

A. Driftless case f (x)=0

In this case the differential equation is identical to (30)
but with the parameters k =&2a and A=a. The bound-
ary conditions are extremely similar to (33) and the solu-
tion for the MFPT has the same form as (37) but with
difFerent constants. For the average MFPT (24) we find

&2 coshkx 0
—&2 coshkz —sinhkzT, ,(xo) =2z+a(z —xo)+(1+2az)

k coshkz+ 2k sinhkz

which is shown plotted in Fig. 2.

(62)

B. Linear drift f (x)= —x

The differential equation for the MFPT becomes

(1—xo) T' —2( 1 —xo)[(2a +3)xo+2]T"'+[(6a + 12a +7)xo+8(a +1)xo—2a —4a + 1 ]T"
+(2a + 1)[(2a +2a + l)xo+2a + 1]T'=4a, (63)

with boundary conditions

and

1. T(z, )=0,
2. (1—z, )T'(z, )= —1,
3. (1—z2) T"(z2)—(2a+1)(1—z2)T'(z2)+a T(z2)=2a,

a4. (1—z2) T"'(z2) —(2a +3)(1—z2)T"(z2)+(a + 1) T'(z2) =
1+z2

3'. lim [2T"(z2 ) —(2a + 1 ) T'(zz ) ]=2a,
z ~—12

4'. lim (1+z2)T"'(z2)=0 .
z ~ —12

(64a)

(64b)

(64c)

(64d)

(65a)

(65b)

We have been unsuccessful in finding a transformation to reduce the order of (63) as we did in the case of the McFadden
dichotomous noise. Note, however, that (63) can be rewritten as
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[(1—xo) T'"—2(1—xo)[(2a+1)xo+2]T"+[(6a +1)xo+Saxo —2a +3]T']
0

+(2a —1)[(2a —2a + 1)xo+2a —1]T'=4a (66)

For the special case a =
—,', the last term on the left-hand

side vanishes and the resulting equation can be integrated
once yielding

(1—xo ) T"'—4( 1+xo)(1—xo )T"+ —,'(5xo+ Sxo+ 5)T'

=
—,'( I+xo+ C),

I

A particular solution to (71) can be written using the
Wronskian of u, (x) and uz(x) as is done in Sec. 16.516 of
Gradshteyn and Ryzhik [15], and the complete solution
to (67) written in the form

Z

T(xo)= f dx(1+x)'i (1—x)

in which C is a constant of integration. The boundary
conditions become in which

X Au, (x)+Bu2(x) —u~(x)], (75)

1. T(z, ) =0,
2. (1—z, ) T'(z, ) = —1,

(68a)

(68b)

1
u (x)= f [u, (x)u&(y) —u&(x)u~(y)](1 y)

3. (1—z2) T"(z2)—2(1 —z2)T'(zz)+ —,'T(z2)=1, (68c)
X(1—y)'~ (1+y+C)dy (76)

2C+1+z2
4. T'(z~)=

(1—z2)

and

(68d)

3'. T"(—1)=—,'(C+1),
4'. T'( —1)=—,'C,

(69a)

(69b)

and we have made use of (67). Now, we make the trans-
formation

T'(xo)=(l+xo)' (1—xo) i u(xo)

and this carries (67) into

(1—xo )u"—2xou' —
—,'u

=—'(1+xo) (1—x )' (I+xo+C) .

(70)

(71)

which is discussed in great detail in Chap. III of [14].
However, most of the discussion there is for a generalized
form of (72) with an additional parameter Iu (this p, has no
relation to the mean time between switches used earlier).
The discussion is for the two solutions P"(xo) and
Q"(xo); however, the second solution is not real and this
generality masks to some degree what we actually need.
To satisfy (72), we merely need the two linearly indepen-
dent solutions

u&(xo)=P {xo)

u2(xo ):P ( xo )

(73a)

(73b)

where P (x) is the spherical Legendre function given by
the hypergeometric function

P„(x)=F —v, v+1;1; 1+x
(74)

The homogeneous equation is a form of the Legendre
equation

(1—xo )u"—2xou'+ v(v+ 1 )u =0, v= —
—,
'+—1

U„(x)=4(1—x )
' [xu„(x)—(1—x )u„'(x)], (78a)

w„(x)=4(1+x)'i (1—x) 'i [u„(x)—(1—x )u„'(x)] .

