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Bulk and interfacial wetting properties of binary liquid mixtures
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We classify the interfacial wetting behavior of binary liquid mixtures at their liquid-vapor interface.
The criteria with respect to the atomic interactions between the two species are whether the Hamaker
constant of that interface fulfills either suScient conditions for the absence of a wetting transition, or the
necessary conditions for critical wetting, or the necessary conditions either for being wet already at low
temperatures or for undergoing a first-order wetting transition upon approaching the critical end point
along the triple line. Based on the Blume-Emery-Gri5ths model and on the Percus-Yevick theory we

scan the parameter space that determines the structure of the bulk phase diagrams. By analyzing the ab-
solute values of the Hamaker constant we pay particular attention to interfacial wetting induced by tri-
critical points. In addition, we compare the predictions of the Percus-Yevick theory for the bulk phase
diagrams and the number densities of the Quid bulk phases with experimental and simulation data as
well as with different theoretical approaches.

PACS number(s): 68.45.Crd, 68.10.—m, 82.65.0p, 64.10.+h

I. INTRODUCTION

Binary liquid mixtures consisting of two sorts of mole-
cules, called A and B, give rise to a rich variety of wet-
ting phenomena. In general, a wetting transition de-
scribes the formation of a thermodynamic stable layer of
a third phase at an interface between two other phases. If
at a wetting transition the thickness of the wetting layer
grows continuously to infinity, it is called critical wetting,
whereas in the case of a discontinuous jump to infinity it
is called erst order wetting-. A detailed discussion of vari-
ous wetting phenomena is given in Ref. [1],for earlier re-
views see Refs. [2—7]. An excellent introduction to this
subject is given in Ref. [8]. The general features of wet-
ting phenomena of binary liquid mixtures at a wall have
been discussed in Ref. [9]. Recent experiments for wet-
ting of a wall by binary liquid mixtures have been per-
formed by Pohl and Goldburg [10], Beysens and Esteve
[11],Sigl and Fenzl [12], and by Franck and co-workers
[13—16].

Both in theory and experiment, the presence of a wall
complicates a precise determination of the interfacial
structures. The wetting phenomena depend not only on
the atomic interactions between the components of the
binary liquid mixtures, but also on two substrate poten-
tials acting on the 3 and B particles, respectively. In ad-
dition, close to the mall the substrate potentials lead to
density oscillations (see Sec. III 8 in Ref. [1]), which sig-
nal the formation of a few solidlike layers at the wall.
Third, in general the wall-liquid interface represents a
nonequilibrium situation because the substrate atoms
tend to dissolve in the liquid.

Binary liquid mixtures ofFer the opportunity to study
wetting phenomena which involve Quid phases only, i.e.,
both coexisting bulk phases, which form the interface to
be wetted, and the wetting phase itself are Quids. The in-
trinsic interface, where the wetting layer is formed, gives
rise to the notation of interfacial uietting and represents a

thermodynamically stable configuration of its own.
Due to the interfacial wetting transition the interface

splits into two different interfaces, which both exhibit
capillary waves. Since fluid mixtures are governed by
long-range van der Waals forces, the leading singularities
of continuous wetting transitions are unaffected by capil-
lary waves. This allows us to treat these interfacial wet-
ting phenomena within mean-field theory (MFT) (see Ref.
[17]and Sec. IV C in Ref. [1]).

Interfacial wetting depends only on those interactions,
which determine simultaneously the bulk properties of
binary liquid mixtures, i.e., the interactions among the A

particles and among the B particles themselves and on
the interaction between the A and B particles. Therefore
certain features of interfacial wetting phenomena are
fixed by bulk properties of the participating phases.

There is practically an unlimited number of different
binary liquid mixtures accessible to experiments.
Numerous experimental studies of interfacial wetting
[18—31] have explored only a very small subset of possi-
ble binary liquid mixtures. As in the case of experiments,
only for a few particular binary mixtures interfacial wet-
ting has been studied theoretically by taking into account
the long-range character of the interactions for equal ra-
dii [32—34]. In order to provide some guidance for fur-
ther exploration we classify the possible interfacial wet-
ting behavior of binary liquid mixtures on the basis of
their bulk properties by taking into account the influence
of different atomic radii.

Following Scott and van Konynenburg [35] the variety
of binary liquid mixtures is systematically classified by
the different structures of their phase diagrams. Figure 1

shows the three different phase diagrams of type II and
III accessible to our investigations. At low temperatures
both type-II and -III phase diagrams contain three
diFerent phases, an A-rich liquid phase in which the
number density p„of A particles is larger than the num-
ber density p~ of 8 particles, a B-rich liquid phase with
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(1) Path pi. The A-rich liquid phase and the vapor
phase are in coexistence. The wetting phase, i.e., the B-
rich liquid phase, is taken to be slightly off coexistence.

(2) Path p2. The 8-rich liquid phase and the vapor
phase are in coexistence. The 2-rich liquid phase is the
wetting phase.

(3) Path p3. The A- and B-rich liquid phase are in
coexistence so that the vapor phase is the wetting phase.
This is particularly interesting for phase diagrams of type
III because in this case the difference in number densities
between the vapor phase and one of the liquid phases
vanishes.

Figure 3 schematically shows the structure of the sys-
tem along the different paths in a grand canonical ensem-
ble without gravity. We use the notation that the a phase
is in coexistence with the y phase and that the P phase
wets the a-y interface. The peculiarities of a canonical
ensemble and the effect of gravity on these structures is
discussed in detail in Ref. [38].

B. Effectiv interface potential

Spatially inhomogeneous binary liquid mixtures and
their wetting transitions are described successfully by the
following density functional of the grand canonical free
energy for a given configuration of the number densities
p;(r) with i = A and B:

(2.1)

Its derivation and its status are discussed in detail in Ref.
[38]. The equilibrium densities po;(r;T, p;) minimize Q
and they yield the grand canonical potential Qo( T, V,p,. ).
T is the temperature and V is the volume of the system,
whereas pz and pz are the chemical potentials of the two
species. fh(p, (r), T) is a suitably chosen Helmholtz free-
energy density (see Appendices A and B in Ref. [38]). In
this section its specific form does not matter. wz„, wzz,
and wzz are determined by the pair potentials w~„, w~z,
and was [see Eq. (A26) and Appendix B of Ref. [38]].
We impose boundary conditions such that, for z ~+~,
po, (z) approach the bulk values of the pure phase, de-
pending on whether we consider path p„p2, or p3 (see
Fig. 1). z denotes the direction orthogonal to the inter-
face of area A.

For such density configurations the free-energy func-
tional in Eq. (2.1) splits into a bulk contribution and into
a surface contribution:

Q[p, (r); T,p, ] = VQ„( Tp, )+ A Q, [p, (r); T,p, ] . (22)

along p along p,

At u-y coexistence we have

Q b ( T,p; ) =Q(p;; T,p,; ) / V= Q(p; r,
' T,p; ) / V, (2.3)
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where p, and p, &
are the equilibrium bulk densities in

the ct and y phase, respectively. From Eq. (2.1) the bulk
free-energy density follows to be

Q(p; „'T,p; )/V= fh(p, ; T) —,'gw, p, p—,

along p,

—gp;p;, =Q, (2.4)
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with v=a, /3, y and Q =Q~=Qb. In Eq. (2.4) we have
introduced the total strength of the (modified) interaction
potentials w;:

FIG. 3. (a) Interfacial wetting of the vapor —A-rich liquid in-

terface by the B-rich liquid along the path p& described in Fig.
l. (b) Interfacial wetting of the vapor —B-rich liquid interface by
the A-rich liquid along p2 (see Fig. 1). (c) Interfacial wetting of
the A-rich liquid —B-rich liquid interface by the vapor phase U

along p3 (see Fig. 1). The dashed lines indicate that, as in a
grand canonical system, these systems are connected to a reser-
voir of A and B particles. The wetted phases are denoted by o.'

and y, and the wetting phase is called P. Along the path p, the
a phase is A rich, the P phase is B rich, and the y phase is the
vapor phase; along the path p2 the a phase is B rich, the P phase
is A rich, and the y phase is the vapor phase, whereas along the
path p3 the a phase is A rich, the P phase is the vapor phase,
and the y phase is B rich.

