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Surfacelike-elasticity-induced spontaneous twist deformations
and long-wavelength stripe domains in a hybrid nematic layer
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We consider the effect of the divergence K24 term V[n(Vn)+nXVXn] in the nematic free energy,
which has been ignored for a long time. The %24 term is shown to be able to cause spontaneous twist de-
formations. This mechanism is irrespective of the bulk Frank constant anisotropy in contrast to the
well-known mechanism associated with the smallness of the twist elastic constant E». For geometries
with sufficiently large surface-to-volume ratios, it can also be effective in other condensed media de-

scribed by similar free-energy functionals, but with considerably less anisotropic constants than liquid

crystals (e.g., the B phase of liquid He and ferromagnets). As a specific model we consider the forma-
tion of long-wavelength stripe domains in a usual but rather thin hybrid nematic layer. Degenerate
boundary conditions are imposed on the surfaces of the latter. Recent experiments show the existence of
such domains in a hybrid nematic layer whose state had always been regarded as homogeneous in the
layer plane. The theory worked out in the paper allows one to incorporate all the harmonics of the
periodic domain structure in the vicinity of the critical point. The dependence of the domain period on
the layer thickness, obtained in the paper, makes it possible to find the value of the elastic constant K&4

from the experimental data.

PACS number(s): 05.70.Fh, 61.30.Gd, 64.70.Md

I. INTRODUCTION

The continuum approach to the study of the systems of
rodlike molecules —liquid crystals and nematics in
particular —has been successively applied for decades to
describe the macroscopic structures in such condensed
media. Paradoxical is the fact that one of the terms
quadratic with respect to the director derivatives, name-
ly, the %24 term, which is contained in the nematic free
energy (FE) on equal grounds with the usual Frank terms
(splay plus twist plus bend), is somehow mysterious; since
the effects associated with the presence of the E24 term in
the FE have been unknown, retaining this term has been
regarded as doubtful or not necessary. Indeed, though
this term was derived in the papers of Oseen [1] and
Frank [2] and, 40 years later, by Nehring and Saupe [3],
it has not attracted researchers' attention until recently
[4-12].

The part of the nematic FE, quadratic with respect to
the director derivatives, is given by

F=—,
' JdV[K»(Vn) +K@2(n.VXn) +K33(nXVXn)

—2(K22+K2~)V[n(Vn)+nXVXn]] . (1)

The last addend in the FE density is just the %24 term. It
is of divergence form, which has been the main reason for
ignoring it, since it does not change the form of the
Euler-Lagrange equations corresponding to the function-
al (1). Qf course, such reasoning is not justified, because
the divergence form of the %24 term does not imply its
smallness.

Another reason for which taking the %24 term into ac-
count did not seem to be obvious is that it is nonzero only
under the condition that the director must depend on two
or more Cartesian coordinates. Thus the director
geometry must be rather complicated and, moreover, the
ratio of the nematic surface S to its volume V must be
sufficiently large for the volume contribution fdV fF to
be of an order of magnitude comparable with the surface
integral fdS[n(Vn)+nX VXn], which is the Kz~-term
contribution reduced by means of the Gauss theorem.

The third reason for disregarding the E24-term contri-
bution is that in the geometries considered, this term has
not led to any new qualitative effects, and neglecting it in
the worst case could introduce some quantitative
discrepancies, which always could be attributed to the
inaccuracy in calculating other parameters of the prob-
lem.

So, the physical consequences of retaining the K24 term
in the FE seemed to be doubtful. Furthermore, this term
caused some mathematical difficulties. In the standard
variational problem, the extrema of which are the solu-
tions of the Euler-Lagrange equations, the surface part of
the functional does not contain the director derivatives.
However, they enter the surface density of the Ez4 term.
This was the reason for regarding the variational problem
with the K2~ term as ill-posed [4,6], while treating as
well-posed the partial cases with the K24-term surface
density depending only on n but not on Bn. This reason
alone led the author of Ref. [4] to choose a special model
in which the director derivatives appearing in the surface
part of the FE vanish (the relevant conditions are derived
in Ref. [7]), in an attempt to construct theoretically a sys-
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tern which in principle would be sensible to the variation
of the constant E24. Recently, however, the problem of
minimizing the FE with the E24 term was shown to be al-
ways well posed, the family of extremes was found to be
the solutions of the Euler-Lagrange equation for F (1),
and the E24 term was shown to change the standard
boundary condition on the nematic surface [7,8].

Thus the problem of the E24 term in the nematic free
energy requires revealing the relevant physical conse-
quences, which is clearly understood now [10]. The best
way to show that taking the E24 term into account is im-
portant is to discover an effect whose very occurrence is
determined by the elastic constant E24. One such effect
turns out to exist and even to be experimentally observ-
able. Reference [9] reported the experimental discovery
of the domain structure in a thin hybrid nematic layer
that was assumed to be associated with the E24 term in
the nematic FE. In particular, the critical condition [9]
for the long-wavelength periodic domain formation de-
pends on the elastic constant E24 and does not depend on
the elastic constant Ez2 and therefore the effect by its
essence is different from the stripe Freedericksz effect
[13]which can occur only for sufficiently small K2z. It is
important to emphasize that the hybrid nernatic layer
(HNL) surfaces were isotropic in the sense that no dis-
tinguished direction was fixed on them and the director
could rotate without energy losses [9]. In other words,
the azimuthal anchoring was zero in the experiments [9]
and the boundary conditions were azimuthally degen-
erate. This boundary isotropy allows other interesting
nonhomogeneous structures to occur in a comparatively
thicker HNL [14,15].

For further discussion it is convenient to describe cer-
tain known features of nonperturbed HNL states
(without domains) and to introduce some notations. It is
known [17] that in a HNL, whose one surface orients
long molecular axes parallel to the layer whereas another
one imposes normal orientation, the director depends on
a single coordinate z along the normal to the layer. How-
ever, when the layer thickness h is sufficiently small, the z
dependence disappears and the director is undistorted.
Here we are interested in the case when the anchoring on
the planar-orienting surface is stronger than on the
normal-orienting one. In this case it means that for
h )h„where h, is a well-known critical value [17], the
tilt angles 0, and 02 of the director on the two surfaces
are different, while they are both equal to ~/2 for h & h, .
In the latter case, the director is planar and, hence, coor-
dinate independent; 8(z) =const =~/2.