(78b)

When these are substituted into (76) and the Wronskian
used to simplify the terms involving the U„'s and w„'s, we

will find that the resulting terms can be either integrated
or combined with the u„'s and will be led to the
equivalent form for (75), but with different A and B con-
stants

o 2(C+2)
xo n

2(C+2)
1 —z 1

+ f dx(1+x)'~ (1—x)
xo

and x& is some lower limit we are free to choose. 8'o is
the value of the Wronskian W(x) = Wo/(1 —x ) at x =0
and has the value Wo=(2/rr)cosh(rr/2). The integral
defining this particular solution diverges when x& = —1.
To get around this undesirable feature, we can integrate
by parts twice to electively raise the exponent of the
(1+y) factor in the integrand and make use of the Legen-
dre equation to simplify the resulting integrand. %'e find
the two identities

f (1+y) ' (1—y)' u„(y)dy
I

=U„(x)—U„(x, )
—f ( I+y)'~'(I —y) '~'u„(y)dy,

I

(77a)

f (1+y) 'i'(I —y)' 'u„(y)dy
I

=w„(x)—w„(x&)—f (1+y) ~ (1—y) u„(y)dy,
I

(77b)

where

X [ Au, (x)+Bu2(x)+ u~(x)] (79)
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with

x
tt (x)= [u, (x)u, (y) —u, (x)tt2(y)]28'0

X (1+y)' (1—y) ~ (1+y +C)dy

and

z
R (z) = j [u2(z)u1(y) —u1(z)u2(y)]28'o

X ( I+y)'~'( I —y) ' 'dy, (84a)

(80)

and we have taken xI = —1. It is now straightforward to
apply boundary conditions 2, 3, and 4 to get constants A,
B, and C.

As in the case of the McFadden dichotomous noise, we
will consider further only the case in which z2= —1 and
z& =z and apply boundary conditions 2, 3', and 4'. The
first three terms in (79) automatically satisfy boundary
condition O'. Applying condition 3' leads to the equation

lim (1+x) '~
[ A [tt 1(x)+2(1+x)u 1(x)]

X~ —1

+8 [u2(x)+2(1+x)u z(x)] j =0

(81)

zS (z) = J [u, (z)u, (y) —u, (z)uz(y) ]28'o

X(1+y)' (1—y) i dy (84b)

The MFPT given by (82) is plotted in Fig. 4 for the case
z =0.5 (for this case, C = —1.9142. . . ) and is compared
with the results of Monte Carlo simulations.

VI. MFPT FOR EQUILIBRIUM RENEWAL PROCESSES

We will now extend the results of Sec. IV to the
MeFadden dichotomous noise generated by equilibrium
renewal processes. As noted in Sec. III, the equilibrium
renewal process is a special case of the modified renewal
process with the first interval governed by (6). For the
McFadden probability density function, we find

which, due to the logarithmic behavior of u, (x) in the vi-

cinity of x = —1, can only be satisfied by 3 =0 and
B =0. Applying boundary condition 2 then determines C
and we find the final result

2a +1
a (a+1)

—at —(a + 1)t]
2a +1

(85)

T (xo ) —= T+, , (xo )

xo 2(C+2)=2 ln
1 —z 1 —xo

2(C+2)
1 —z

where

R (z)(1—z )'/ —3 —z

2 —S(z)(1—z )'

+ f dx(1+x)' (1—x) u~(x), (82)

(83)

In order to find the MFPT for this case, it would be
sufficient to use (19) with our results in Sec. IV for the or-
dinary renewal process. But the amount of algebra in-
volved in finding p+(xo) and in doing the double integral
is excessive. Instead, we make use of the fact that t/t(t)

ean be written as a linear combination of two probability
density functions as

(87)

where p=a l(2a + 1), 1/t(t) is the McFadden density (25),
and 1/t, „(t)=ae ". Substituting (87) into (19), we find

T,+ (xo) =PT,+,d(xo)+(1 /3)T+, „(xo),— (88)

where T,+ is the MFPT for the equilibrium renewal pro-
cess, T„d(xo) the MFPT for the ordinary renewal pro-
cess previously calculated, and T+,„(xo ) is the MFPT for
a modified renewal process with t/t(t) = t/t, „(t)

We could use again (19) to calculate T+,„(xo), but
there is an easier way. From (Al) of the Appendix we
have