The surface contribution Q, from Eq. (2.2) gives, at its
minimum, the surface tension between the a and y phase:

(2.6)

Q, (l, T,p; ) is the effectiue interface potential, which is the
surface free energy per area under the restriction that at
the a-y interface a wetting film with thickness 1 of the P-
like phase is formed (see Refs. [1,40]). Q, (l, T,p, ) has the
form
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0, (l, T, lj,; )=l(Qtt f—I )+o tt+ott r+co(l) (2.7) co(l) =al +bl + (2.8)

and is minimized by the equilibrium thickness lo( T,p; ).
The interfacial wetting behavior depends on co(l), which
is the correction to the surface free energy due to the
finite thickness of l. For large l one finds in the presence
of long-range interactions [1,9,40—42]

The leading coefficient a, which is known as Hamaker
constant [39], depends only on the temperature, because
for a given temperature the chemical potentials are fixed
by the condition to be on the triple line. In order to
evaluate the Hamaker constant we resort to its expression
derived in Ref. [9]:

a( T) =(M Mt3—)(M& M—)a +(Q —Q&)(Qtt —Q )a++ [(Q Qtt)—(M& M—)+ (M M&—)(Q& Q)—]ac, (2.9)

where

(2.10)

Qv pv, w +pv, a (2.11)

J ( 3, && 3, &a+ 3,8&)I

„+2t3 ~~+ 3,att)/8,

ac=(t3 AA t3 gB)/8

(2.12)

(2.13)

(2.14)

t 3 j are the leading coefficients in the expansion of the
partly integrated interaction potentials m;J-:

t; (z)= f .dz'J d r w;J. [(r +z' )' ]

= —(t. ..z '+t. ..z '+ ) . (2.15)3, 1J

a( T) vanishes in the limit T~T„. The ratio of a ( T)
and k&T„~ is dimensionless. Upon approaching T„~ the
Hamaker constant vanishes:

=I~H for T~T„,a (T)
8 cep

(2.16)

are linear combinations of the bulk number densities of
the phase v=a, P, y and

I

l = oo, A, (l) has at least a local minimum at low tempera-
tures and a maximum at T„. In this special case it is
possible that an already existing wetting layer undergoes
a dewetting transition. An explicit description of the
phenomenon is given in Sec. IV of Ref. [38].

In order to determine which binary liquid mixture falls
into one of these four classes of interfacial wetting behav-
ior we calculate a (T) for low temperatures and close to
T„. Since a ( T~T„)Ik~ T„=a/ vanishes for
T~T„, the necessary condition a ( T„)=0+ for inter-
facial wetting depends only on the sign of ~ as long as
xAO. If a) 0, the a-y interface is wet at least close to
T„,provided that l = ~ is not only a local but also the
global minimum of the efT'ective interface potential. In
order to fulfill the necessary conditions for critical wet-
ting a(T) must be negative for low temperatures. Al-
though within the PY theory there is no solid phase, in
order to avoid conflicts with a fourth, solid, phase our
calculations end at the solidification temperature T4
without knowing T4 explicitly [see Figs. 2(a) and 2(b) in
Ref. [38]]. The concentration of 3 particles in the B-rich
liquid phase and the concentration of B particles in the
A-rich liquid phase decrease with the temperature. For
sufficiently low values of T4 one has

with r=(T„—T)IT„and the critical exponent P= —,
'

(see Appendix C). The temperature dependence of a (T)
allows us to draw the following conclusions (see Ref. [1]):

(i) a ( T) (0 for all T (T„: This means that l = 00 is
at least a local maximum of Q, (l). In this case no interfa-
cial wetting transition is possible.

(ii) a ( T))0 for all T (T„~: This means that 1= ~ is
always at least a local minimum of Q, (l). If it happens to
be its global minimum for all T, the a-y interface is wet
for all T. Otherwise there will be a first-order wetting
transition at T~ & T„„depending on higher-order terms
in co( l ).

(iii) a(T) &0 for low temperatures and a(T„)=0+:
In this case, the interface is not wet at low temperatures,
but there is a temperature T~ & T„„with a ( T )T~ ) )0.
For T~ T~, l= ~ is at least a local minimum. This
fulfills the necessary conditions for critical wetting. [The
sufficient conditions are determined by higher-order
terms of co(l) (see Ref. [1)).] In the case of critical wetting
a(T~)=0 is an exact, implicit equation for the wetting
transition temperature T~.

(iv) a ( T))0 for low temperatures and a ( T„)=0:At

(o)
PA, a=PA

pA, p=0

so that

pa,.=0

p~ &-p~ - at T4 on path p,(o) .

p~ y-—0

pAp 0~ PBp
(o)

pA, q=0 ~ pa, q=pa

so that

. at T4 on path p3

a(T4)= ,p~ (p~ t3 gg
—

p—g 3 Ag),(o) (o) (o)

p~,.=(0) pa, .=pa(o)

p A &-—p A, pz &—-0 ' at T4 on path pz
(o)

ps, ,=0
so that

a(T4) PA (PA t3, AA PB t3, AB)
(o) (o) (o)

and

PAa PA & PB a
(o)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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a(T4)= —
—,p„pB t3 „B .(0) (0) (2.22)

(0)I (0) (R (0)/R (0))3
PA PB B A (2.23)

where R „'
' and RB ' are the diameters of the A particles

and the B particles, respectively. Thus the condition
a ( T4 ) (0 can be replaced by

p'„' and pB' are the densities of the one-component 3
Quid and the one-component B Quid at their correspond-
ing triple point. On path p3 the condition a ( T4 ) (0 is al-
ways fulfilled due to the positive sign of t3 AB. A first-
order wetting transition is not possible along this special
path. In order to proceed, for path p, and p2 we make
the assumption [38] that

w; (r)= '
4e J[(cr,j. /r)' —(cr,i/r) ], for r/o; )2'i
—e;, for r/o. ; (21/6 (2.27)

8
3iAA (1+ )3 AAw

8ro3

3 BB
( 1 + )3

w

(2.28)

(2.29)

with

where o „„—=R„,oBB =—RB, and o „B=(cr„„(0) (0)

+0.BB )/2. Following Refs. [38] and [9] one obtains

t3 BB ) ro on path p &
(2.24)

WAA WBB = (2.30)

and

t3 AA & ro ' on path p2

with

(2.25)

Thus Eqs. (2.9)—(2.30) allow us to classify the interfacial
wetting behavior of binary liquid mixtures in terms of the
three-dimensional parameter space wA A, wBB, and ro
which determines the bulk number densities and the
structure of the bulk phase diagrams.

3, AA
~3, AA

t3, AB

3,BB
t3,BB

t3, AB
(2.26)

r0=RB '/R „'
' is the ratio of the diameters of the 8 parti-

cles and the A particles.
According to Weeks, Chandler, and Anderson (see

Refs. [43,44] and Appendix B of Ref. [38]) Lennard-Jones
interaction potentials (T),z(r) lead to

III. INTERFACIAL WETTING IN THE
BLUME-EMERY-GRIFFITHS MODEL

The 81ume-Emery-GriSths model allows one to study
binary liquid mixtures with particles of equal size. In this
case the reference free-energy density [see Eq. (2.1)] is
given by

f ( T)=3/2R- k T. +
ln ™+ ™1n™S P A B 2

"
2

+(1—Q)ln(1 —Q)+ —Qln(2 Rg AgAB)+ —Mln
mA

(3.1)

with cles and

Q=2 ' R„(pq+PB), (3.2)
A, =h(2mm, k T) (3.4)

M=2 ' Rw(pa PB ) (3.3)

The efFective diameter of the particles RA =RB is a func-
tion of R „' '=RB ' [see Eq. (2.27)] and depends only weak-

ly on temperature and density. We disregard this density
dependence. m A and mB are the masses of the two parti-

is the thermal de Broglie wavelength. Equation (3.1) is
the simplest choice of the reference free energy, - which
reproduces both the low-density limit and the close-
packed structure (see Ref. [38]). Combining Eqs. (2.1)
and (3.1) gives the following total free-energy density
f=Q(p;;T,p;)IV:

+ ln + (1—Q )1~(1—Q2
"

2 2
"

2

—
—,'(JM2+EQ +2CMQ) HM+EQ '— (3.5)
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with

J=
—,'( &„„—2&„a+waa )&2R„
4(&&& +2&&a+ &aa )&2R z

C =
4 ( &„a waa )&2R

(3.6)

(3.7)

(3.8)

08--

0.6-- lllA

A

Ill B

0 and b are the field variables conjugate to the unre-
duced density variables M =pz —pa and Q =p~ +pa.