The stripe domains (SD's) are observed to exist in
HNL's whose thickness h is smaller than some critical
value h, and larger than some other critical value hd.
Outside the interval hd & h & h„ i.e., for h & hd and
h &h„SD's do not appear in HNL's. In principle, h,
can belong or not belong to the interval (hd, h, ). The
stripe domain structure in the HNL has already attracted
attention. Reference [16] deals with the inliuence of the
HNL surface azimuthal anisotropy on the domain forma-
tion in the simplest case when the layer thickness h is
smaller than h, . The authors of [16] considered only the

behavior of the critical thickness hd, above which period-
ic domains appear in the HNL, and did not manage to
find the upper limit h, since it is likely that h, )h, . For
h ~ h, the elastic constant E22 is shown to play an irnpor-
tant role [16].

The theoretical analysis of HNL's with h )h, is far
more complicated than for h ~ h, because for h & h, the
director of the nonperturbed state becomes coordinate
dependent [17] and the coefficients of the relevant equa-
tions are no longer constant. This case was considered in
Ref. [9]. However, only the condition was found which
determines the upper limit h, for which stripe domains
appear in the HNL. Actually, the effect of SD formation,
in the HNL requires a detailed theoretical analysis; in
particular, it should give the SD period L as a function of
the layer thickness h. Inasmuch as, according to Ref. [9],
the constant E24 can be important for this effect, the
L(h) dependence would enable one to compare theoreti-
cal and experimental data and to find the value of E24.
We have already mentioned that the value of the constant
K2z may be crucial for the HNL state for h (h, [16].
Hence, the effect should be analyzed for values of h for
which the E24 term is dominant and the E22 is less im-
portant. Such are the thicknesses h & h, and the problem
becomes much more complicated.

The effect of the E24 term is of interest not only in
liquid crystals. Though a similar term can be introduced
in the ferromagnetic free energy [18], it has been ignored
for the same reasons as given above. Another example is
the liquid helium He free energy. As far as we know, the
Kz„ term has been introduced explicitly [19]; however,
the relevant effects have not been discussed. Hence, re-
vealing the mechanism of the E&4-term action and ob-
taining relevant effects may be of importance for other
condensed media in which such terms are allowed by
symmetry. In what follows we show that the stripe
domains which were discovered experimentally in a stan-
dard sufficiently thin hybrid cell [9] exist solely due to the
presence of the Ez4 term in the nematic FE. In our pa-
per, the hypothesis of Ref. [9] is confirmed by the de-
tailed study of the long-wavelength SD formation mecha-
nism in a HNL whose state has always been regarded as
homogeneous over the layer plane (see, e.g., Refs.
[17,20]). We show that when the nematic is in the
domain state, there appear simultaneously two perpen-
dicular twist deformations, so that the Ez4 term can give
rise to spontaneous violation of the chiral symmetry of
the director distribution in the nematic. As distinct from
the blue phase, whose disclination model essentially em-
ploys the mechanism of the additional twist formation in
the cholesteric due to the K24-term [21], these deforma-
tions do not give rise to any singularities of disclination
type in the nematic. We show that the E24 mechanics of
spontaneous twist formation from the chirally symmetric
state of the nematic is eff'ective in a range of parameters
other than that of the known mechanism associated with
the smallness of the elastic constant E22 as compared to
E

& &
or E33 In particular, the E24 mechanism can act for

E22 )E ] f E 33 since its effect weakly depends on the elas-
tic constant E22. In a hybrid cell, the E24 mechanism
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leads to the formation of a stripe domain structure with a
period much greater than the layer thickness, while the
K&2 mechanism is effective only for periods comparable
to the thickness. The theory worked out allows one to
take into account all harmonics of the periodic structure,
which are shown to be excited simultaneously at the in-
stant of the transition into the domain state. The formu-
las for the domain period obtained in the paper make it
possible to find the value of the elastic constant K&4 from
the experimental dependence of the period on the HNL
thickness.

II. PHASE TRANSITION BETWEEN THE
HOMOGENEOUS AND DOMAIN STATES IN A HNL

4=0; 8=(82—8, )—+8, , (2)

where 4 is the angle between the x axis and the projec-
tion of n onto the plane (x,y ), 8 is the angle between n
and the z axis, and the boundary values 0& and 02 can be
found by a standard procedure from the boundary condi-

The HNL is one of the simplest traditional subjects un-
der consideration in physics of liquid crystals. Its state
has been regarded as homogeneous in the layer plane.
However, this assumption is sometimes invalid [9,16].
Let us consider when the homogeneous state (HS) be-
comes unstable and what is its transformation.

Let us consider a HNL of thickness h (Fig. 1) between
the lower z =0 and upper z =h planes, which are normal
to the z axis. The boundary conditions on the surfaces S,
are degenerated (the director rotates on the layer surface
without energy losses) and different for upper (s =2) and
lower (s= 1) surfaces. In the HS, deformations of the
director n, n=(sin8cos@, sin8sin@, cos8), lie only in a
vertical plane parallel to the (x,z ) plane; n~ =0 (the y axis
is normal to this plane). In the approximation
E ] ] E33 K, which will be employed henceforth in or-
der to simplify the formulas, the equilibrium HS of the
director is described by the angles 8 and @ [17],i.e.,

tions

W2h
2(8z —8, )+ sin2(8z —8z) =0,

Wih
2(8, —8z)+ sin2(8, —8i)=0 .

Here W, are the constants appearing in the anchoring en-

ergy of the Rapini-Papular type with the surface S„and
0, is the angle between the external normal v, to S, and
the easy direction on S, . In our special case the easy
orientation axis fixes the planar orientation 8, =rl. /2 on
the lower surface S, , and the homeotropic orientation
02=0 on the upper one S2.

In the approximation K
& &

=%33=K, the nematic FE is
given by

F=—Jdu[(Vn)'+(VXn)' —(1 t )(n.V—Xn)']
2

+ —,
' g IdS, I

—ICpv, [n(Vn)+nX V Xn], ,
s =1,2

+ W, sin (8, —8, )[, (4)

where t =K22/K, p =2(Kz2+K24)/K, and the K2& term
proportional to p is already reduced to the surface in-
tegral; v, =(v, )„i.e., v, = —1, vz= 1.