1
Xi(Tmex —Pmex)= +1XZX1(Tord Po.d) ~a+1 (89)

where the operators X1 and X2 have been defined in (27)
and p+,„[p,+,d]=p+ with (tt=t/t, „(t)[t/(t)]. As a conse-
quence of the commutativity of X1 and Xz we obtain

0.0 0.5 1
+1 mex Pmex+

1
+2( Tord Pord)a+1 (90)

FIG. 4. MFPT for the gamma dichotomous noise with linear
drift f(x)= —x(a =0.5, z, =0.5, and z2= —1). Exact result
solid line), simulation (circles).

which implies

a+1
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where C is a constant and

i' 0 dg

f (y)+ I

We see that C =0 from the boundary conditions

so that (95) simplifies to

1
T,+ (xo)= T„d(xo)—

2a +1
f (xo)+1

T,+, d( xo) .
2a +1 dxo

(98a)
T+,„(z,)=0,
p+,„(z, ) =0,

2[T,+d(zl ) p,+,—d(zi )]=0 .

Finally

(92)

(93a)

(93b)
1T

q (xo ) = T d( xo)
2a +1

f (xo) —1

T,,d (xo)
2a +1 dxo

This expression only involves a result we already know
and its first derivative. Following the same reasoning
with F(0)= —1, we obtain

1T+,„(xo)=p,„(xo)— X,[T,+,d(xo) —p,+,d(xo)] .a+1
(94) and then

(98b)

Introducing (94) into (88), we get

f (xo)+1
T,+(xo)=T,+,

(d xo)
— T,+,d(xo)

2a +1 dxo

T,q(xo)= —,'[T,+(xo)+T, (xo)] .

We now find T, (xo) for the cases studied in Sec. IV.

A. Driftless case f (x)=0

(99)

+(1—/3) p+,„(xo)+ X2p,+,d(xo) . (95)a+1
Whenever g(t) is the convolution of any two exponen-
tials, the last term can be shown to simplify greatly. In
particular, for the McFadden probability density func-
tion, it can be verified directly that

(96)

This can be employed in the integrals defining p+,„(xo)
and p,+,d(xo ) to show that

When f (x)=0 and zi =z, z2 = —z, we get from
(34)—(36) and (98a)—(98b) the result

T, (xo)=z+Q(z —xo)

+ 2a (a +1)
2

A (coshkxo —coshkz), (100)
(2a +1)

where k and 0 are defined in (31) and (32) and A is given
by (35a). Equation (100) is shown plotted in Fig. 2.

B. Linear drift f (x)= —x

1 + 1p+,„(xo) + X2p,+,d(x o ) = ——
a+1 a+1 (97) We will concentrate on the case z2= —1 and z] =z.

Using (56) in (98a) for the case a = 1, we find

T, ( )x=oT,+, ( d)x+0
2

(3—xo) —(3 —z)
3(1—xo)

1+xoF y, y*;2;

1+zF y, y*,2;

(101)

where y = —
—,'+i(&7/2). This is plotted in Fig. 3.

This same procedure can be followed in the case of the
gamma dichotomous noise; however, it will not be con-
sidered here. We merely point out that the relation (87)
holds for the gamma probability density function with

p —1

VII. STEADY-STATE PROBABILITY
DENSITY FUNCTIONS

The steady-state probability density function p(x) for
the system state variable has been obtained in the case of
the linear drift f (x)= —x for the McFadden dichoto-
mous noise by McFadden [7] and partial results for the
gamma noise by Pawula and Rice [8]. We very briefiy
summarize some of these results to show the similarities
with the MFPT.

A. gamma dichotomous noise (N = 1)

By differentiating the governing integral equation to
reduce it to a differential equation, the following third-
order equation can be derived for p (x) [cf. (52) of [8]]

(1—x ) p'" —2(5 —2a)x(1 —x )p"

+2[(3a —1 la + 12)x —a +3a —4]p'

+2(3—2a)(a —2a +2)xp =0 . (102)

This equation has a great similarity to (63) for the MFPT.
As with (63), for a =

—,
' this can be integrated once. Then

imposing the conditions that the solution be symmetric,
integrate to one, and give the correct second moment
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leads to the solution

(103)

