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Transient phenomena, self-diffusion, and orientational effects in vibrated powders
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We explore the rich behavior of vibrated powders, focusing on the relaxation of transients between vi-

brational steady states, on the diffusion of independent particles, and on "global" and "local" angular
distributions of contacting particles. When examined as a function of vibrational intensity, these are
shown to be explicable in terms of a model of independent-particle and collective excitations. Our data
provide a wealth of information about topics as diverse as consolidation under packing, the roughness of
granular piles, and the local structure of bridges and arches in shaken packings.

PACS number(s): 05.40.+j, 05.60.+w, 81.90.+c, 82.70.—y

Although granular materials have been studied by en-
gineers [1] for a long time, it is only recently that they
have become a fashionable and exciting area of theoreti-
cal and experimental [2—4] physics. There have been a
number of theoretical approaches to How in powders, of
which one of the most important consists of treating the
powder as a macroscopic continuum [5]; however, there
are many circumstances in which it is crucial to consider
the essential discreteness of the grains, for instance in the
study of size segregation, aggregation and arching.
Hence a fully microscopic description of powders is fun-
damental to the understanding of the many fascinating
features that are associated with powders at rest and in
motion.

Recently a combination of theoretical [6] and compu-
tational [7—9] techniques has led to a comprehensive
description of relaxational mechanisms in a vibrated
powder. The fundamental reason for studying vibrated
powders is that in the real world, powders are frequently
"shaken" for a variety of applications in science and
technology. In this context, "shaking" refers to the ap-
plication of any incoherent mechanical driving force and
the details of the driving force, for instance the strength
of its harmonic components and their coupling to indivi-
dual particle motions, are frequently poorly defined and
may vary between applications. Thus the observed be-
havior of granular materials in practical situations in-
cludes an element that is the response of a dense, disor-
dered many-component system to ill-defined, complex
driving forces.

However, we maintain that this response, although
complicated, can be understood in terms of the competi-
tion and cooperation between the relaxation processes
due to the motions of independent particles and of clus-
ters, and that the overall relaxation of a powder during
vibration is thus a combination of independent-particle
and collective excitations [6—9]. Further, we suggest that
the balance between independent-particle and collective
relaxation, for a given vibration intensity, is only weakly
affected by details of particulate shape and texture or of

the nature of the driving force and is to a far greater ex-
tent generic to disordered, nonsequential, close packings
of powders.

In this paper, we present computer-simulation results
to support this model, and we also extend its scope to in-
clude the transient response (as distinct from the steady-
state response which we have studied in earlier work
[7—9]) of the bulk properties (e.g., the volume fraction) of
the powder. This is done with a view to understanding
the everyday phenomenon of "tapping", of which more
will be said later. Secondly, we probe the self-diffusion of
independent particles, which has been the subject of a re-
cent experiment [4], and we provide a comprehensive in-
terpretation of this phenomenon which extends across
the regime of fast fiows( studied in Ref. [4]) and that of
slow Qows. Finally, we verify earlier predictions [8,9]
concerning the roughness of vibrated piles and the
jaggedness of local structures within them, by studying
"global" and "local" distributions of the contacts be-
tween neighbouring particles.

Our simulation method is hybrid in nature, with an al-
gorithm involving Monte Carlo dynamics as well as non-
sequential random close packing, which overcomes some
of the difhculties associated with computer simulations of
shaking (see, e.g., Ref. [10]). In our model, shaking is a
periodic process. Each cycle of the shaking is represent-
ed by an instantaneous, homogeneous introduction of free
volume followed by a nonsequential reorganization in a
strong, uniaxial external field. Details of the method are
presented elsewhere [8,9]. The powder is modeled as a
collection of frictionless, monodisperse hard spheres; our
results are, however, not changed significantly by the in-
troduction of a small amount ( (10%%uo) of polydispersity.
(We note that the introduction of particles with different
sizes into a shaken packing leads to size segregation
occurring concurrently with structural relaxation, which
is an unnecessary complication for the interpretation of
this study. ) The first part of the shake cycle is a uniform
vertical expansion of the sphere packing, accompanied by
random, horizontal shifts of the sphere positions. A
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sphere at height z is raised to a new height z'=(1+@)z.
For each sphere new lateral coordinates are assigned ac-
cording to the transformation x'=x+g„, y'=y+g,
provided they do not lead to an overlapping-sphere
configuration. Here g„and g' are Gaussian random vari-
ables with zero mean and variance e . The parameter e is
a dimensionless measure of the intensity of the vibration.
Following this expansion, the spheres are nonsequentially
redeposited by a combination of Monte Carlo moves and
mechanistic random close packing. The simulation
method allows the powder to experience a wide range of
volume fractions during shaking in which the grains are,
however, returned to a stable, close-packed configuration
in each cycle: ours is thus a model of a finite-amplitude,
low-frequency shaking process. Our model reduces the
process of shaking to its essential components, which our
previous results [7—9] suggest are those that lead to a
wide variety of observed granular behavior.

