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Burgers's turbulence model as a stochastic dynamical
system: Master equation and simulation
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By means of Burgers's equation a stochastic description of turbulent fluid flows is explained which
is based on a discrete master equation. The latter governs the dynamics of a discrete multivariate
stochastic process representing the random velocity field of the fluid. Prom the characteristic function
corresponding to this stochastic process, the Hopf functional equation of turbulence is obtained. This
implies that the infinite hierarchy of correlation functions can be derived from the master equation.
The master-equation description naturally leads to a simple stochastic simulation algorithm which is
well suited to numerical implementation. Stochastic simulations of the Burgers model of turbulence
are performed and are shown to yield very accurate results.

PACS number(s): 47.27.Gs, 02.50.—r, 03.40.Gc

I. INTRODUCTION

It is well known that stochastic concepts provide a nat-
ural tool for the description of turbulent fluid motion [1,
2]. In order to obtain a statistical theory one consid-
ers an ensemble of initial velocity fields, each member of
which evolves deterministically in time according to the
Navier-Stokes equation. Recently a different stochastic
approach to the description of turbulent fluid flows has
been proposed [3]. Within this approach the velocity field
is regarded as a discrete stochastic process defined by a
multivariate master equation [4, 5]. The latter governs
the time evolution of the joint probability distribution of
the stochastic process and replaces the deterministic dy-
namics of the Navier-Stokes equation. Thus, within this
approach turbulent fluids are interpreted as stochastic
dynamical systems.

The motivation for this master-equation formulation
of turbulent fluid dynamics is twofold. First, one of the
leading ideas of a statistical approach to the problem of
turbulence is to abandon the attempt to follow single tra-
jectories in time and instead to concentrate on the time
development of an ensemble of trajectories. Therefore it
is tempting to try to formulate an inherently probabilis-
tic dynamical theory which describes the probabilistic
time evolution of an ensemble of initial velocity fields.
Second, the formulation of a probabilistic dynamics for
the velocity field defined by a multivariate master equa-
tion makes possible the use of stochastic simulation meth-
ods which are particularly well suited for the numerical
treatment of dynamical systems with many degrees of
freedom. The last statement is made evident by the ex-
perience gained in the stochastic simulation of complex
chemical reactions [6, 7]. Therefore promising computa-
tional approaches to the study of turbulence can be ex-
pected from the interpretation of the fluid as a stochastic
dynamical system.

It is the aim of the present paper to analyze in de-
tail the connection between the stochastic process defined

by our master equation and the usual statistical descrip-
tion of turbulence. In order to keep things as simple as
possible, we will perform this analysis by employing the
(1+1)-dimensional Burgers model of turbulence [8, 9].

A rigorous mathematical formulation of a statistical
theory of turbulence was given by Hopf [10—12]. He in-
vestigated the characteristic functional of the probabil-
ity measure in the space of velocity fields which com-
pletely characterizes the statistical properties of the en-
semble under consideration. Prom the Navier-Stokes
equation Hopf derived a functional differential equation
for this characteristic functional. Employing the (1+1)-
dimensional Burgers model of turbulence, we will demon-
strate that the characteristic functional corresponding to
our multivariate master equation obeys in the continuum
limit the Hopf functional equation. This implies that our
stochastic approach correctly represents the infinite hi-
erachy of n-point correlation functions of the turbulent
velocity field. We illustrate this fact by performing some
stochastic simulations of the Burgers model which yield,
for example, the correct power-law behavior of the energy
spectrum.

Deriving the Hopf equation from our multivariate mas-
ter equation, the limit of continuous space has to be
taken. A systematic expansion reveals that the next to
leading-order term represents a random momentum flux
induced by the thermal fluctuations in the fluid. Thus
the stochastic process defined by our master equation
models hydrodynamic as well as thermodynamic degrees
of freedom.

The paper is organized as follows. In Sec. II we present
the master-equation formulation of Burgers's equation.
The equation governing the time evolution of the first
moments of our multivariate stochastic process is derived
and shown to yield Burgers's equation in the continuum
limit. In Sec. III, which is the central part of this pa-
per, we investigate the characteristic functional obtained
from our master equation. There it is shown that this
characteristic functional leads in the continuum limit to
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the Hopf functional equation of turbulence. Section IV
is devoted to the method of stochastic simulation. We
demonstrate that our stochastic formulation leads to a
very efBcient and simple numerical simulation algorithm.
The latter is applied to Burgers's model of turbulence.
Numerical results, such as the energy spectrum and the
dissipation rate are discussed. Finally, in Sec. V we draw
our conclusions and outline the subjects of future work.