The direct approach to the minimization of the func-
tional (4) is to solve the Euler-Lagrange equations [7,8].
In the case of our interest, these are nonlinear partial
differential equations with no hope of being solved. So
we consider the loss of HS stability and the transition
into the SD state by means of a Landau-type theory, with
the FE (4) being expanded in Taylor functional series in
the vicinity of the HS.

Suppose both the domain state n'=n+5n and the
HS n are extrema of the functional (4),
(5F/5n) f n] =(5F/5n) In'] =0, where (5n) ((1. Then,
with accuracy up to the fourth variation, we have

bF=F I n'] F{n]= '5 F+ 5—F+— 5F—+—1 3 1 4
3l 41

S2

FIG. 1. The state of the hybrid nematic layer which is homo-
geneous (HS) in the layer plane [(x,y) plane]. The director lies
in the (x,z) plane. The arrows indicate easy directions on the
lower (S& ) and the upper (S2) surfaces of the layer. The y axis
is perpendicular to the figure plane. No y component of the
director appears in the HS.

If there exists such 6n for which EI' (0, then a phase
transition into the state n' occurs. The critical point is
determined by the condition mins„5 F I n, 5n] =0.

Let us consider the phase transition from the HS n into
the domain state n'=n+5n periodic along the y axis
with period L. Suppose a/t)x =0, a„—=a a /ax;,
r = 1 —t, 58=P, and 5@=P. The angles
/=58(x, y, z)=8' —8 and P(x,y, z)=@—0 have a sim-

ple meaning. In order to transform the unperturbed
director n(r) into the perturbed n'(r) at an arbitrary
point r=(x,y, z), the former has to be rotated first
through the angle 68 around the y' axis parallel to the y
axis, and then through the angle P around the z' axis
parallel to the z axis, both y' and z' axes intersecting at
the point (x,y, z). Thus the angles g and P can be associ-
ated, respectively, with the perturbations in the x,y plane
and with the perturbations normal to it.

Employing the suitable identity
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(Vn) +(VXn) —= g (8;n )(8;n ).

+V[n(Vn}+n X V Xn],

we separate from the bulk FE (1) the divergence term
analogous to the IC24 term. The second variation (per
unit surface of the HNL), 5 F, is the part of b,F that is
quadratic with respect of g and P. Performing rather
routine calculations, we have

2 Q n I.
o F= f dz f dy[P, +tg~+sin 8$ +sin 8(1—csin 8)P, 2r—sin OP, P~]

+ g f dy [2(1 p—)v, (sin 8$ P)+c,P ](z =z, ),
s =1,2

where c, =( W, /K )cos2(8, —8, ).

Since the SD s are periodic along y, they can be represented in the Fourier series form. The zeroth harmonic
$0=$0(z) is not excited because its contribution in (7) is non-negative. As for P, its constant component can be excited
for c, (0. This corresponds to the well-known HNL transition from the state with 01=02=~/2 into the one with
8, ) 82 which occurs for h =h„as we have already mentioned in the Introduction [17]. However, all perturbations of
the form P(z) (including the above-mentioned transition) are already taken into account in the dependence 8, (z) deter-
mined by Eqs. (3), and hence the zeroth harmonic of g must be omitted in (7). Then we have

g(y, z) = g [f„(z)sin(qny )+z„(z)cos(qny )],
n=1

P(y, z)= g [g„(z)cos(qny)+p„(z)sin(qny)] .
n=1

It is shown in Appendix A that the symmetry of the functional (7) allows both r„and p„ to be set equal to zero by
means of appropriate choice of the reference origin on the y axis. Thus we deal with an even function P and an odd
function g with respect to the variable y.

Expressing 5 F in terms of the harmonics f„and g„, introducing the dimensionless wave number y=qh and coordi-
nate z =z/h (we shall henceforth omit the overbar), denoting derivatives with respect to z by primes, and integrating
over the period of the variable y result in

,'o F= g—Idz[f„' +t(ng) f„+(ny) sin Og„+sin 8(1—csin 8)g„' —2(ng)csin Og„'f„]4h„, 0

+ g [2 (van )(I—p)sin Of„g„+hc,f„](z=z, ) ~ .
s =1,2

(9)

f„" t(ny) f„+(—ny)csin Og„'=0, (10)

[sin 8(1—r sin 8)g„' (yn )r si—n Of„]

As a functional of [f„,g„I, 5 F (9) is minimum for f„
and g„which satisfy the Euler-Lagrange equations

the second mechanism the %24 mechanism. Both these
are associated with the spontaneous violation of the
nematic HS chiral symmetry: both f22 and f24 vanish
for the HS, and their spontaneous finiteness after the
transition implies the existence of twist deformations.
Let us consider each of the mechanisms individually.

—(yn) sin Og„=0 .

Expression (9) contains two positive indefinite terms due
to which 6 I' can vanish. The first bulk terms of densityfz2

= —2(ny)r sin Og„' f„ is proportional to ~= 1 t;—
therefore, the smaller t, the greater the absolute value of
this term. The second is a surface term of density

f&& =2(ng}(1—p )[sin 82f„(1)g„(1)—sin28&f„(0)g„(0)] .

It is proportional to 1 —p=l —(%&2+%24)/K and its
contribution grows with increasing

~
1 —p ~. Since

t =IC2z/K while f24 depends on Ez4, it is natural to refer
to the stability loss mechanism, associated with the nega-
tivity of the first term, as the E22 mechanism, and to call

A. E22 mechanism

This mechanism of spontaneous twist deformation in
nematic is well known. Usually, the value of E22 is
smaller than %11 and E33 and, if splay and bend deforma-
tions are sufficiently strong, twist formation accompanied
by the decrease of these is energetically profitable. Just
this %22 mechanism is responsible for the formation of
stripe domains under sufficiently small %22 in the
Freedericksz transition [13]. The situation is different in
our case with no interaction between the nematic and the
magnetic field.

One cannot manage to solve the Euler-Lagrange equa-
tions (10) and (11) for arbitrary not small g [we remind
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the reader that (10) and (11) are the equations with vari-
able coefficients, since 8=8(z)]. But we shall show that
the %22 mechanism is effective just in this range y= 1,
which will be referred to as the short-wavelength range.
Let us roughly estimate the critical layer thickness h22-
the short-wavelength SD's appear in the HNL thinner
than h22. The sufficient condition for SD formation is
nonpositiveness of the FE density for h &

Ized.