Repeated application of the shaking algorithm leads to
a steady state in the presence of vibration; by this we
mean that the properties of the powder at each point of
the shake cycle are statistically invariant. This steady
state is independent of the sphere configurations chosen
for the initial condition, and depends only on the shaking
intensity. Details of the steady-state shaking regime (in-
cluding the variation of the mean volume fraction P in
the stable close-packed phase of the shake cycle) as a
function of intensity have been examined thoroughly else-
where [8,9]. These results support the existence of two
relaxation mechanisms for vibrated powders, where the
faster of the two involves the motions of independent par-
ticles while the slower involves collective particle motions
[6]

In the present work we develop this picture by consid-
ering the transitions between these steady states. We
have chosen our reference, steady-state configurations to
be those appropriate to a shaking intensity of a=2.0. In
this reference state, the spheres are relatively loosely
packed, with /=0. 55, while all steady states with e (2.0
have denser packings. If one regards tapping as a small-
intensity shaking process and pouring as a single large-
intensity shake, this is in accord with the familiar obser-
vation that dry granular material, poured into a con-
tainer, can be consolidated by "tapping" [11]. As men-
tioned before, it is one of the aims of this paper to repro-
duce the physics of this process, and to see how the
mechanisms involved in the relaxation of transients pro-
duce this consolidation.

Having chosen our reference configurations as men-
tioned above, we have applied shaking vibrations with
0.05 ~ e ~ 0.75 to them. In our granular bed, which con-
sists of a periodic arrangement of cells, the primary cell
has a square cross section with an area of (64 sphere di-
ameters) and an average depth of approximately 20
sphere diameters in a direction parallel to the external
field; this primary cell is then repeated in the two direc-
tions orthogonal to the external field. Volume fractions
in the close-packed phase of the shaking cycle are mea-
sured form the central portion of the bed in order to min-
imize surface efFects, and time is measured in units of the
shaking cycle. The transient response of the volume frac-
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FICi. 1. The variation of the volume fraction (P) with time in
computer simulations of shaken granular deposits. The five
data sets correspond, from top to bottom, to shaking intensity
@=0.05, 0.1, 0.25, 0.5, and 0.75. Dotted curves show the best
single exponential fits and solid curves show the best two ex-
ponential fits.

tion, for shaking at five different intensities, is shown in
Fig. 1. Each data set is an average over at least eight in-
dependent simulations. Also plotted, in each case, are
two nonlinear least-squares-fitted functions. Dotted
curves show the best single exponential fit ( three parame-
ters) and the solid lines show the best fit with a sum of
two exponents ( five parameters).

The simulation results show smooth, monotonic varia-
tions of volume fraction from the poured steady-state
value to the shaken steady-state value. We note that the
transient response of the volume fraction reAects a transi-
tion between steady states that have different statistics for
nonsequential reorganizations driven by vibration and
contain different densities of structural features such as
bridges and large voids. If bed compaction were the re-
sult of a single vibration-drive process, then (since our
driving force is coupled homogeneously to the powder)
one would expect the excess unoccupied volume to decay
with a single relaxation time —however, the poor fit
achieved using the best single exponential relaxation is
very noticeable. The improved fit, using a sum of two ex-
ponentials, indicates that the above expectation is unreal-
istic, and that the powder has a more complex response.
(We note that similar improvements can be achieved by
fitting a single stretched exponential. ) Further, for each
value of e, the two time constants obtained from the dou-
ble exponential fit are very different. For @=0.05, 0.1,
0.25, and 0.5 the two relaxation times are approximately
3 and 20 cycles, but for @=0.75 these times are approxi-
mately 1 and 50 cycles; also, the relevant fitted
coefficients in each case for the fast and the slow relaxa-
tion times are of comparable magnitudes. We infer thus
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that the structural rearrangements that cause this
densification are driven by two relaxation mechanisms
and that these are the same as those which drive the
structural relaxations in the steady state [8,9]—the faster
relaxation corresponding to the motion of independent
particles, and the slower to the motion of clusters.