II. FLUIDS AS STOCHASTIC
DYNAMICAL SYSTEMS

It is the aim of this section to present in detail a re-
cently proposed stochastic description of the dynamics
of fluids. At this stage we restrict the discussion of the
master-equation formulation of fluid dynamics to stable
flow situations. Our approach will be explained with
the help of Burgers's equation which may be regarded
as a one-dimensional version of the Navier-Stokes equa-
tion (without pressure term),

0 8 0—v(x, t) + v(x, t) v(x, t) = v v(x, t)t x Bx

where v(x, t) is the velocity field and v the kinematic vis-
cosity. In analogy to the Navier-Stokes equation, Burg-
ers's equation contains a nonlinear inertial term and a
dissipative viscosity term. In this paper we study Burg-
ers's equation on the interval [O, L] imposing periodic
boundary conditions v(x+ L, t) = v(x, t)

A. The multivariate master equation

The stochastic dynamical system we are going to con-
struct is defined on a discrete phase space. In order to
construct the latter we first divide physical space, i.e.
the interval [0, L], into a sufficiently large number M + I
of cells of width b/ = L/(M + 1) centered at points
x~ = btA, which are labeled by the integer valued in-
dex A = 0, 1, . . . , M. The discretization of the velocity
space is achieved in the following way: We introduce a
mesoscopic velocity scale 6u representing the size of the
smallest change of the velocity in a given cell. Thus we
measure the velocity in integer multiples of bu. This
means that in each cell A the velocity is described by
an integer variable Ng c Z. Within this description the
state of the fluid is completely fixed by specifying the set
of numbers (Np). Formally, the resulting discrete phase
space I' may be written as

where the angular brackets denote the time-dependent
expectation value (see below). In this section we will
define an appropriate dynamics for the stochastic pro-
cess (Np) in such a way that vg(t) as defined in Eq. (3)
obeys a discretized version of Burgers's equation. In
other words, within our stochastic approach Burgers's
equation is regarded as the macroscopic dynamical equa-
tion of an underlying rnesoseopic stochastic process.

Having introduced the discrete phase space I' we now
have to define the dynamics of the stochastic process
(Ng). To this end we introduce the joint probability
distribution P((N~), t), which gives the probability at
time t of finding the set of numbers (Ng) and completely
characterizes the stochastic process once an initial condi-
tion has been specified. Of course, the joint probability
distribution P ((N~), t) is normalized,

):P((») t) = I (4)

where P&~ }denotes a (M+ I)-fold sum over all integers

Np, A = 0, I, 2, . . . , M. Once the joint probability distri-
bution P ((N~), t) is known one can evaluate expectation
values for arbitrary functions

& = &((N~)) (5)

8
P((Ng),—t) = AP((Ng ), t)

where we introduced the generator A of the time evolu-
tion of P. In the following, A is regarded as an operator
which acts (to the right) on functions of the stochastic
variables (Ng). Correspondingly, the time derivative of
the expectation value of an arbitrary function may be
written as

—P') = ) &((N„)) P((N ),t)—8

of the stochastic variables (Np) according to

(&) —= ) &((N )) P ((N ) t)
INg}

As will be explained in Sec. III B, it is reasonable to
postulate (Ng) to be a multivariate Markov process.
Therefore the time evolution of the joint probability dis-
tribution P ((Np), t) is governed by a multivariate mas-
ter equation which we formally write as

NggZ

The central idea of our stochastic formulation of Quid
dynamics is the following one: The numbers Np intro-
duced above are considered to be time-dependent ran-
dom numbers. Consequently, the set of variables (Np) is
regarded as a multivariate stochastic process. The con-
nection to Burgers's equation is provided by interpreting
the velocity field v(xp, t) as the expectation value of this
integer valued stochastic process, that is, we require

v(xp, t) =—vp(t) = bu(Np)

= ) X((Ng)) AP((Np), t)
(Np )

—:(EA)

Once a time evolution operator Q is given the dynam-
ics of the stochastic process (N~) is completely speci-
fied. The operator A given below has originally been con-
structed [4, 5] in order to fulfill the requirement that the
time evolution equation of the expectation value 6u, (Np)
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obeys in the limit 6u: 0, i.e. , in the limit of large
numbers Np, a discretized version of Burgers's equation
which leads in the continuum limit 6t - 0 to the partial
differential equation (1).

In a previous series of publications [3—5, 13] it was
shown that the stochastic process (Ng) defined by the
following multivariate master equation satisfies this re-
quirement:

BP
Bt

M M

6t ). .(E~:iE~ —1) Nz + (E&+iE~ —&) Ng P —
6l, ):'

(E~-r E),
' —&) N„+ (Eg+ E„' —1) N„- P

A=O
"

A=O

+——) (Eq+i Ep —1) —(Np + N), +i jP —= AP.
1 2 2

A=O
(9)

Let us explain the compact notation used to formulate
the above equation. First, we have defined the shift op-
erators E& by

Eq 'X((. . . , Ng, . . .)) = P((. . . , Np + 1, . . .))