As follows
from (9) for X= 1, the terms fzz and fz4 are of the same
order of magnitude. For h &h22, the absolute value of
their sum must be greater than the sum of all other terms
entering the density 5 F. This requirement can be writ-
ten as

(f') +t(nX) (g ) +hzz(c&f f+czfzz)
sinz( 8)

+( x)'&g)'+(1 —)&g &'

~ l2(nx)&g&& f &+(1—p)&g&&f &l (12)

where (8), (f ), (f'), and (g ) are corresponding
values averaged over the z coordinate. Evidently, taking
here sin (8)=1 weakens the transition condition and
sets h22 too high. Such a weakened condition can be re-
duced to the form

(Xn )(r+ 1 —p ) t(xn )—
t+(nX)z

thickness for which SD's exist in the HNL. That is why
in what follows we use for h24 the notation h, introduced
in the preceding section.

B. K24 mechanism

Let us consider the transition into the SD state with
small X((1, when the term fz4 is dominant in the ex-
pression (9) for 5 F. The presence of the small parameter
enables one to represent the solutions of the Euler-
Lagrange equations (10) and (11) as expansions in its
power series. However, the search for such solutions
may be simplified by estimating the leading orders of the
variables f, f ', h, and g' from the condition necessary for
the transition to occur.

Inequalities (14) and (15), which will be given below,
have the meaning of relations between orders of magni-
tudes of different quantities, the order itself being deter-
mined only by the lowest power of g and irrespective of
the coeKcient before it.

For fz~ to be the leading term in 5 F (another possibili-

ty is considered below), its order of magnitude must not
be lower than that of the first, third, and last terms in (9),
i.e.,

(xn }f.g. )f.', (n x)f.g. )f.',
(xn )g„f„(nx}'g„',

) [(f') +hzz(cif i+czfz)](f ) . (13) and hence the estimate is given by

The restriction on Kzz+Kz4, derived in [22], yields
max(1 —p ) = 1. Therefore taking 1 —p = 1 again weakens
the transition condition. Typical values of t for nematics
lie within the range 0.5 —0.3. Substituting 1 —p=1 in
(13), we observe the left-hand side of (13) to vary from 0
to 0.9 for these values of t. On the other hand, the van-
ishing of the right-hand side of (13) corresponds to the
transition to the state 8(z }=n /2 for h =h, . Analysis
shows (Appendix B) that the right-hand side behaves as
(h —h, ) for h =h„and as 1+hzz/h, for h )h, . There-
fore the inequality (13) can be represented in the form
lhs(t) )hzz/h, for h )h„and in the form
1+ihs(t))const(h —h, ) for h =h„where the lhs as a
function of t varies in the range 0—0.9 when t varies from
0.5 to 0.3. It follows from both these inequalities that
h22 «h„so the short-wavelength SD can occur only in
the planar state of a HNL which takes place for h «h, .
h22 is even lower for higher harmonics. Thus the joint
action of the E22 and E24 mechanisms in the short-
wavelength perturbation range considerably depends on
the value of t: the SD's do not occur at all for t &0.5
since h z2 & 0. However, in contrast to the short-
wavelength instability of the HNL, the %24 mechanism
itself can cause the long-wavelength HNL instability with
y «1, the critical condition being t independent, so that
this is the pure effect of the E24 mechanism. Inasmuch
as the critical thickness h24, below which the SD's are
formed in the HNL, is appreciably greater than h22, the
action of the IC24 mechanism can be observed in the
HNL. In what follows we give a detailed analysis of this
mechanism. We will see that, in fact, hz4 is the upper

f.-g. (nx) )f.' (14)

Moreover, for 5 F to attain its rninirnum, the fifth term,
i.e., the fzz term in 5 F, must not be smaller than the
fourth one, g„' S(nX)g„'f„, which yields, together with
(14), one more estimate for the order of magnitude, i.e.,

g„' & (nx)f„(nx)'g-„. (15)

f.= Q f.,k(nx)", g. = g g.,
k(nx)"

k=1 k=1

where f„k and g„k are functions of z, k is an integer. It
follows from (15) that g„,=const, g„z=const, and z
dependence of g„appears for the first time in g„3, in

The order-of-magnitude relations (14) and (15) show [23]
that the first, third, and two lgst terms in 5 F are leading
terms, -g„(xn ); the remaining terms, including the fzz
term, are of the higher order, g„(xn )—.

Beginning from some powers of y, the fourth variation
5 F of the expansion (5) (all odd variations are obviously
identically zero) also contributes to the Euler-Lagrange
equations. Thus Eqs. (10} and (ll), obtained by varying
5 F only, must be solved with accuracy up to these
powers. The leading terms of the fourth variation are
given below [see formula (35)]. As follows froin the form
of 5 F, the lowest corrections in Eqs. (10) and (11) are of
fifth order with respect to x [the first term of (35) would
contribute to the order x of Eq. (10) if it was not surface-
like]. Thus Eqs. (10) and (11) must be solved with accura-
cy up to the terms O(X ).

Let f„and g„be expressed by the series
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terms of the third and fourth order in y, both the deriva-
tive g„' and the function g„ itself can be expressed in
terms of g„„f„2and g„2,f„3, respectively, by means of
(11):

whose solutions are given by

f„,=g„, g„,z+f„— (17)

fn, 4 kn, 2 2 kn, 2 rf dz f—dz'g„'3(z),

where g„» and g„» are integration constants. The sys-
tem of equations (16) and (17) can be solved explicitly.
The variables, entering this system, are found in the
following order: f„2,f„3 (known functions)
~g 3 g 4~f„~. Therefore formulas ( 16) and ( 17) give
the general solutions of the Euler-Lagrange equations (10)
and (11),i.e.,

8'„=(nx)g„ i+(Xn ) g„2+(Xn ) [g„3(z)+y„3]
+(Xn )"[g„4(z)+y„4],

f (X ) (4,2 0,2 )+(X ) (k, 3 0,3

+(Xn ) (f„4+/„~—(„4z),

(18)

which depend on known functions of integration con-
stants appearing in (16) and (17). The form of expansion
(18) suggests that it is convenient to change from vari-
ables g„„g„z,y„», g„», g„», g„» to the renormalized
ones y„, g„, g„, g„3 defined by the relations

(xn)y. =(x )[g., i+(x )g.,2+(x )'r., 3+(xn)'r. .]