(3.9)

04

02

(3.10) -0.5 0.5

E =(u „„+uaa+2)/(wx„+ waa —2),
C=(wwa waa)/—(w„„+waa —2) .

(3.1 1)

(3.12)

In the following we express K and C in terms of g and A

as introduced by Scott and Konynenburg (see Refs.
[48,35]):

(waa wAA )/(wAA +waa )

A=(waa+waa 2)/(wz„+—waa ),
(3.13)

(3.14)

The last two linear terms of Eq. (3.1) are omitted, because
they are irrelevant for determining phase equilibria and
number densities. Equation (3.5) is the mean-field expres-
sion of the free-energy density in the BEG model (see
Refs. [45—47]). Using J & 0 as an energy scale, f depends
on the dimensionless variables T=ka T/J,
H=H/J, b, =b, /J, and on the two parameters IY=K/J
and C= C/J, which determine the phase diagrams ob-
tained from Eq. (3.1) (see Appendix A). These parame-
ters are given by the interaction potentials

FIG. 4. Boundaries of parameter regions for simple phase di-

agrams of types II and III within the BEG model. For more de-

tails corresponding to type-II phase diagrams see Fig. 2 in Ref.
[9]. Here we adopt the same notation as in Refs. [46,9], see Eqs.
(3.13) and (3.14). The dotted area is the shield region. The thin

dotted lines correspond to the numerical cuto6' given by Eq.
(3.17). The thin dashed lines are extensions of the lines A2D,
and A&D&, respectively. For those systems lying on the lines

A
& Db and A 2D, the critical end point T„~ happens to be a tri-

critical point. The same is true for the line separating IIIA and

IIIB. Along the lines A3Db and A4D, tricritical points of a
different nature appear {see Ref. [38]).

the system we introduce the following lower cutoff for the
concentration of particles:

r

(3.17)
p A pB ' cep

so that with i = A, B and v= a,P. We do not consider those sys-
tems which violate Eq. (3.17). Figure 4 shows the param-
eter regions for the different types of simple phase dia-
grams with the corresponding boundaries. The lines

A, Db and A 2D, (see Refs. [9,38]) and the line
(g=O, A&0) correspond to tricritical points (see Sec. I),
whereas the line A3A~ is given by A~O (~%~co).
The right and left boundaries are due to Eq. (3.17). The
dotted area is the so-called shield region (see Refs.
[46,49]) containing more complex phase diagrams. In the
following we do not discuss this shield region.

In the next step we analyze the wetting behavior at the
liquid-vapor interface (see Fig. 3). First we calculate the
Hamaker constant a(T4) at low temperatures (see Sec.
IIB). Second, we check the condition a(T„)=0+ (see
Appendix C). Figure 5 summarizes our conclusions for
the interfacial wetting behavior along the paths p, and

pz, whereas Fig. 6 shows the region where interfacial wet-
ting is possible directly in terms of the interactions. In
the following we give only a short summary of the main
results for the BEG model (the asterisk indicates results
at least partly specific for the BEG model), a detailed dis-
cussion in comparison with the findings for the more real-
istic Percus-Yevick theory will follow in Sec. VI.

(1) The interfacial wetting behavior found in Ref. [38]
for type-II phase diagrams extends naturally into the re-
gion for type-III phase diagrams.

(3.15)w„„=(1—g)/( I —A),

waa =(1+/)/( I —A) . (3.16)

This leads to the following relations: g= 2C/(K+1), —
A =2/(K+ 1),C = —g/A, and IC = —1+2/A. Since we

are interested in the types of phase diagrams shown in

Fig. 1 our analysis is restricted to J)0 and thus A &0.
Due to this restriction and Eqs. (3.13) and (3.14) the (g, A)
parameter space is given by gH [ —1, 1] and A E [0, 1].

In the first step we determine the regions in the param-
eter space (g, A) where the corresponding phase diagrams
resemble the aforementioned three types of phase dia-
grams of simple binary liquid mixtures (see Sec. I). For
phase diagrams of type II this problem has been solved in
Ref. [38]; here we extend this analysis to phase diagrams
of the type III. The boundaries of the regions for type-III
phase diagrams are obtained numerically. For large
values of ~g~ [i.e., large values of ~C~ in Eq. (3.5)] the con-
centration of 3 particles in the B-rich phase and of B
particles in the A-rich phase, respectively, and the criti-
cal end point temperature T„z decreases to zero (see Sec.
II B and Ref. [38]). This leads to numerical problems of
small differences between large numbers within the itera-
tion procedure for finding numerical solutions. In order
to avoid these problems and a possible solidification of



1862 T. GETTA AND S. DIETRICH 47

II If ll (i

(i

(i
0.75

0.5

0.25

~P

)i~
yl

~t ~r

i

along p,
10

8

6-

-0.75
I

-0.5 -0.25 0 0.25 0.5 0.75 4

0.5

(i)

(ii)

NY/i (-)

long p

FIG. 6. Classification of interfacial wetting for the BEG
model in ter~s of XS=(&» +urzz+2&» )/w~z and
A~ =(~» —&»)/&» along path p, and A~ =(~»
—w» )/&» along path p„respectively. We use the same no-
tation as in Fig. 5.

0.25

-0.75 -0.5 -0.25 0 0.25 0.5 0.75

FIG. 5. Classification of binary liquid mixtures with respect
to interfacial wetting behavior for the BEG model along the
paths p& and p& within the parameter space defined in Eqs.
(3.13) and (3.14). Along path p3 there is no wetting transition so
that this case is not shown. In accordance with Sec. IIB, (i)
(vertical hatching) corresponds to the absence of interfacial wet-
ting transitions, (ii) (horizontal hatching) corresponds to the oc-
currence of first-order wetting transitions or that the interface is
wet for all temperatures, (iii) (diagonal hatching) represents
those systems which can exhibit critical wetting. The dotted
area is the shield region. The dash-dotted lines represent those
systems with the transition temperature T$p T p whereas the
dashed lines are related to T~=T4 where T4 is the low-
temperature limit as described in Sec. II B. The hatching ends
due to the cutoff given by Eq. (3.17).

critical wetting, shrinks to zero in the limit that the
strengths of the interactions among the two species be-
come equal.

(7*) Both for phase diagrams of types II and III the
wetting temperature T~ increases towards T„„ if

~

b, w
~

=
~
w „„—w~~ ~ /w„~ goes to zero. In this case the

number densities of the pure 3 and the pure B liquids be-
come similar.

(8') Within the BEG model dewetting cannot occur.

IV. BULK PROPERTIES OF BINARY
LIQUID MIXTURES WITHIN THE

PERCUS- YEVICK THEORY

The quantitative predictions of the BEG model are
only reliable for small number densities. At larger values
of the number densities diA'erences in the particle size be-
come important. In this case a more accurate expression
for the reference free-energy density is given by the
Percus- Yevick theory with

fh(p;, T)=&2R& k&T fh(p;)+3+P;ln(A;/R& )

(2*) Within the BEG model interfacial wetting by the
vapor phase (along path p3) is not possible.

(3*) Both for phase diagrams of types II and III the
wetting behavior is symmetric about /=0 if the paths p,
and p2 are interchanged accordingly.

(4*) The liquid-vapor interface is wetted only by the
phase with the lower number density (see Ref. [38]).

(5*) The region in parameter space (g, A), which allows
a first-order wetting transition, is larger than the region
with a possibility for critical wetting for type-II phase di-
agrams. This ratio is reversed for type-III phase dia-
grams.

(6*) The region in parameter space, which allows for

where p;=2 ' Rzp; and

(4.1)

(4.2)

pi (pi~ ~) +2+ ~ ka ~pa(pi ) ~

p h, (p, , T ) =ka TP „,(p, ) .