The reader is referred to [8] for the details. A closely re-
lated quantity is the probability density function po(x) of
x(t) at a minimum point, i.e., a point at which F(t)
switches from —1 to +1. The fourth-order differential
equation satisfied by po(x) is [cf. (47) of [8]]

(1—x ) po +2(1—x )[(2a —5)x+2]po'+[(6a —24a +25)x +8(a —2)x —2a +8a —5]po

+(3—2a)[(2a —6a +5)x +2a —3]po+ [(a —1) —a ]p0=0 . (104)

Although we have not been successful in solving this
equation directly, we note that the differentia1 operator is
the adjoint of the differential operator in (63) for the
MFPT. This, we feel, is an important connection be-
tween the nonstationary MFPT and the stationary proba-
bility density at a minimum point.

appropriate boundary conditions and we are led to

(1 2)a —i

2 ' 'B(a a)
p(x)= (106)

This is the same as the corresponding result for the Mar-
kov dichotomous noise

B. MeI adden dichotomous noise (b =a +2)

By following this exact same approach for the McFad-
den dichotomous noise, we are led to the third-order
difFerential equation

(1—x ) p"'+4(a —2)x (1—x )p"

+2(3a —8a +7)x —a +2a —3]p'

+4(1—a)(a —a +1)xp =0, (105)

which is similar to (38). The general solution is a term
proportional to (1—x )' ' plus the sum of two hyper-
geometric functions. The coe%cients of the hyper-
geometric functions can be shown to vanish by applying

(1 x2)a —i

,„(x)=-P-P 22 -iB(a a)
(107)

This equality of the systems' marginal steady-state proba-
bility density functions does not appear to have been real-
ized by McFadden. The simplicity afforded by (106) for
the McFadden dichotomous noise over (103) for the gam-
ma dichotomous noise was our reason for expecting that
the MFPT for the McFadden noise might be simpler than
for the gamma noise and, indeed, this suspicion was
confirmed by our results.

The fourth-order differential equation for the probabili-
ty density function at a minimum point can be deter-
mined by following the same procedure as in the case of
the gamma dichotomous noise [8]. The result is

(1—x ) po +4(l —x )[(a —2)x+1]po" +2[(3a —9a+7)x +2(2a —3)x —a +3a —l]po'

—4(a —1) [(a —1)x+1]po—4a p0=0 . (108)

Again, we note that the differential operator is the adjoint
of the differential operator in the fourth-order differential
equation for the MFPT (38). The solution to (108), which
can be obtained in a much simpler way than directly solv-
ing the differential equation, is [(26) and (4b) of [8]]

(1+x)' '(1 —x)'+'
(109)22'+ 'B (a, a +2)

VIII. SUMMARY AND CONCLUSIONS

We have considered the problem of first-passage time
statistics for general one-dimensional processes driven by
non-Markov dichotomous noise. The governing integral
equations for the first-passage time probability density
function have been rederived in order to minimize the
combinatorial difFiculties that accompany the exact
enumeration of trajectories. This has also allowed us to

include within the same formalism and in a more com-
pact way the cases of ordinary, modified, and equilibrium
renewal processes.

We have applied the formalism to two non-Markov
driving noises of physical interest: McFadden and gam-
ma dichotomous noise. In both cases we have been able
to convert the governing integral equations for the
MFPT into fourth-order differential equations with ap-
propriate boundary conditions. The differentia1 equa-
tions have been completely solved in the driftless case
and in the linear drift case. The exact solutions for the
latter are written in terms of hypergeometric functions
(McFadden case) or spherical Legendre functions (gam-
ma case).

We have also shown similarities between the steady-
state probability density problem and the MFPT prob-
lem. In particular, the differential operator for the
MFPT was shown to be the adjoint of the differential



R. F. PAWUI. A, J. M. PORRA, AND J. MASOI. IVER

operator for the probability density function of a
minimum point. Finally all results have been confirmed
through simulations.
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APPENDIX: CONVERSION OF INTEGRAL
EQUATIONS INTO DIFFERENTIAL EQUATIONS

In order to obtain differential equations for the MFPT
we first make changes of variables suggested by the dy-
namics of the system

pp ~ dx —t+
"xp f (x)+1

dxt"= = t (xz—,xi) .
x 1

In terms of these new variables, we can write (19) as

ttt(t+(x „x()) ) xz f(t (xz, x, ) )
T+(x())=p+(x())+f dxi f dxz T,+,d(xz) .