(X ) 0 (Xn ) [4,2+ (X 4,3+ (X )'k.
, ~l

(x )'P. =(x )'[k., 2+(x )0.,3+(xn)'0. ,41

(Xn )~g„3(z)= (Xn ) [g„3+(Xn )g„4] .

Expansion (18), when written in terms of these variables,
takes the form

g„=(xn)y„+(Xn) g„3(z),

f.=(Xn )'(g. —g.z)+(Xn )'f., 4

(20)

g„' »(z) =
sin 8(1—r sin 8)

X y„» 2f sin Odz+f„» i+y„'»
(16)

g„»(z)=g„»(z)+y„»,
g„»(z)=f g„' »(z)dz,

where y„» and y'„» are integration constants. As for f„,
we have f„,=O according to (14) and, in the orders X,
X3, and X~, Eq. (10) is equivalent to the equations

f'„"»=0, k =2, 3,
f„"4= tf„2—r(sin 8)gn 3

where

+h [c,g'„+c,(g„—g„)'], (22)

a= ———1

2

sin202 —sin20&

4(8~ —
Oi )

The critical condition for the phase transition HS-SD
is that the dominant part of min5 F must vanish, i.e.,
minh4„=64„=0. The minimum condition for 64„ is

given by a system of three equations
a, ~, „=a, ~, „=a, ~, „=o:

ay„—(b, b2)g„——b2h(„=0,
—(b, — b)2y„+(c i+c )2hg„—czh(„=0,
—

bury�

„c2hg—„+(c2h + 1)$„=0,
where

(23)

(24)

(25)

b, =(1—p)sin O„bz =(1—p )sin 82 . (26)

The necessary and suScient condition for the solvability
of the system (23)—(25) is that its determinant D must
vanish. It is known that for D =0 the solution of the sys-
tem can be found from any two equations, while the third
one is satisfied identically. From (24) and (25), we find
that

g„=ay„, g„=Py„,
ct=(b, b2+b, c2h )A, —,
p=(c, b2+c2bi )A, ,

'=h(c, czh+c, +cz) .

(27)

Having observed that the left-hand side of (23) times y„
reproduces h4 „and making use of (27), we find the
minimum value h4 „ofthe quadratic form to be given by

A4 n =mln54 n
=A,Df~ n (28)

For D=0, we have min54 „=0; however, (28) is mean-
ingful for DAO too. Indeed, if AD(0, 5& „(,28) has no
minimum with respect to the variable y„, since (28) is not
bounded from below and hence the equation az 64 „=0
no longer describes the behavior of the system and must
be rejected. The other two equations, whose solution (27)
was employed in the derivation of (28), are still valid and
hence (28) also holds for DAO. As for the minimum with
respect to y„, it should be sought with regard for terms

Formulas (20) and (21) are sufficient for writing the first
three terms of the expansion (5) in a power series of X:
AF ~b,4X +b, ~X +56X . First of all we consider the
leading part h4y of hF, which contains only leading
terms. The contribution of the nth harmonic A4 „ to
b,~=+„b,~ „may be obtained by substituting the first
terms on the right-hand sides of (20) and (21) into the
sum of these terms. A4 is then given by the quadratic
form in y„, g„, and g„, i.e.,

= g2 +g y2 —2(1 —p )y„[g„sin 8, —(g„—g„)sin 82]
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of order y„which bound 64„ from below. It will be
done below.

It is clear from (28) that D =0 corresponds to the onset
of the phase transition. Inasmuch as A, given by (27) does
not vanish (see Appendix B), we conclude that the critical
condition for h)h, is the equality D=O which may be
reduced to

D = Ah +Bh (bi—b2)—=0,
where

(29)

c4 =QC1C2

B=a(c, +c2)—(1—p) (c2sin 8, +c2sin 8z) .

We remind the reader that the quantities
8, =8,(h, Wi, Wz, K) entering (26) and (29) are the solu-
tions of Eq. (3); therefore (29) is not only the quadratic
equation for h, : the critical layer thickness h, can be
found by solving Eqs. (3) and (29). The numerical solu-
tions of this system will be given below, and now we con-
sider the term b,~ in bF, which is necessary in order to
study the behavior of y, g, and P near the critical point.
In particular, the critical behavior of y determines the
very important observable dependence of the period
L =2mhy ' on the layer thickness.

It should be noted that the order-of-magnitude rela-
tions (14) and (15) correspond to the case when the K&4
term is one of the leading terms in the FE. In the general
case, however, it is not the only possibility when pertur-
bations with g « 1 can appear in the HNL. It is evident
that negativity of c, can in principle cause not only ap-
pearance of constant (y-independent) coinponents of
$0(z) above the threshold h„which, as we have already
mentioned, are contained in the HS, but also the SD,
which is evident from expression (7) for 5 F. Indeed the
transition at the point h =h, is given rise to by the terms

$0 +g, c,g0 „which are eliminated from the perturba-
tion FE, but an analogous contribution is given by any
perturbation harmonic, g'„+g, c,g„,. However, we
show in Appendix B that the assumption y«1 is not
confirmed a posteriori in the vicinity of h, . This means
that the wave number y is not small in the thickness
range h =h, and the value h, is not the critical thickness
for the SD state. Thus h, is the critical value only for the
transition 0, =0&~0,) 02 within the HS. It is also
shown in Appendix B that the two situations —the one
described by (14) and (15), and the one considered in Ap-
pendix 8—exhaust all the possibilities for the SD with

y « 1 to appear in the HNL.

(30)

P(u, z)= g [yn+y n g3(z)]y„cosnu
n=1

=xG+x'g3(z) G" (31)

where G = G ( u ) is defined by its Fourier transformation

G(u)= g ny„cosnu,
n=1

(32)

and the primes of the symbol 6 denote derivatives of 6
over u. Now we reproduce P(u, z ):

g(u, z)= g [(a f3z)n y +n y f—4(z)]sinnu
n=1

= —y (a —Pz )G' y f4(z )G'" . — (33)

The contributions in the second term come from the
second, fourth, and fifth addends of 5 F (9) and the lead-

ing terms of the fourth variation; the contribution of the
second addends g„3 and f„4 of expansions (20) and (21)

7 6to the sum of leading terms starts at values of order Dy,
which are considerably smaller than the terms of order g
due to the smallness of D (these terms are proportional to
y since, as we shall see, D ~ g ).