For pl, and Ph, one finds (see Refs. [50—53])

(4.3)

(4 4)

pz and pI, , denote the dimensionless pressure and chemi-
cal potentials, respectively, of the hard-sphere-Quid mix-
ture, such that

ph(p; ) = (1+d3+d 3 ) gp; p~p~(1 r) (1 +r +der)—(1—d3)A 8 (4.5)
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and

p~, (p, )=ln[p, l(1 —13)]+3R,d2I(1 —d, )+—,'R, d.2/(I —d, ) +3R,. d, l(1 d—, )+ R 3p~(p, . )2 3 2 i 2 3 & 1 3 (4.6)

with Rz =1,Rz =r=R&/Rz, and

dk= gR,"p;, t ='A, B, k=1,2, 3 .
l

(4.7)

M~ —M, Q~Q, p~p,
pg~pg, T~T, H~ H

6 +b, E~X, C + —C,
t3as ~ ~~~ ~ma . (4.8)

For not-too-small values of r the PY theory allows one
to make quantitative predictions for binary liquid mix-
tures. [In the extreme case r ~0 the PY equation of state
exhibits three deficiencies: (i) In this limit the pair corre-
lation function between the large and small spheres does
not fulfill the contact sum rule for the corresponding
number density profile of a one-component hard sphere
fiuid at a hard wall [54], (ii) the distribution function of
the large spheres does not reduce to that of a one-
component fiuid [55], and (iii) the PY equation of state
misses the phase separation which has been observed for
r (0.2 [56]. However, for r ~

—,
' the PY equation of state

is in good agreement with the data obtained by simula-
tions [57], i.e., the deviations are less than 5%. For r (—,

'

one should use the superposition approximation [54] in-
stead. Since our analysis is confined to r ~0.5, we there-
fore can safely use the PY equation of state. ] Absolute
values of pressure, density, and temperature can be ob-
tained from the reduced quantities by the transforrna-
tions given in Appendix B. Figure 7 shows experimental
data from Streett and Hill [58] for the critical line denot-
ed as L2 in Fig. 1 for the neon-argon mixture, whereas
the corresponding data for neon-xenon in Fig. 8 stem
from Deerenberg, Schouten, and Trappeniers [59]. The
interaction parameters w~„, R~z, and r for the theoreti-
cal curves are obtained from Table I of Ref. [38] without
trying to find an optimal fit of the experiments. There-
fore the comparison between the data and the theoretical
curves can be regarded as revealing a qualitatively good
agreement for both neon-argon and neon-xenon. Figure
9 shows mass densities of the binary liquid mixture
Ar-CH4 obtained from experiments and simulations [60]
in comparison with our predictions. Here the interaction

Equations (4.5), (4.6), and (4.7) are approximations of the
pressure and of the chemical potential of the reference
system, obtained from the Percus-Yevick equation of
state for a mixture of hard spheres with diameters R~
and R~, respectively.

We now proceed in analogy to Sec. III replacing Eq.
(3.1) by Eq. (4.1) (see Appendix 8 for the corresponding
changes). The analysis can be restricted to r ( 1 because
of the invariance of the free-energy density with respect
to an interchange of the particles A and B. The case
r ~ 1 is given by the following transformations:

t

parameters are taken from Table I of Ref. [60]. Our
theoretical prediction within the PY theory is in very
good agreement both with the experimental data and the
data obtained from the molecular-dynamics simulation.
Given the fact that the above interaction parameters have
not been fitted to the data but taken from independent
sources, the predictions appear to be even quantitatively
acceptable. The uncertainties in the interaction potential
parameters [38] seem to be more relevant than the
deficiencies of the PY theory.

The first step in analyzing the parameter space for
phase diagrams of type II and type III consists of deter-
mining the separatrices between the two types of phase
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CL 400--
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0.3
I

0.4

X

0.5
I

0.6

FIG. 7. Experimental data of the critical line L2 (see Fig. 1)
for neon-argon by Streett and Hill [58] in comparison with the
predictions of the PY theory. We show the projection of L2
onto the T-P plane and onto the xN, -P plane, where xN, is the
neon mole fraction. The Lennard-Jones parameters (see Sec.
II B) used for this plot are (particle A denotes argon)

/A: 3 35~ 6~ ~ /kg: 143~ o g~ /A 2 76~ 6'gg /kg: 42~
o.~~/A=3. 10, and e~~/k~ =66.



1864 T. GETTA AND S. DIETRICH

diagrams. The loci of the tricritical points separating
phase diagrams of types II and III have been already
determined in Ref. [38]. The third line of tricritical
points separating the phase diagrams of types IIIA and
IIIB is determined along the lines presented in Appendix
A. As mentioned in Sec. III we avoid numerical prob-
lems at very low densities by introducing the same cutoff
as in Eq. (3.17). In addition, similar problems occur for
type-II phase diagrams (see Ref. [38]). In this case the
densities in the gas phase are too small. Here, following
Ref. [38], we introduce as the cutoff

0.5

NPT 100 K

pa

Pa +PB ~" = Tce

& 5X10 (4.9)

(P" +P')s'. , T=T „)5X 10 (4.10)

3000

Systems which violate Eq. (3.17), (4.9), or (4.10) are dis-

I

0.2 0.4
I

0.6 0.8

XA

FIG. 9. Mass densities of the Ar-CH4 mixture at 100 K ob-
tained by experiments (black squares) and by [NPT] molecular
dynamics with a fixed number of particles, pressure, and tem-
perature {open squares) (see Ref. [60] and references therein) in

comparison with the prediction of the PY theory. xA, is the ar-

gon mole fraction. For details see the main text. The Lennard-
Jones parameters (see Sec. II B) used for this plot are (particle 3
denotes CH4) o» /A=3. 74, e» /k~ = 152, o-» /A= 3.40,
E'ag /kg = 119.8, cr»/A=3. 57, and e»/k& = 134.9, whereas
the masses are given by m„/u =16.043 and m&/u =39.95,
where u is the atomic mass unit.
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carded. According to our remarks in Sec. I phase dia-
grams of type IIIA have to fu1611 the condition

(4.11)PAp PBp
under the assumption that the a phase is 8 rich and the P
phase is A rich, respectively. The shield region has to be
calculated numerically for each value of r and is indicated
by a dotted triangle. We confine our analysis to K ( 100
which is equivalent to A&0.02. The results for r =1 are
shown in Fig. 10 in comparison with the BEG model.
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FIG. 8. Experimental data of the critical line L2 (see Fig. 1)

for neon-xenon by Deerenberg, Schouten, and Trappeniers [59]
in comparison with the predictions of the PY theory. We show

the projection of L, onto the T-P plane and onto the xx, -P
plane, where xx, is the xenon mole fraction. The Lennard-

Jones parameters (see Sec. II B) used for this plot are (particle A
0 0

denotes xenon) o. ~ „/A =3.92, E g g /kg =280, o.~~ /A =2.76,
&gg/kg =42 o gg/A=3. 4, and &gg/kg =74

Fl~. lp. Separatrices in the parameter space (g, ~) between

phase diagrams of type II and type III within the BEG model

and the PY theory for r=1. The shield regions are dotted.

Within the BEG model the boundaries of the shield region are

already known (see Refs. [46,49]); for the PY theory we deter-

mine these boundaries numerically by the appearance of more

complex phase diagrams. In both cases the actual shape of the

shield region is more complicated as shown here. For reasons

of simplicity we display only those straight boundaries within

which the smaller shield region is embedded. The thin lines

correspond to the numerical cutoff described in the main text.

The nature of the separatrices is described in Fig. 4 which car-

ries over to the PY theory.
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FIG. 11.Tricritical lines (i.e., the loci of those systems which
exhibit tricritical points in their phase diagram) in the (g, A) pa-
rameter space as obtained by the PY theory and the Carnahan-
Starling-Redlich-Kwong equation of state [61], respectively, for
r =0.874. The left tricritical line from the PY theory has been
extrapolated (dotted line) due to numerical difficulties rnen-

tioned in the main text.

FIG. 12. Tricritical lines (i.e., the loci of those systems which
exhibit tricritical points in their phase diagram) in the (g, A) pa-
rameter space as obtained by the PY theory and the Carnahan-
Starling-Redlich-Kwong equation of state [61], respectively, for
r =0.814. The left tricritical line from the PY theory has been
extrapolated (dotted line) due to numerical difficulties men-
tioned in the main text.