Furthermore, since the velocity can take positive as well
as negative values, the positive part N&+ and the neg-
ative part N& of the stochastic process Ni, have been
introduced through the relations

Ng = N~+ + N~, ] Ng [= N~+ —N~ .

Since we want to investigate the stochastic formulation
of Burgers's equation with periodic boundary conditions
we have to Gx the boundary conditions of the stochastic
process accordingly. Recalling that we divided the in-
terval [0, L] into M + 1 cells of equal width the periodic
boundary condition imposed on the stochastic process
reads

(E ',E»)=P) . (13)

(A~)= ) A~P=0 .
$Ngl

(14)

Introducing the commutator (the function P being re-
garded as a multiplication operator)

[P, A]
—= PA —AP

and exploiting relation (14), Eq. (8) takes the form

(15)

This equation is true, of course, for any other product
of shift operators appearing in our master equation (9).
Thus these products of shift operators when acting on a
function of the stochastic variables have no inHuence on
its expectation value and can, within the angular brack-
ets, always be replaced by the identity. Since the time
evolution operator A contains the above products of shift
operators only in the form (EE—1), Eq. (13) implies that

NM+g =—No (12) —,P) = ([»A])
Now it is evident that all sums in Eq. (9) run from A = 0
to A=M.

The above master equation (9) is the fundamental
equation of our approach. It defines our formulation of
the fluid as a stochastic dynamical system and will be
the starting point of the theoretical and numerical inves-
tigations in this paper.

B.The time evolution equation for the first moments

Having presented the master equation defining the
time evolution of the stochastic process (Np) we now
demonstrate that our requirement explained in Sec. II A
is satisfied, i.e. , we show that the expectation value of the
stochastic process 6u(N~) indeed obeys a discrete form
of Burgers's equation.

More generally, let us first derive an appropriate form
for the time evolution equation of the expectation value
of an arbitrary function X((N&)) of the stochastic vari-
ables. To this end, we consider an expression of the form
(E&+iEg&). Recalling that the expectation value in-
volves a multiple sum over all integers Np, it is easy to
show with the help of the definition of the operators E&,
Eq. (10), and by shifting the summation indices appro-
priately that the following equation holds:

Thus the time derivative of the expectation value of a
function X of the stochastic variables is equal to the ex-
pectation value of the commutator [»A].

For the special case of the first moments of the stochas-
tic process 6u&p we have

6u—(Np) = 6u ([Ng, A])t (17)

In order to determine the commutator [N~, A] we proceed
by evaluating the commutator

N. , E;,'„E~ =E;,',E'(6'+, .-4, ~) (18)

6u —(Np) = v z (N~+r —2N~ + N~
8 6u

+Nx+i 2' + Nw —i)
bu

(N~+ —N~- ) (19)

Recalling that Np ——N&+ + N&, the time evolution equa-
tion of the first moment of the stochastic process Np can

Inserting the expression for the time evolution operator
A into Eq. (17) and using (18) for the determination of
[Ni„A] and (13) for evaluating the expectation value we
finally obtain
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be written as

ct 6u
6u —(Ng) = v (Ng+i —2Ng+ Ng i)Bt 6l2

bu 2

46l (Ng+, —Ng i). (20)

As should have been expected, the system of dynamic
equations for the first moments is not closed. In fact, as
a consequence of the nonlinear transition rates occurring
in the master equation (9) the second moments (Ng2) en-
ter the above equations. Correspondingly, the equations
for the nth moments contain the (n+ l)th moments and
so on. Thus the master equation leads to an infinite hier-
archy of coupled moment equations and an appropriate
approximation scheme is required in order to obtain a
finite-dimensional system of equations.

As we already stated, the discrete Burgers equation
should be obtained as the macroscopic equation for the
stochastic process huNg in the limit 6'u: 0. In this
limit the numbers Ng become infinitely large and, there-
fore, one expects that fluctuations are small. Thus it is
plausible to assume that the approximation

(Ng) = (Ng)' (21)

holds to a sufficient degree of accuracy. It is then pos-
sible to close the system of equations (20) for the first
moments. In fact, invoking (21) one immediately obtains
the discretized Burgers equation

8
( )

vg~i 2vg+vg i 1vg+i vg
2 2

=v
Bt 6l2 2 2bl

(22)

which, in turn, leads to Burgers's equation (1) in the
continuum limit bl: 0.