We note that for computer-simulated powders, the par-
ticle reorganizations induced by shaking are only subject
to geometrical constraints, whereas for real powders,
consolidation is far more complicated. For real powders,
other factors like cohesive forces, and particle fragmenta-
tions combine to constrain the structural collapse. Our
simulation technique, by its very nature, is able to isolate
the fundamental geometrical constraints from other ex-
traneous effects; it is thus able to provide a valuable
benchmark for evaluating the results of sophisticated
consolidation schemes in industrial materials [11,12].

In each cycle of a finite-amplitude, low-frequency shak-
ing process, the powder has periods of both quasistatic
(low kinetic energy) and dynamic (high kinetic energy)
behavior. In the quasistatic regime the particles are ei-
ther static or move together as a rigid body, but in the
dynamic regime, the particles are mobile and so lose in-
formation concerning their relative positions at a finite
rate. This loss of information induced by shaking can be
considered as a diffusive process in the following way-
as the positions of a particle, measured at the same phase
point of consecutive shake cycles, will be slightly dis-
placed, we see readily that a sequence of these finite dis-
placements forms a three-dimensional random walk that
represents the diffusive motion of the particle due to
shaking.

We have measured the average displacements of ap-
proximately 200 spheres over 30 cycles in the steady-state
regime for 0.05~@~1.0. In each case we observe a
linear increase of the squared displacement with time. In
Fig. 2 we have plotted, as a function of e, the gradients
Dz and Dz which are obtained from least-squares fits of
( ( bx ) + ( by ) ) against 2t and ( ( bz ) ) against r, respec-
tively. Here Ax and Ay are two orthogonal displace-
ments that are perpendicular to the uniaxial (gravitation-
al) field and b,z is the displacement parallel to the field.
For all intensities Dz & DT, as expected for vertical shak-
ing under gravity, since the diffusive motion of a particle
in the direction of shaking will always be greater than
that in the other two orthogonal directions.

The results in Fig. 2 indicate the existence of two
different diffusive regimes: there is a fast regime for
e&0.2, where DT and Dz are linearly dependent on e,
and a slower regime at smaller shaking intensities. This
picture is in qualitative agreement with recent experimen-
tal observations of self-diffusion in vibrated beds of
granular material [4], which the authors interpret via a
hydrodynamic approach [5] considered to be appropriate
for rapid Bows and large voidage. Our simulations, how-
ever, span both slow and rapid Aows, as well as large and
small voidage, so that the following interpretation of the
self-diffusion observed in our simulations is more
comprehensive, encompassing both the so-called hydro-
dynamic and viscous regimes.

The processes which underlie the diffusive motions of
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FICz. 2. The effective difFusion coefficients Dz E', open circles)
and DT (closed circles) against the shaking intensity e. For clar-
ity only one set of error bars is included.

the spheres during vibration are not straightforward. In
each shake cycle, the spheres spend some of the time sub-
ject to a direct fluctuating force that arises from effective
collisions between pairs of moving particles; in addition,
they also spend some time following deterministic trajec-
tories, including rolling and falling, on a complicated
potential-energy surface. However, this energy surface
changes from one shake cycle to another, so that it, too,
can be considered to fluctuate. Thus the random dis-
placements of the spheres, during one shake cycle, result
from a combination of different Auctuating processes.
Phenomenologically, the random motion of the spheres
corresponds to "hopping" between potential wells, and it
is clear that the hopping times and the distribution of the
wells are complex functions of the shaking intensity [6].

The results in Fig. 2 can be interpreted in terms of two
distinct hopping processes. The major contribution to
the particle displacements for steady-stae shaking with
e & 0.2 occurs during the expanded, dynamic regime. For
these shaking intensities the volume expansion, at the be-
ginning of each shake cycle, is sufticient to destroy a large
number of particle clusters [6], and therefore many parti-
cles spend some time in random motion before new clos-
ters are formed, the duration of this period being propor-
tional to the shaking intensity. For steady-state shaking
with @~0.2, local clusters remain largely intact for the
whole of the shake cycle, and the major component of
particle displacements arises from their deterministic
motion inside their slightly deformed local environments.
The size of the cluster deformations is not strongly
dependent on e for @~0.2. This interpretation is con-
sistent with earlier theoretical and computational work
which relies on the same picture of inter- and intracluster
particle motion [6—9).