Having mapped out the bulk behavior of binary liquid
mixtures we are now in the position to analyze the inter-
facial wetting behavior in the parameter regions for
type-II and type-III phase diagrams. First the behavior
at low temperatures is determined by combining Eqs.
(2.24), (2.25), (2.28), and (2.29). The condition a(T4) &0
is given by

and

(I+/)/(I —A) & —,'(1+r) along path pi (5.1)

(1—g)/(I —A) & — along path p2 .1 (1+r)
r

(5.2)

An interesting aspect is a comparison of the lines of tri-
critical points derived by the PY theory with the same
lines obtained by other models. Figures 11 and 12 show
our results and those obtained by Kraska and Deiters
[61] based on the Carnahan-Starling-Redlich-Kwong
(CSRK) equation of state for r =0.874 and r=0. 814.
The shield regions are omitted. These models turn out to
be in fair agreement. The only differences are the shift of
the left tricritical line between type-II and -IIIA phase di-
agrams to larger values of A for the PY theory and the
different slope of the upper tricritical line. The CSRK
equation is a combination of a hard-sphere repulsion
term (Carnahan-Starling) and a Redlich-Kwong attrac-
tion term [62]. This equation of state is one of the sirn-
plest possible noncubic equations, which is justified only
heuristically but turns out to be useful for quantitative
calculations [61].

V. INTERFACIAL WETTING WITHIN
THE PERCUS- YEVICK THEORY

Accordingly a continuous wetting transition can occur at
T4 & Trr& T„~ if either Eq. (5.1) or Eq. (5.2) is fulfilled.
Otherwise l= ~ is at least a local minimum of the
effective interface potential at low temperatures (see Sec.
II B).

In the second step we determine the wetting behavior
near T„.Analogous to the BEG model we calculate the
Hamaker constant a ( T) (see Appendix C). Close to T„~
one has [see Eq. (2.16)]

a(T~T„)=k& T„a((T« —T)/T„z) (5.3)

where p is the standard bulk critical exponent for the or-
der parameter; within MFT P= —,'. According to our pre-
vious results the dirnensionless amplitude ~ is determined
uniquely by the parameters g, A, and r (see Appendix C)
which in turn determine the bulk phase diagram. There-
fore the location of a specific binary liquid mixture with
respect to its bulk properties within this parameter space
allows us to analyze its interfacial wetting behavior close
to T„along the paths pi, p2, and p3. Thus we have
swept this parameter space and determined ~ which
yields absolute values for the Hamaker constant close to
Tcep '

This enables us not only to make predictions for the or-
der of the interfacial wetting transition but it also allows
us to determine the thickness lo of a complete wetting
film close to T„~ as long as a &0 (see Refs. [1,40]). In
this case we consider thermodynamic paths which lie on
the sheet S2 of a-y coexistence and approach the triple
line TL (see Fig. 1). At constant temperature and for a
small distance D off the triple line one has

10(D~O, T)= 2 i 1+
dH (6, T)

aa TL

2 —1/2
dH (bT) D

(Qp —Q ) —(Mp —M )
Ti a T

(5.4)
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Outside of this wedgelike region and close to T„critIcal
adsorption occurs which is governed by difFerent growth
laws [42]. Equations (5.8) and (5.9) show that a tricritical
point confines the wetting growth laws significantly
stronger than a critical point.

After we have discussed the importance of the Hamak-
er constant for complete wetting close to T„we now re-
turn to the amplitude sc which governs its absolute value
[see Eq. (5.3)]. Figures 13 and 14 display the dependence
of I~ on the parameter g along typical cuts through the
parameter space. Apart from the reduced temperature
dependence H,, r=(T„—T)/T„, and away from tri-
critical points and other special points the Hamaker con-
stant is of the order of k~ T

p Negative values of K Im-
ply that for such binary liquid mixtures close to T„no
macroscopically thick wetting film appears. In turn this
is possible for those which correspond to positive values
of ~. As displayed in Figs. 13 and 14 this behavior de-
pends on the choice of the thermodynamic path along the
triple line. As expected, for a given parameter set ~ is
positive only for one path and negative for the two other
paths. Otherwise Antonov's rule [1] would be violated.
Along such cuts through the parameter space one en-
counters binary liquid mixtures whose critical end point
T„happens to be a tricritical point (see Sec. IV). As
discussed in Appendix C for these binary liquid mixtures
the Hamaker constant vanishes -r ~ where P' is the tri-
critical exponent for the order parameter along the par-
ticular path given by the triple line [36]; within MFT
P'= —,

' which is valid in d=3 up to logarithmic correc-

M z(h, T) denotes the line of intersection between the
sheet S2 in Fig. 1 and the plane T=const, along which
we consider complete wetting [see Eqs. (3.9) and (3.10)].
With the exception of D all quantities in Eq. (5.4) are
evaluated at the triple line TL for the temperature under
consideration.

Experimentally, complete wetting in binary liquid mix-
tures is easily provided by gravity such that the wetting
film of the /3 phase is fioating at a height L above the
reservoir of the bulk of the P phase separated by the a
phase (see Fig. 4 in Ref. [38]). (This assumes that the
wetting phase P has the larger mass density p& than the
wetted phase a.) In this case the height L plays the same
role as D in Eq. (5.4). The thickness of such gravity
thinned wetting films is given by

lo(L ~0, T ) = [—,'(m „+mz )(Q& —
Q~ )

—1/3

+ —,'(m „—m~ )(Mp —M ) )
gL

a T
(5.5)

Without gravity, i.e., for g =0, the system is assumed to
be located on the triple line TL.

According to Eqs. (5.4) and (5.5) one has

lo(D~O, T) =l()(T)D (5.6)

and

IIIA-II II-IIIB
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lo(L ~0, T ) = lo( T)L (5.7)

respectively. Due to Eqs. (2.16), (Cl), (5.4), and (5.5) one
finds that Io(T~T„) and lo(T~T„) remain finite in
the case that T„ is an ordinary critical point. This weak
temperature dependence of gravity thinned wetting films
is in accordance with experimental observations (see Ref.
[20]). If, however, T„happens to be a tricritical point,

p/a(T~ T„)vanishes r~ -whereas Qti-Q and Mt) M-
vanish -8 for ~~0 with P'= —,

' [see Eqs. (C4) —(C7)].
Therefore the thickness of gravity thinned wetting films
decreases» =v' upon approaching a tricritical
point.

One should emphasize that Eqs. (5.4) —(5.7) are only
valid as long as l0 is large compared with the bulk corre-
lation length g [42]. Since g(r~0) =gov, v=0. 63, for
a critical point and g(r~0) =g'or, v'= 1, for a tricriti-
cal point along the triple line, near T„z the validity of
Eqs. (5.6) and (5.7) is confined to a near wedgelike region
(see Fig. 8 in Ref. [42]):

3 3

D&
l0

1 —1', L&
I0 31
ko

and

L &

(critical point) (5.8)

3

3v 3v +P 3.5

0
3

3 3 +P 35
0

( tricritical point ) (5.9)

FIG. 13. Dimensionless Hamaker constant ~ close to T„~
[see Eq. (5.3)] along a certain cut through the parameter space
(g, A, r) which determines the bulk properites of the bindary
liquid mixtures. Here we have chosen A=0. 19 and r=0.98,
i.e., the A particles are larger than the B particles. The tricriti-
cal points between difFerent types of phase diagrams are indicat-
ed by IIIA-II and II-IIIB, respectively. sc vanishes for these
values of g. The full curve corresponds to path p, , the dashed
curve to path p2, and the dotted curve to path p3 (see Sec. II A).
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transitions these are the correct values up to logarithmic
corrections. Thus we find pI & p' as for an ordinary criti-
cal point so that Cahn's argument remains valid also for
wetting induced by tricritical points.