The coefficients in the expressions for g„and g„, as
well as the critical condition D =0 for the appearance of
the nth harmonic, do not depend on n. Therefore, if one

employs only 5 F, all the harmonics behave independent-
ly. The difference in the behavior of different harmonics
is due to their mutual interactions, which are described
by nonlinear (nonquadratic with respect to P and g)
terms in 5 F. Interactions between an infinite number of
harmonics cannot be treated in the Fourier representa-
tion, so we return to the coordinate representation.

In what follows we show that near the critical point
similarly to the quantities g„and g„, the functions g„3(z)
and f„4(z) from (20) and (21) are proportional to y„,
which contains the whole n dependence of these func-
tions.

In Appendix C, the constant y'„=y'„3+(gn )y'„4 [see
(16)] is found to be equal to y'„=y3y„, where y3 does not
depend on n. Hence it follows from (16), (17), and (27)
that g„3=y„g3(z) and f„4=y„f4(z); the functions g3
and f4, given in (C5) and (C6), are also n independent.

We introduce a more suitable variable u =qy instead of
y; then

III. BEHAVIOR OF THE SYSTEM NEAR
THE DOMAIN STATE FORMATION POINT

It is clear that the critical region is determined by
small A,D &0 in the vicinity of the critical point D =0.
We are interested in the first three terms of the expansion
of b,F in power series of y. With (20) and (21) being sub-
stituted into hF (5) for g„and f„, respectively, no terms
containing odd powers of y arise. Hence the expansion is
given by

Thus we have managed to express P and g in terms of the
single function G(u) and its derivatives. Now we have to
express h4 and 66 in terms of these, substitute the result
in (30), and thus obtain AF (5) with accuracy up to terms
O(y ) as a functional of G and its derivatives.

The leading part b,4=+„b,4 „, where b,~ „ is given by
(28). In terms of G, it takes the form

y4b, =ADy4f du G''. (34)

The leading part of the fourth variation, proportional to
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y, is given by

—'6 F=—1 4
4l f du g '

(1 —p )y(sin 8g„P ), + f dz sin 8$ P„

f du g v, (l —p}(sin 8(a —p)), + —f dz sin 28 6 G' g
4mh o, &2

' ' 4 o
(35)

It is not difficult also to express the terms b,~ entering
the second variation in terms of 6, i.e.,

4p
1/2 1/2

DA,

3P

b~ = f du f dz[t(a pz—)
4~h o o

+sin 8(1—r sin 8)g3

—2' 3 sin 8(a —Pz ) ]6" y

Adding the expressions (34)—(36), we find the functional
bF I 6 ] which, with accuracy up to O(y },is equal to bF
(5):

The u-independent coefficients P and Q are given by the
formulas

p= f dz t(a pz)—

[a(z)+y3] —r sin 8(a —Pz)+
sin 8(1—r sin 8}2 . 2 7 (38)

Q= —(1—p)[(a —P)sin 8z —asin 8, ]

bF[GI = f du[y ADG'2+y6(PG" 2+QG2G'2)] .
4~h o

(37}

P&0, Q&0, AD~0,

(t(y, }=6 [X—X'g ( }] o (Xy~

4(y, z }=Gi[y'(a —pz }—y'f4(z)]sin(yy~ ') .

(41)

These expressions, together with the relations n'= a+ 5n
and 5n=(gcos8, psin8, —psin8) determine the SD state
in the one-harmonic approximation.

Thus, if the critical condition is satisfied, i.e., Eqs. (3)
and (27) have a joint solution, the HS-SD transition
occurs, in which deformations of all the three types ap-
pear, and among them two twists: one about the z axis
with the amplitude ~( D) ~, whic—h slowly grows in
the transcritical region, and another about the y axis,
whose amplitude is proportional to ( D)' an—d grows
much more steeply. The chiral symmetry of the HS in
the HNL is spontaneously violated. Similarly to the twist
about the y axis, the splay deformation grows as
icos(yy lh ) ~ ( D)'~ . These —two deformations are the
leading ones in the SD state, and their product deter-
mines the dominant negative term in the FE, which is
proportional to (K —2K2z —2@2„) and enters its surface
part. Though a part of this term is contained in the stan-
dard Frank density [see (6)], functionally it reproduces
the %24 term and we can say that the existence of SD
with period I.»h in the HNL is the e6'ect produced by
the K&4 term in the nematic FE.

sin 02 —sin 0&1—
8 4(82 —8, )

(39)

We remind the reader that a,p (27) and the functions
a (z) (Cl), g3(z) (C5), and the constant y3 (C6) are unam-
biguously determined by the angles 0& and 82 of the non-
perturbed HS on the HNL surfaces.

The functional AF [6 I contains contributions from all
the harmonics G„and, in principle, together with (31)
and (33), makes it possible to solve completely the prob-
lem of the HS-SD phase transition. However, we did not
manage to solve the Euler-Lagrange equations for the
functional (37), given by

y PG""—(DA, +y QG )G" yQGG' =0 . —(40)

Nevertheless, hF [G I enables us to find any number of
harmonics of the function G. For example, substituting
one harmonic G =G, cosu in (37) and minimizing with
respect to Gi andy yield

IV. NUMERICAL RESULTS AND DISCUSSION

Equations (3) and (29) determined 8„8z, and the criti-
cal thickness h„below which SD's with L » h are
formed in the HNL. These equations were solved numer-
ically for && =10 Jm, 8'2 =4 5 X 10 J m
K=10 "N, and t =%22/K=0. 5. These typical values
of the anchoring energy and elastic constants were taken
from Ref. [9]. The dependences D(h) (29) and y(h) (41),
as well as L(h), are shown in Figs. 2(a) and 2(b) for
1 —p =0.6 and in Figs. 3(a) and 3(b) for 1 —p = l. As fol-
lows from the figures, h, =1.4 pm for 1 —p=0. 6 and

h, =1.7 pm for 1 —p = 1. In the interval h, = 1.22
pm & h, —hh & h & h„y is small and our theory is appl-
icable; for this range of thicknesses, the equilibrium HNL
state is the domain state with large period. Only in this
range does the measured dependence L(h) allow us, in
principle, to estimate the constant ICz& (unfortunately, the
HNL thickness was not measured with the required accu-
racy in the experiments [9]).
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L,pm

120-

8O-

0.5— 40, -

-O.5
1.1 ha 1.3

I

1.3 h, p. m

FIG. 2. Numerical results for 1 —p=0. 6. (a) The deter-
minant D (29) and the wave number g (41) as functions of the
HNL thickness h in the vicinity of the HS-SD transition. (b)
The domain period L vs h near the transition point. The small

y approximation, for which these results are valid, holds for
thicknesses h & h, —Ah & h„where h, = 1.4 pm and b,h can be
estimated as 0.05 pm.