Our shaking model does not allow a clear interpreta-
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tion of vibration frequency, and hence we cannot classify
our results in terms of a dimensionless combination of
frequency, amplitude, and gravitational acceleration.
However, we note that for a packing with a random
close-packed volume fraction /=0. 6, the shaking intensi-
ty @=0.2 leads to an expanded packing in which the
volume occupied by the particles is the same as the
volume occupied by voids; this is the so-called hydro-
dynamic regime studied by the authors of Ref. [4]. In
this case, the expanded configuration contains spaces
which are approximately equal in size to the particle size;
it is reasonable to expect, therefore, that a change of hop-
ping behavior occurs for @&0.2, when the voidage is
smaller and the flow is slower. We look forward to exper-
imental verification of this, which is in progress [4].

The volume fraction and the mean coordination num-
ber z are the simplest structural descriptors for random
close-packed solids. In our simulations both these quan-
tities vary monotonically with the shaking intensity, but
in our view, this is not an indication of a simple relation-
ship z(P) (see, e.g. , the empirical relationship proposed in
Ref. [13]) between P and z. We consider the following
counterexample. The range of volume fractions for
monodisperse spherical particles that can be achieved by
nonsequential reorganizations of the form discussed
above includes the sequential random close packing frac-
tion PRcp =0.581; in contrast, the mean coordination
number associated with nonsequential packing is substan-
tially below that for sequential close packing,
zRCP=6. 00. Thus z(P) is clearly a multivalued function
of P that depends on the detailed history of the powder.
This shows that a specification of both (t) and z as in-
dependent quantities is insufticient to enumerate ade-
quately many of the structurally dependent properties of
random packings; in this respect, the distribution of the
orientations for particle-particle contacts contains valu-
able additional information about granular structures.
This second-order descriptor underlies most of the tensor
properties of powdered materials [14].

We study this orientational distribution in terms of the
angle 0 between the z axis and a line drawn between the
centers of contacting particles, with 0 ~ 8 ~ n /2; we have
plotted in Fig. 3(a) the distribution of cos( 8) for
configurations taken from the stable close-packed phase
of the shaking steady states with @=0.05 and 1.0. For
comparison we have also plotted this distribution func-
tion for sequential random close packings. The contact
angle distribution is flatter for the shaken deposits, which
indicates that the nonsequential structures are more iso-
tropic; this is to be expected, since the concurrent rear-
rangement of particles possible with our cooperative
reorganizations will lead to less "sharpness" in
configurational shapes which is the inevitable (and un-
realistic) result when particles are forced to order one
after the other. This distribution is in a sense a global in-
dicator of the shapes of particle clusters, and thus of the
roughness of the pile —the structures which are wasteful
of space are those where there is a sharp distribution of
contact angles because particles are not able, once depos-
ited, to reorganize collectively to minimize voids. The
sequential deposits and the nonsequential deposits at high

intensity (a=1.0) are in this category, while those at low

intensity ( e=0.05 ) have a far more homogeneous distri-
bution of contact angles, indicating that particles have
organized themselves into flatter structures by slipping
slowly into available voids to form a smoother pile —this
behavior is in accord with earlier predictions [6—9].