Figures 13 and 14 display the behavior of the (dimen-
sionless) Hamaker constant for particular cuts through
the parameter space. As discussed before the sign of ~ to-
gether with the low-temperature analysis [see Eqs. (5.1)
and (5.2)] allow us to classify the interfacial wetting be-
havior of binary liquid mixtures. Our corresponding re-
sults for a complete sweep of the parameter space (g, A, r )
are documented in Figs. 15—21. (Additional figures are
given in Ref. [66].) The allowed region for simple bulk
phase diagrams of types II and III is symmetric around
/=0 only for r= 1. [We consider only those binary
liquid mixtures which fulfill the condition A) 0.02 and
the inequalities given in Eqs. (3.17), (4.9), (4.10), and
(4.11).] The shield region lies within the dotted triangle.
The bold lines represent those binary liquid mixtures for

FIG. 14. Dimensionless Hamaker constant a close to T„~ as
in Fig. 13 for r=0.98 and A=0.61. The tricritical point be-
tween type-IIIA and type-IIIB phase diagrams is indicated by
IIIA-IIIB. For all three paths x vanishes for this value of g. 075

I
I

along p,

tions. Therefore a(T~T„)/r vanishes at a tricritical
point. Accordingly z as defined in Eq. (5.3) vanishes
upon approaching a tricritical binary liquid mixture in
parameter space. In Fig. 13 this occurs when a type-IIIA
phase diagram turns into a type-II phase diagram and
when a type-II phase diagram turns into a type-IIIB
phase diagram (see Fig. 2); in Fig. 14 type-IIIA and type-
IIIB phase diagrams become identical at the tricritical
point.

Based on the observation that the Hamaker constant
varies monotonously as a function of temperature, it has
been argued in Ref. [38] that the remaining zeros of ~(g)
imply that the corresponding mixtures exhibit a wetting
transition temperature, which coincides with T

p
For

type-II mixtures this occurs once (see Fig. 13) whereas it
occurs twice for type-III mixtures (see Fig. 14).

At this stage it is worthwhile to reconsider Cahn's ar-
gument [63,1] which predicts the necessity of a wetting
transition upon approaching a critical point, for the case
of a tricritical point. According to Cahn close to T„ the

Pj pcontact angle 8 varies as cos8-r ' where P, =0.8 is
the critical exponent governing the singular temperature
dependence of the order parameter at a free surface and
p=1.26 describes the variation of the gas-liquid surface
tension o &-H with r=(T„—T)/T„. (In fact Cahn
[63] did not distinguish between p and the actual ex-
ponent p&). Since p& &p, for r~0 cos8 would become
larger than 1 signaling the wetting transition. If T„
happens to be a tricritical point, p, and p must be re-
placed by their tricritical values p', =—', and p'=2 (see
Refs. [36,64,65]). We emphasize that these values are ap-
propriate for the particular thermodynamic paths along
the triple line corresponding to interfacial wetting. The
values quoted above for p& and p' are those obtained
within MFT. However, in d =3 and for tricritical phase
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FIG. 15. Interfacial wettirig behavior within the PY theory
along paths p& and p2 for r =1.0. The vertical hatching indi-
cates that an interfacial wetting transition is not possible, a
first-order wetting transition or a wet interface for all tempera-
tures is indicated by the horizontal hatching, whereas the diago-
nal hatching with positive slope represents the possibility for a
critical wetting transition. The dotted area includes the shield
region. Systems with tricritical points are denoted by bold lines.
The dash-dotted lines represent those systems with the wetting
transition temperature T~= T„~, whereas the dashed lines are
related to systems with T~ = T4 where T4 is the low-
temperature limit as described in Sec. II B. The hatchings end
due to certain cutoff values as explained in the main text.
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FIG. 16. Interfacial wetting behavior
'

r within the PY theory
d for r =0.9. We use the same notationalon the paths p& and p2 or r =

g
'

h -h d side of the dotted lines all thoseas in Fig. 15. On the right- an si e o
binary mixtures ie w ose il' h liquid phase being rich in large parti-
cles has at least close to T„~, the lower number density.

h' h T happens to be a tricritical point. In accor-cep'
h Fi . 10 they divide the parameter spacee ace intodance wit ig. e

three regions for phase diagrams of types
IIIB. The left line of tricritical points disappears for
r & 0.7. The size of the total region for phase diagrams of
types II and III decreases for smaller values of r and is
shifted to negative values o ~+.f f-

i ibleOn the right-hand side of the dotted lines (only visib e
~0.98) all those binary liquid mixtures lie

whose hqui p ase1' d h being rich in large partic es as, a
edleast close to gep7 eT, th lower number density. The dotte

line disappears or rf (0.72 (type II) and for r (0.55 (type
'

uid hase beingIIIA). This means that for small r the liquid phase eing
rich in small particles always has the higher number den-
sity.

The dashed lines are determined yb (1+g)/
1 —A)= —,'(1+r) and (1 —g)/(I —A) =

—,'(1+r ', re-

spectively [see qs. . aj E (5.1) and (5.2)]. These lines determine
the behavior of a ( T) for low temperatures.

At the dash-dotted lines ~ changes sign. As argued in
Ref. [38] this means that, in the case of critical wetting,
the wetting transition temperature of these binary liquid
mixtures coinci e wi cep'

'd th T . Thus upon approaching t e
~ ~ ~

dash-dotted lines from regions with diagonal hate ing
with positive slope (see below) the wetting transition tem-

FIG. 17. Interfacial wetting behavior as in F'g.in Fi . 16 for
r=0. 82. Nearly all mixtures of type II lie on the right-hand
side of the dotted line.

pproaches T . For mixtures with type-II
phase diagrams the dash-dotted line coincides wit t e
dotted line for r =1.

The classification of the interfacial wetting behavior in
the various parameter regions is indicated by different
hatchin s. The vertical hatching represents the absence
of any wetting transition [interfacial wetting behavior of
class i accor ing o ec.(') d' to Sec. IIB], whereas the horizontal

atc ing in icah h' '
d ates an interfacial wetting transition o rst

order or a wet interface for all temperatures (ii). e i-
agonal hatching with positive slope means that the corre-
spon ing sys em

' ' ' ' iii. ed' s stems can exhibit critical wetting iii . e
possi iiyo a e

' '' ' ' '
a'b'1't f d wetting transition (iv) is indicate y a

d 1 hatching with negative slope. According to e .iagona a
[38] this behavior is possible only for type-II p ase ia-
grams with r & 0.76.

ms for r ~0.76In the region for type-II phase diagrams for r ~0.7
one finds three different kinds of interfacial wetting be-

r 0.6~r &0.76 four
classes of interfacial wetting behavior are possible,
whereas for r &0.6 critical wetting cannot occur along
path p, . For r ~ 0.5 also the interfacial wetting behavior

xtra olation to small-
er values of r indicates, that along both paths p& and p2

'o'1't f first-order interfacial wetting
remains. Interfacial wetting by the vapor phase (a ong
path 3) is not possible for type-II phase diagrams.

Phase diagrams of type III exhibit three classes of in-
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FIG. 18. Interfacial wetting behavior as in Figs. 16 and 17
for r =0.7. The diagonal hatching with negative slope along p&

(g= —0.5, A(0, 25) indicates the possibility for a dewetting
transition (see also the corresponding discussion in Sec. IV of
Ref. [38]).

FIG. 19. Interfacial wetting behavior as in Fig. 18 for r =0.6.
The size of the parameter region, which allows for the oc-
currence of a dewetting transition, is increased. Dewetting can
now take place also along path p2. Note the expanded scale of
the g axis.

terfacial wetting behavior along the paths p, and p2 for
r ~0.5. A dewetting transition (iv) does not occur for
r ~0.5 but extrapolation suggests that it may occur for
smaller values of r. Contrary to the BEG model and to
binary liquid mixtures exhibiting type-II phase diagrams,
continuous interfacial wetting by the vapor phase is pos-
sible for mixtures with type-III phase diagrams. Accord-
ing to our remarks in Sec. II B first-order wetting (ii) is
not possible by the vapor phase.