(a)
L, p. m

30—

20—

0
XP

h. 1.4
0

h, pm " 1.4 1.8 h pm

FIG. 3. The dependence of Fig. 2 for 1 —p =1. h, =1.7 pm,
Ah =0.3 pm.

When h approaches h, =1.22 pm, the wave number
first increases up to one and then diverges. In this region,
our theory employing the expansion in small parameter
series becomes invalid. The divergence of g for
h =h, =K( W, ' —8'2 '

) occurs because the quantity

'=c, czh +(c, +cz)h
o- h —K[(W, cos28, )

' —
( 8'2cos28z) ']

[see (41) and (27)] vanishes for this value of h; A,
' )0 and

hence D &0 for h &h, . The equation k '=0 exactly
reproduces the condition for the transition
8i) 82~8i=8&=m/2 to occur in the HNL (see Appen-
dix B). The growth of y near this transition shows that,
for relevant thicknesses h =h„ the %22 mechanism is im-
portant and the domain structures are short wavelength.

The SD's appear in the HNL for any nonzero 1 —p;
however, the greater ~1

—p ~, the greater the interval hh
in which the iong-wavelength SD's appear; for 1 —p =0,
h, coincides with h, .

We note once more that h, does not depend on
t =K22/K; t enters only y(h) and L(h) through the t
dependence of the FE terms of order y [see (39)]. For
given (Kz2+K24)/K or 1 —p, we would obtain the same
h, for t=1 or K22=K, when the bulk free energy is iso-
tropic. Thus the long-wavelength SD's appear in a HNL
for any ratio t =K22/K. As for the short-wavelength SD
with g= 1 and L =2mb, according to our estimates they
would appear for the thickness range h ~ h, if t is
suKciently small, namely, t &0.5. This allows one to as-
sume that if one deals with the wedge-shaped HNL
whose upper surface is slightly inclined with respect to
the lower one, then SD's with different periods L ought
to be observed. For K22/E =0.5, the SD's begin from
large periods L )&h for h =h„ then L gradually de-
creases with the decrease of h, and then the domains
disappear in the middle-wavelength range for some cer-
tain hd, h, & hd & h„since the short-wavelength SD's
cannot occur for such large K&2/K. The other situation
will take place for E22/K &0.5. In this case, the SD
period begins from a large value for h =h, again, but can
vary continuously up to values of the order of h for
h & h, when the wedge is getting thinner, since the
short-wavelength SD's can occur for this range of
thicknesses. In the first case h, does not belong to the in-
terval of thickness where SD's exist whereas in the last
case it does, hd &h, &h, .

The SD's have been discovered precisely in such
wedge-shaped HNL [9]. Though the exact profile of the
wedge is unknown, the relation between the periodicity
character and the ratio t =K&2/K predicted above is
confirmed reliably. In the wedge-shaped HNL of the
nematic "mixture A" with t =0.7, for thicknesses of the
order of h ~ 1 pm, SD's have been observed whose period
varied in the range 30 &L & 150 pm [9]. These SD's are
certainly not short wavelength, and hence do not appear
for h (h, . At the same time, in similar HNL of 5CB [4-
( n-pentyl)-4'-cyanobiphenyl], whose t =0.45 (K&2 /K»
=0.5, K22K33 0.4), the SD period varied in the range
2 &L &25 pm [9], which shows explicitly that both the
long-wavelength SD's and the short-wavelength SD's are
possible in this nematic. As for the lower thickness
boundary hd below which the SD's do not occur, in the
vicinity of this thickness the assumption y«1 is only
marginally valid for t &0.5 and it is clearly violated for
t (0.5. Moreover, it is shown in Ref. [16] that in order
to find the value of hd, one has to take into account the
azimuthal anchoring energy. This anchoring, however,
must be associated with the preferential direction on the
HNL surfaces given rise to by the wedge shape of HNL
rather than with the anisotropy of the surfaces them-
selves, which are isotropic (see Introduction). Evidently,
such "geometrical" [24] anchoring is ineff'ective in the
area where the variation of the value

~ 8, —8z~ due to the
variation of HNL thickness is much smaller than that
along the z axis, i.e., if ~B(8,—8z)/Bx ~

&(
~
B8/Bz ~, where
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the x axis is directed along the wedge. If the wedge angle
is very small the derivative ~()(02 —8, )/()x

~
is very small

too, so the effective azimuthal anchoring is effective for
very small BO/Bz. It is clear that BO/Bz becomes small
just for h =h, when 0, —02~0, therefore, such anchor-
ing can come into play only for short-wavelength (and,
possibly, for middle-wavelength) SD's. This is the reason
why it can be ignored in the theory of the long-
wavelength SD's worked out in this paper.

Thus for h &h, twist can occur irrespective of the
value of twist elastic constant. This shows that the %24
mechanism of twist formation in the nematic is a qualita-
tively new one and, as distinct from the K22 mechanism,
it is irrespective of the anisotropy of the elastic constants
entering the Frank part of the nematic free energy. That
is why the %24 mechanism can cause analogous effects in
other condensed media with symmetry-allowed Kz4 terms
but with weaker anisotropy with respect to deformations
of various types than liquid crystals, or isotropic. An ex-
ample is the B phase of liquid helium He, for which the
I(.z4 term can be introduced explicitly [19],or a ferromag-
net, in which this term can be introduced [18] but is ig-
nored for the reasons discussed in the Introduction. Of
course, the dominant role belongs to the sample
geometry: it must be associated with suKciently large
surface-to-volume ratio.