We turn finally to a much more local indicator of clus-
ter shapes. In a stable close packing, each particle has
three special neighbors which form the bases for its sta-
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FIG. 3. The distribution of orientations for particle-particle
contacts in random close packings of monosize spheres. Crosses
correspond to sequentially constructed packings and open
(closed) circles correspond to vibrated packings with
@=0.05(1.0). In (a) x =cos(0) is the cosine of the angle be-
tween a particle-particle contact vector and the z axis. In (b),
y =cos(f) is the cosine of the angle between the z axis and the
contact vectors which form the stabilizing contacts of each par-
ticle.
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bilization; that is, each particle has a subset of three of its
contacting neighbors which define the local potential-
energy minimum in which it rests. The distribution for
cos(f), where 0~ llt~m. is the angle between the z axis
and a line from the center of each particle to the center of
each one of its three stabilizing contacts, is shown in Fig.
3(b). Again distribution functions are plotted for sequen-
tial random close packing and for configurations from the
close-packed phase of shaking steady states with @=0.05
and 1.0. The results in Fig. 3(b) show that a large num-
ber of the particles in the shaken packings are stabilized
by particles whose centers are above [higher z,
cos(f) )0] their own; while the number of these upward
stabilizations observed in shaken packings is not strongly
dependent on e, this number is significantly higher than
that found in sequential deposits. Since upward stabiliza-
tions are strong indicators of bridges, we are able to make
two observations, the first and more obvious one being
that nonsequential reorganizations are demonstrably
essential for realistic packings of powders which contain
bridges and arches. Secondly, although the observed
dependence of cos(f) on e is not strong, there does ap-
pear to be a trend suggesting that higher intensities lead
to sharper distributions of cos(g) (i.e., more jagged local
structures such as bridges) while lower intensities lead to
flatter distributions (e.g. , bridges that are less wasteful of

space). In other words, this distribution is the "local"
equivalent of the one presented in Fig. 3(a); we can argue,
therefore, that high e produces more jagged cluster
shapes [sharper distributions of cos(P) ] and hence
rougher piles [sharper distributions for cos(8)] while the
reverse holds for small e, in accord with earlier predic-
tions [6—9].

In conclusion, we have explained the physics behind
the consolidation of a powder under "tapping, "presented
a theory of self-diffusion in granular Qows which extends
across both the relevant regimes of How and voidage, and
demonstrated the effects of vibrational intensity on clus-
ter shapes and the roughness of the pile, within the
framework of the theory of independent-particle and col-
lective relaxation presented in earlier work [6—9]. In ad-
dition, we have highlighted the role of nonsequential al-
gorithms in these studies as having the necessary realism
to incorporate the physics of independent- and
cooperative-particle motions. It is our hope that these is-
sues will form the subject of inquiry by serious experi-
mentalists, to aid in the development of the integrated ap-
proach to the microscopic physics of vibrated powders,
which we regard as essential.

A. M. acknowledges the support of the Science and
Engineering Research Council, U.K.

[1]J. Bridgwater, Powder Technology 15, 215 (1976); Tribolo

gy in Particulate Technology, edited by M. J. Adams and
B. J. Briscoe (Hilger, Bristol, 1987); R. M. Nedderman
et al. Chem. Eng. Sci. 37, 1597 (1982).

[2] See, e.g. , Granular Matter: An Interdisciplinary Approach,
edited by Anita Mehta (Springer-Verlag, New York, in
press).

[3] S. R. Nagel, Rev. Mod. Phys. 64, 321 (1992); G. A. Held
et al. , Phys. Rev. Lett. 65, 1120 (1990); G. W. Baxter
et al. , ibid. 62, 2825 (1989).

[4] O. Zik and J. Stavans, Europhys. Lett. 16, 255 (1991).
[5] R. Jackson, in Theories ofDispersed Multiphase Flow, edit-

ed by R. Meyer (Academic, New York, 1983); P. C.
Johnson and R. Jackson, J. Fluid Mech. 176, 67 (1987); P.
K. Haff, ibid. 134, 401 (1983); in Granular Matter: An In-
terdisciplinary Approach (Ref. [2]), and references cited
therein.

[6] Anita Mehta, Physica A 186, 121 (1992); Anita Mehta, R.
J. Needs, and Sushanta Dattagupta, J. Stat. Phys. 68, 1131
(1992).

[7] T. A. J. Duke, G. C. Barker, and Anita Mehta, Europhys.
Lett. 13, 19 (1990).

[8] Anita Mehta and G. C. Barker, Phys. Rev. Lett. 67, 394
(1991).

[9] G. C. Barker and Anita Mehta, Phys. Rev. A 45, 3435
(1992).

[10]W. M. Visscher and M. Bolsterli, Nature 239, 504 (1972).
[11]J. E. Ayer and F. E. Soppet, J. Am. Ceram. Soc. 48, 180

(1965).
[12] N. Harnby, A. E. Hawkins, and D. Vandame, Chem. Eng.

Sci. 42, 879 (1987).
[13]M. G. Kaganer, J. Eng. Phys. 11, 19 (1966).
[14]M. Tassopoulos and D. E. Rosner, A1ChE J. 38, 15 (1992).