Besides the very common Lorentz rule for cr „&
=(cr „„+cruz )/2, the mixing rule (see Ref. [38])

~~a &(~~~ ~ra ) 0 &X —1

implies the following relationship between g and A:
1/2

(5.10)

A(g) =1— ( 1 + )

64r
(5.11)

For y= 1 Eq. (5.10) is known as the Berthelot rule. The
probability for finding binary liquid mixtures within the
allowed regions should be enhanced in the vicinity of
A(g) given by Eq. (5.11). In Table I we apply our
classification scheme (see Figs. 15—20) for interfacial wet-
ting to a selection of various binary liquid mixtures. The
corresponding predictions are based on the Lorentz rule
and on the mixing rule with y=0. 9 [see Eq. (5.10)]; this
value for y has proven to be the most adequate choice

[67]. The interaction potentials between similar mole-
cules are taken from Refs. [68,69].

As in Sec. III for the BEG model we summarize our
main findings for interfacial wetting predicted by the PY
theory.

(1) For the PY theory we have determined the parame-
ter regions where binary liquid mixtures exhibit simple
phase diagrams of types II and III.

(2) For r =1 we obtained qualitatively the same results
for systems with type-II phase diagrams for both the PY
theory and the BEG model. There are only quantitative
di6'erences. A qualitative difference is obtained for sys-
tems with type-III phase diagrams. For those along the
path p3 critical wetting by the vapor phase is possible.
There are mixtures of type II, of type IIIA, and of type
IIIB for which in the case of critical wetting the corre-
sponding transition temperature T~ coincides with T„.

(3) For all values of r critical wetting by the vapor
phase is possible for binary liquid mixtures with type-III
phase diagrams.

(4) In that region of the parameter space with a possi-
bility of interfacial wetting by the vapor phase no wetting
transition by a liquid phase is possible.

(5) Interfacial wetting by a liquid phase occurs only ei-
ther along path p, or along p2.

(6) In general, the only symmetry is the one which re-
sults from the invariance with respect to the interchange
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along p, r= 1.0 along p
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FIG. 20. Interfacial wetting behavior as in Figs. 18 and 19
for r=0. 5. Note the expanded scale of the g axis. The dotted
line has disappeared. Thus for r 0.5 the liquid phase rich in
large particles has, at least close to T„„,the lower number den-
sity.

FIG. 21. Interfacial wetting behavior within the PY theory
along path p3 for r = 1.0 and r =0.7. We use the same notation
as in Figs. 15 and 18. For mixtures of type III critical wetting
by the vapor phase is possible.

of the particles of sort A and 8.
(7) For large diff'erences in particle size, i.e., for small r,

mixtures of type II exhibit only a possibility for first-
order wetting, whereas for mixtures of type III only criti-
cal wetting is possible.

(8) Within the parameter region for type-II phase dia-
grams critical wetting by the liquid phase being rich in
small particles cannot occur for r (0.6.

(9) For r ~0.76 mixtures of type II provide the possi-
bility for a dewetting transition if the wetting layer is rich
in the small particles.

VI. SUMMARY

In this section we summarize our main results.
(1) We have studied the bulk properties of binary liquid

mixtures within the Percus-Yevick theory (Sec. IV). For
certain examples we were able to compare our predic-
tions with those of other theoretical approaches (Figs. 11
and 12), with simulations (Fig. 9), and with experimental
data (Figs. 7—9). In general, we find satisfactory agree-
ment.

(2) The scan of the parameter space spanned by the
strengths of the interaction potentials and the sizes of the
particles allowed us to locate those regions in the parame-
ter space where the binary liquid mixtures exhibit bulk
phase diagrams of the types II, IIIA, and IIIB, respec-

tively, following the nomenclature of Scott and Konynen-
burg (Fig. 1). Accordingly, we determined those parame-
ters for which binary liquid mixtures happen to have a
tricritical point (Fig. 2). These results are presented in
Figs. 15—20. The nature of the separatrices between
these different regions of the parameter space turns out to
be the same as of the corresponding BEG model (see
Figs. 4 and 10).

(3) Based on the microscopic expression for the
Hamaker constant [Eq. (2.9)] we have classified the inter-
facial wetting behavior of the binary liquid mixtures de-
scribed above both within the Blume-Emery-Gri%ths
model (Sec. III) and for the Percus-Yevick theory (Sec.
V). This classification consists of four categories: (i) The
a-y interface (Fig. 3) undergoes no wetting transition, (ii)
it either undergoes a first-order wetting transition or it is
wet along the whole triple line, (iii) it undergoes critical
wetting, and (iv) dewetting occurs. Which category is
realized for a given binary liquid mixture depends on
whether the wetting phase is the 8-rich liquid (path p, ),
the A-rich liquid (path p2), or the vapor phase (path p3)
(Fig. 3). In Figs. 5, 6, and 15—21 this classification is
displayed by various hatchings. A detailed summary of
these results for the BEG model is given at the end of
Sec. III whereas the corresponding summary for the PY
theory is presented at the end of Sec. V.

(4) Remarkably for mixtures of type III interfacial wet-
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0
TABLE I. Within the diagonal elements of the table the first and second row give the values for cr;; /A and e;; /kz, respectively, as

taken from Refs. [68,69]. As discussed in the main text, for i' we choose o';, =(cr;;+a',J )/2 and e;, =0 9.(E;;e,, )'~ . Based on this
choice the off-diagonal elements of the table indicate the interfacial wetting behavior of the corresponding binary liquid mixture pre-
dicted by Figs. 15—20. The lower-left elements correspond to path p& whereas the upper-right elements correspond to path p2 (see
Fig. 1). The symbol H stands for the absence of an interfacial wetting transition, U indicates a first-order wetting transition or a wet
interface for all temperatures, whereas Q denotes the possibility for a critical wetting transition. The symbol b, represents the possi-
bility for a dewetting transition whereas for those cases denoted by the critical end point T„~ is presumedly preempted by
solidification, i.e., T4 )T„~. [Within our approach this is signaled by violating the inequalities given by Eqs. (4.9) and (4.10).] Binary
liquid mixtures which are located outside the hatched regions of Figs. 15—20 are marked by a question mark; the predictions for
those systems are inferred by extrapolation. (Note that for the systems discussed in Figs. 7—9 we have chosen slightly different in-
teraction parameters).

Ammonia Argon Methanol Methane Xenon Ethanol Ethane 1-Butene Toluene n-Pentane n-Hexane n-Heptane

Ammonia'

Argon

Methanol

Methaneb

Xenon

Ethanol

Ethane

1-Butene'

Toluene

n-Pentane'

n-Hexane"

n-Heptane

3.215
309.9

3.40
122

3.69
234

3.70
157

4.06
229

4.34
324

4.38
236

5.274
302.4

5.64
575

5.916
308.3

5.92
517

6.25
573

'Reference [68].
Reference [69].

ting by the vapor phase is possible. For mixtures consist-
ing of particles of rather different sizes dewetting can
occur.

(5) We have identified those binary liquid mixtures
whose transition temperature for critical wetting coin-
cides with the critical end point T p.

(6) The above classification scheme is based on the sign
of the Hamaker constant at low temperature and for
T~T ep In addition, we have also determined the abso-
lute values of the Hamaker constant close to T„p along
cuts through the parameter space (Figs. 13 and 14) and
discussed the repercussions for complete interfacial wet-
ting close to T„„.

(7) If the critical end point happens to be a tricritical
point, Cahn's argument for the necessity of the oc-

currence of a wetting transition still applies (Sec. V).
(8) Close to an ordinary critical end point the leading

temperature dependence of the thickness of a complete or
gravity thinned wetting film drops out. However, if T„
happens to be a tricritical point, the thickness of a com-
plete or gravity thinned wetting film decreases upon ap-
proaching T„~ (Sec. V).

(9) Specific predictions for the interfacial wetting be-
havior of various binary liquid mixtures are summarized
in Table I.

APPENDIX A: BULK BEG MODEL

Equation (3.5) represents the variational grand canoni-
cal free-energy density. Minimization with respect to Q
and M leads to the grand canonical free energy:

G(HAT)=T ln +»
2

+(1 Q)ln(1
2

—
—,'(M2+KQ +2CQM) HM+bQ
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with G =min ——(f2 ' R „). All quantities are reduced
Q, M

and should carry a bar, which is omitted for reasons of
clarity. Q and M are functions of H, b„and T, and are
given implicitly by the simultaneous solutions of (see
Refs. [45—47])

' =H(M
BM (A7)

The critical points are determined by the vanishing of the
second and third derivative of P with respect to M:

and

H= ,' T ln—[(Q+M)/(Q —M)] —M —CQ

6=Tin[2(1 —Q)]—(T/2)ln(Q —M )+CM+KQ .