In conclusion, we want to emphasize that the theory
incorporating all the harmonics of the SD structure can
be important in many cases when periodic perturbations
appear with zero wave number y at the start of the tran-
sition. Indeed, according to the theorem proved in Ap-
pendix 3 of Ref. [25], all the harmonics are excited if
y=O at the critical point, and the state which appears
above the threshold is a periodic soliton rather than a
monochromatic SD wave (whereas if y is finite at the
transition point, only one harmonic appears). Then, if
transformations of just such periodic structures are stud-
ied themselves, more detailed information about this state
is necessary than that contained in the one harmonic ap-
proximation. For example, if the SD s interact with some
external field that is able to cause their transformation
(instability), Eq. (40) must be solved to determine the
basic SD state with the accuracy needed. We hope to
present such a study in the near future.
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cally vanishes for periodical t/i and P given by (8)] where
o F and o"F are given by formulas (7) and (35), must be
invariant with respect to the transformation y~ —y,
which gives the following equations:

(t'(y) =(()'( —y ),
P'(y ) =g'( —y ),
(g~(t )( —y ) =(g~P)(y ),
(itj, g')( —y ) =(g~P')(y),

((t,'P')(y) = (P,'P')( —y) .

(Ala)

(A lb)

(A 1c)

(Ald)

(Ale)

(A3)

(A4)

while (Ald) and (Ale) give no new equations as compared
with (A2) —(A4).

Three possible solutions of this system are

(A5)

(A6)

(A7)

The first solution corresponds to /=0 and /=0 and
therefore is unsatisfactory. The next two respectively im-

ply either vanishing f„and g„or r„and p„ in formula (8),
so we can choose any of these pairs to describe the order
parameters P and P. In this paper, we have chosen the
pair (f„,g„) while r„=p„=0. Thus (t is an even function
of y while g is an odd one.

APPENDIX B

In Sec. III we analyzed the case when the expansion of
f„ in power series of y begins with g . One more possi-
bility exists: to consider the term f„,. We shall do it
here.

Substituting the series f„=(ny )f„,+ and

g„=(ny)g„, + . in (9) yields the first three terms of
the FE expansion in power series of y:

b,F= g [b.2 „(yn ) + b, 3 „(yn ) + b, 4 „(gn ) ],
n

(Bl)

Representation of each function A(y) as a sum of even

A+(y) and odd A (y) parts, A = A++ A, enables us
to reduce equations (Ala), (A lb), and (Alc) to the follow-
ing forms, respectively:

(A2)

APPENDIX A where

The Euler-Lagrange equations impose the symmetry of
the FE functional on the director distribution minimizing
it. Here we employ the symmetry of the functional AF
(5) to simplify representations (8) for P and P.

The FE bF= ,'8 F+(1/4!)o F [evi—dently, 6 F identi-

hz „=f„',+c,f„,(1)+c2f„,(2),

h3 „=2(1—p) g v, (sin 6)f„,g„,), .
s =1,2

(B2)

Here we have taken into account that the z dependence of
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g„& results in a positive contribution ~ g„'
&

to the princi-
pal part Ez „ofb,F, so g„, is taken to be z independent.
There is no need to consider the term A4 „here; we just
emphasize that the term ~ g from o F contributes to it.
Thus retaining the first term in the expansion of f„ in a
power series of y makes the first kind of phase transition
possible, the critical condition being minbz „=0. Since
f„,satisfies Eq. (10) as before, we have

fn, l knl, kn, lz (B3)

Substituting (B3) into (B2) and minimizing the quadratic
form obtained with respect to g„ i and g„ i yields

c2h g„,—h (c2+c, )g„,=0 .
(B4)

Similarly to (27) and (28), these formulas determine the
relation between g„, and g„, at the critical point and the
minimum value of the quadratic form Az „,i.e.,

C2

C) C2
(B5)

=mink = '
A,2n 2n h2( + (B6)

where A, ', given by (27), is the determinant of system
(B4). We remind the reader that 8, =8, (z, h ) and hence
the equation A, '=0 is transcendental with respect to h.
Numerical computation shows that its solution exists
only for h =h, =E[(1/W2) —

( I/W, )] ', when
8, =82=~/2. Moreover, when hAh„ the coefficient be-
fore g„, is positive, A=A, '(c, +cz) ') 0; A(h) vanishes
only for h =h, . Therefore we deal with the FE of the fol-
lowing form:

(B8) rather confirms our estimation, derived in Sec. III,
that only the short-wavelength SD can occur for h =h, .
However, the point h =h, itself does not play the role of
any critical point which can be associated with a SD
structure.

Thus the phase transition to the state with y«1,
found in Sec. III, is unique, and all other possibilities cor-
respond to y=1 when, according to our results, the %24
and K22 mechanisms work together.

APPENDIX C

J,(z)= f dz a(z)[sin 8(1—csin 8)]
(Cl)

J2(z)= f dz[a —Pz+a(z)][sin 8(1—csin 8)]
0

Then the result of the free energy minimization with
respect to y'„may be written as

I
Yn V37 n (C2)

Let us find the constants y'„3 and y„'4 [to be more ex-
act, their sum y'„=y'„3+ (yn )y'„4, which determines the
variable g„3(z) introduced in (19)]. According to (17),
the function f„4 contains y'„3; however, replacing y'„3 by
the sum y'„results in the error of order O(y ), so we can
do it without introducing inaccuracy. The functions
g„'3(z) enter the terms of the order of y in 5 F and y'„
can be found from these by means of minimization.

We introduce the following functions:

z sin28(z) —sin28,

2 4(82 —8, )

I(z)= f dz[sin 8(1 —csin 8)]
0

bFi, = [b,2 „(yn ) +b, 3 „(Jt'n ) +b,4 „(gn ) ] (B7)
J,(1)

Y3 I( 1 )
(C3)

where b 2 „~0 and b 3 „&0. Assuming h =h, and hence
b, 2 „((1,and also 6„„)0 (otherwise y~ ac), we find y,
corresponding to minhF, to be g 3(z) =y„g3 (z), f„4(z)= y„f4(z) (C4)

By virtue of (C2), functions g„3(z) and f„4(z), given by
(16)—(19), also can be expressed in terms of y„, i.e.,

(B8) (C5)

According to (B8), y is not small even for h =h, when

hz „=0,since h3 „does not vanish together with h —h, .
Thus the assumption that the SD's with y «1 occur in a
HNL near the point h =h, is not confirmed a posteriori;

Z Zf~(z)=t a —P rf dz—[J2(z)+y3I(z)] .

These formulas are essential for deriving the functional
bF[G].
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