Xo xz —1
(Al)

at (x—z,x{)[ 1 —e

f (xz) —1
(A2)

where [cf. (17) and (21)]

A similar replacement can be made for (20). In what follows we will only consider the ordinary renewal case which im-
plies (t(t) =g(t) and T„d(x)=T(x). Then (Al) is a closed integral equation for the MFPT.

For the McFadden dichotomous noise g(t) is the combination of exponentials given by (25). In this case (A 1) reads
—at +(x )(,xp ) —t +(x ),xp )

]
t (xz, x{)

T(xo)=p(x())+a (a+1) f dxi f dxz T(xz),
Xo x, +1 Xi

—t {xz,x()]
T(xz) .

' {"z"()
1 e

f (xz)—X,[T(x())—p(xp)]= —a (a+1) f dx,
0 f (x) )+1

Higher-order derivatives of this yield

p(x, )=p+(—x, )=r)f dt'g(t')+ f dt'(t'+rz)g(t') f dt "y(t")+f dt'P(t') f dt "(t'+t")g(t"),
Q

with ~, =t+(z„x()) and 7z=t (zz, xi ). Taking the xp derivative of (A2) and reorganizing the terms gives

—(a +1)t (x &,xo)

f 'dx, '

(A3)

(A4)

X+,[T(x())—p(x())]=a (a+1) f dxz
Xo

at (xz,xp)[ 1 —e

f (xz)—

—t (xz, xp)]
T(xz), (A5)

X3ÃzX)[T(xo) —p(x())]= —a (a+1) f dxz
0

—(a +1)t (x2,xo)

f (xz) —1
(A6)

and

X+3K+)[T(x())—p(x())]=a (a+1) T(x()), (A7)

where the difFerential operators X; are defined in (27).
One easily shows from (A3) that

X4XzX+)p(x() ) =2a (a + 1)(2a +1) . (A8)

The substitution of (AS) into (A7) yields (26).
The first and second boundary conditions are obtained

by setting x() =zi in (A2) —(A4). The integral terms van-
ish, p(z, )=0, and X,p(z) )= —1. The third and fourth
boundary conditions are obtained by setting xp=z2 in
(A5) and (A6). The final result is (28).

When the critical value z2 is the asymptotically fixed
stable point x, , i.e., f (x, ) =1, then the integrands on
the right-hand side of (A5) and (A6) are singular and the
integrals are not defined at xp =x, . In order to find the
correct values, we integrate the rhs of (A5) twice by parts

and in the limit xp~z2 we obtain

»m f 'dx, '
xo ~Z2 O

{xz xp )

]
1

T(xz)
at (xz,xp)—

1 —e

f (xz)—

lim [T(xo)—T(zz)e ' '
] .

a a

(A9)

lim f '
ax, '

Xp~x

a xz xp
[ 1 e

f (xz)—

—t (x,x )

T(xz)

T(x, ) . (A10)
a a+1

In an analogous way one easily sees that the integral on

Now if zzXx, the right-hand side of (A9) vanishes and
the third boundary condition is again obtained. But if
zz =x, then t (x, ,xo) = pp and (A9) gives
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the rhs of (A6) can be written as From (A12) one can easily show that

llm f '
dx

Xo~xS

—(a +1)t (x2,xo)

T(x2)

T(x, ).a+1 (A 1 1)
and

lim X+,p(x o ) =2(2a + 1 )
Xo ~Z2

(A13)

On the other hand, when zz =x, the time interval ~2 that
appears in the expression for p(xo) [cf. (A3)] becomes
infinite. This divergence can be removed by taking the
limit and the result is

lim X3X+&p(xo)= —2a(2a +1) .
XO~Z2

(A14)

p(x, )=r,f dt'g(t')+ f dt't'g(t')
1

+ f dt'P(t') f dt "t"g(t") . (A12)

Collecting the results, we obtain the singular boundary
conditions (29).

For the gamma dichotomous noise (N = 1) the density
P(t) is given by (58) and (Al) becomes

—at+(x &, XO)
t (x„xo)e Z2

T(xo)=p(xo)+a f dx, f dx,
XO x, +1 xl

—at (X&,x& )
t (x~,x, )e

f (x2)—1
(A15)

Following the procedure outlined above, it is straightforward to show that (A15) is equivalent to the differential equa-
tion (59) with boundary conditions (60) and (61).
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