(A2)
aH(M, b„T) a H(M, b., T)

aM aM
a H(M, h, T) &0.

BM

(AS)

The function

Z (M, Q, T) = T ln( 1 —Q ) + —,
' M + —,

' KQ +CMQ

(A3)

(A4)

At a tricritical point in addition the next two higher
derivatives of P must vanish:

a"H(M, b„T)

aM"
(A9)

is obtained by inserting Eqs. (A2) and (A3) into Eq. (Al).
This leads to

G(H, b„T)=Z(M =M(H, b„T),Q =Q(H, E, T), T) .

(A5)

a H(M, b„T) &0.aM'

According to Ref. [3S] we have to consider the two func-
tions

In order to determine critical and tricritical points we
perform a Legendre transformation with respect to H
[47],

X(M, Q, T)= aH —aH ab'
aM ag aM ag

with

(A 10)

$(M, b„T)=G(H=H(M, b„T),b, T)+MH(M, b, T)

(A6)

with and

=X(M, Q =Q(M, b„T),T) (A 1 1)

a'H aa
ag' aM

aa
ag

r

a H a'H aa aa
aMag aM ag

2 —2

BH Bh Bh
aQ aM2 ag

aH ab,
ag aQ2 aM a

—3

aH a~ a'~ a~
aQ aM aMaQ ag

—2

(A12)

with

aHMb T = Y(M, Q=Q(M, b„T),T) . (A13)

I

The solutions of Eq. (A14) are determined numerically by
iterating suitable initial guesses.

H =H(M, Q, T ) an—d b, = b,(M, Q, T ) are given explicitly
by Eqs. (A2) and (A3). The expressions for
a H(M, h, T)/aM and a H(M, b„T)/aM are too long
in order to present them explicitly.

The critical end point T„ is determined by the follow-
ing conditions: Eq. (AS) must be fulfilled and H, b„as
well as the pressure p = —G(H, b, , T) must be the same in
both the critical phase a=P and the coexisting noncriti-
cal phase y. This leads to five coupled nonlinear equa-
tions for M =M&, Q =Q&, M~, Q, and T„:

X(M, Q, T„p ) =0,

APPENDIX 8:
BULK PERCUS- YEVICK THEORY

As described in Appendix A all thermodynamic quan-
tities are determined by the functions H (M, Q, T),
b (M, Q, T), and Z (M, Q, T)= —p (M, Q, T). Within the
Percus-Yevick theory a combination of the Eqs. (2.4),
(2.5), (3.2), (3.3), (3.6)—(3.S), and (4.5) leads to

Z(M, Q, T)= —
Tpp, (M, Q)+ ,'M + ,'KQ +CM—Q, (—Bl)

with

pg(M, Q)= Q(1+d, +d', )

Y(M, Q, T„p }=0,
Z(M, Q, T„)=Z(Mr, Qy, T„p),
'H(M, Q, T„)=H(Mr, Q~, T„p},
b,(M, Q, T„)=h(My, Qy, T„p) .

(A14)

where

4 2
—y&(Q M)(a&+d2r )

—(1—d3 )
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—«kg+)'kM)
6 2

and (with r =Rid /R „)

ak =1+r, yk =1—r, k =1,2, 3 .

(B3)

(B4)

All quantities are reduced and should carry a bar. For
reasons of clarity we omit these bars. Nonreduced quan-
tities can be obtained by the following transformations:
—Z =Ii~2 '~ R„P/J, T~k~T/J, ECHOIC/J,
C~C/J, M~2 '~ R~M, Q~2 '~ R„Q, H~H/J,
A~A/J, where

Q+M
Q —M

'V I'Y2 713 2 'lr
X3 a3

V1V2
(1—d3)

+ —,
' y2d 2 (1—d3 ) + —y@I, (M, Q) —M —CQ (B5)

and

b, =T —
—,'ln(Q —M )+ln(1 —d3) —3 1+ Q(aiaz —a3) (1—d3)6&2

+ 3 —
—,
' a2d 2 ( 1 —d 3 ) — —a3Iil, (M, Q) + CM +KQ .

6&v
(B6)

Note the relation a,y2+a2& &
=2&3.

In general, the ratio of diameters r =Rz/E. z depends
on ro, k~ T/J, A /J, whereas at T„ it depends on ro,
E/J, and C'/J. Both R„and Rz are increasing func-
tions of the temperature, but the ratio r exhibits a weaker
dependence. Therefore we approximate r by the constant
ro, which eases our numerical scan through the parame-
ter space g and A.

A11 of the formulas used in this paper are based on the
compressibility relation (see Refs. [52,53]):

~Pa
1 —gp;c, ' '(q=O) = (kti T),'J

Qp
(B7)

az aa aH
ag ag ™ag'
az a~ aH
aM aM ™aM

(B8)

Equation (B8) provides a useful test for the correctness of
the numerical calculations.

APPENDIX C: HAMAKER CONSTANT

In the limit T~T„both di6'erences M —M& and
Q —

Qp [see Eqs. (2.10) and (2.11)]vanish as a power law
with the critical exponent P:

PI, i

p, c,',~'(q=O) =fi;, —p;
'

(kti T),
J M Mp —

AM
-—r, Q

—
Qp

-&g— (C 1)

where c,.' '(q) is the Fourier transform of the direct corre-
lation function c . '(r, —rz) (see Appendix A in Ref. [38]).
According to Eq. (4.2) the reference free energy is given
by pz and pz, . By using Eq. (B7) one can obtain the fol-
lowing relations between Z, H, and 5:

p —i
2

The amplitude x as defined in Eq. (2.16) is given by

(C2)

where r=(T„—T)/T„and within mean-field theory

~up gp [ p™r Qp Qr )]t3 Ag +(IMAM l~g ) j(Mp —Mr ) —(gp —g

+2[&g (Qp —Qr) —~~ (Mp —M )]] (C3)

In Eq. (2.16) Mp, M, Qp, and Q are evaluated at T=T„.At a tricritical point T„;,all three phases become critical
and identical. Therefore the following four difFerences of the density variables M and Q vanish for T~ T„;,:

Q —Qp-xg (C4)

Mp —My -zM
Pr Qp

—
Q (C5)

Along the special path given by the triple line the tricritical exponent 13' is given by (see Ref. [36])
t

2
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In d=3 Eq. (C6) is valid beyond MFT up to logarithmic corrections. As a consequence of T~T„„=T„;„a(T)van-
ishes as r P,

with

a(T), p~ for T~T„~=T,„;, ,
kB Ttric

(C7)

3, AB
K —[(KM +trg )(tcM +tcg )ts gg +(KM Kg )(Kst Icg )t3 pter +2(&g &g &st KM ))a, p a, P P, y P, y c,p c,p P, y P y ~,P P, y c,p P, y gkB Ttric

(C8)

Since 2P') P the amplitude tc [see Eq. (C3)] vanishes for those binary liquid mixtures whose critical end point happens
to be a tricritical point.

For the classification of wetting behavior it is sufficient to calculate only the sign of a ( T). In this case we use the fol-
lowing form of Eq. (2.9):

a(T) =
—,'(Qa —Qp)(Qp —

Qr )[(1+Zap)(l+Xpr)t3 Jg+(1—Rap)(1 Ape)t3—iiit+2(1 —Aapkpr)] 3 (C9)

with

X p=(M —Mp)/(Q —Qp)

and

(C10)

each value of g and A. However, the numerical efforts
can be reduced substantially by expanding H(M, Q, T)
[see Eq. (A2)] around (M„,Q„~,T„~) (see Ref. [38])
which leads to

Xp =(Mp M)/(Q—p
—

Qr ) . (Cl 1)

At the critical end point T„„,A. p=X p(T= T„~) is given
by

(C12)

re(M, Q, T)
BM Mc Qc Tc

BH(M, Q, T)
aP t)Q etc gc Tc

(C13)

Within a straightforward approach one would determine
X p by taking the limit X p(r~0) along the triple line for

which can be evaluated directly without performing the
limit ~~0 numerically.
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