Thus we have obtained Burgers's equation as a macro-
scopic equation of the stochastic process (Ng j. This
has been achieved by employing the crude approxima-
tion (21), which completely disregards the fluctuations.
However, one can obtain [14, 15] the macroscopic equa-
tion (22) of the underlying stochastic process governed
by the master equation (9) in a systematic way by means
of van Kampen's 0 expansion [16]. Furthermore, the 0
expansion leads to a linear noise approximation which
can be shown [14, 15] to be equivalent to the theory of
fluctuating hydrodynamics [17—19].

The analysis of the master equation presented in this
section was based on the assumption that the stochas-
tic process N~ describes small fluctuations around a sta-
ble macroscopic solution of Burgers's equation. These
considerations were done in order to motivate the ideas
which lead to the master-equation formulation of Burg-
ers's equation. However, in this paper we want to study
the Burgers model of (spatially) homogeneous turbu-
lence which describes a completely diferent situation:
While the macroscopic velocity Beld vanishes identically,
vg =—0, fluctuations become important. We therefore
have to follow a different strategy in order to demon-
strate that our approach may be applied to turbulent
situations as well. This will be done in the next section.

III. THE MASTER EQUATION APPROACH
TO BURGERS'S MODEL OF TURBULENCE

In this section we will analyze the relation of the master
equation description presented in Sec. II to the usual
statistical approach to turbulent fluid motion which leads
to the functional Hopf equation. In order to keep the
presentation as simple as possible we restrict ourselves
to the discussion of the (1+1)-dimensional Burgers model
of turbulence and investigate the Hopf equation for the
latter.

A. The Hopf functional forxnulation

Let us Brst precisely state the statistical approach to
the problem of turbulence which has been used by Hopf
in order to derive an equation for the characteristic func-
tional [10—12]. Within this approach an ensemble of ve-
locity fields is defined by specifying an initial probability
distribution Pp [vp(x)] in the phase space, i.e. , the space
of velocity fields vp(x) which obey the correct boundary
conditions (in this section we use the index H to indi-
cate all quantities which refer to the stochastic process
defined by the Hopf functional). Once an initial velocity
field vp(x) has been chosen according to this probability
distribution Pp [vp(x)] a corresponding solution of Burg-
ers's equation,

v(x, t) = C'vp(x) (23)

is uniquely defined. In the above equation, C' denotes the
phase flow corresponding to Burgers's equation, i.e., the
time evolution operator which maps any solution v(x, s)
of Burgers's equation at time s to its value v(x, s+ t) at
time t+ s. In particular, we have

O'O' = C'+ C = identity (24)

Since vp(x) is a random initial field, the velocity field
v(x, t) as defined by Eq. (23) may be regarded as a
stochastic process. Accordingly, the probability distribu-
tion PH [v(x), t] which represents the probability density
for the velocity field to take the value v(x) at time t is
obtained from the Liouville equation [10]

[v(x), t] = Dvo P2 [v2(x), t2 I vl(x), ti]

xPo [vii(x)), (25)

where 6'[v(x)] denotes the functional delta function

(26)

6(()) (27)

6(v(x)) being the ordinary delta function.

where jDvp denotes the functional integral over the
(function) space of initial velocity fields. The transition
probability Pz is defined by

[v2(x) t2
I vl(x), tl] = 6[C' 'vl(x) —v2(x)]
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Dv2 P2 [vs(x), ts
I v2(x), t2]

xP2 [v2(z) t2
I
vi(x) ti] (28)

is fulfilled. It is easy to see that Eq. (28) is an imme-
diate consequence of (26) and the property (24) of the
flow. Moreover, we see that the Markov process v(x, t),
although being nonstationary in general, is homogeneous
in time since its transition probability (26) obviously de-
pends only on the time difference t2 —ti. Thus we con-
clude that v(x, t) is a homogeneous (in time) Markov
process. We emphasize that this property holds for each
stochastic process which is obtained from a determinis-
tic autonomous dynamical system by imposing random
initial conditions [20, 21].

Now the Hopf functional equation corresponding to
Burgers's equation can be written down. To this end,
we introduce the characteristic functional

Mz(z(z), t) = exp(t dz z(z)z(z)))

Dv exp c dxzxvx

x P [v(x), t], (29)

from which arbitrary equal time moments of the random
velocity field can be obtained by evaluating functional
derivatives with respect to z(x). Inserting Eq. (25) into
the definition (29) of the characteristic functional and
employing the equation of motion, i.e. , Burgers's equa-
tion, one arrives at the following equation for the char-
acteristic functional:

—MH [z(x), t]
Oc

This is Hopf's functional equation for Burgers's model of
turbulence.

According to its general definition,

P2 [v2(x) t~
I »(x) ti]

is the conditional probability that at time t2 the velocity
field v2(x) is realized provided the velocity field at time ti
is given by vi(x). Thus Eq. (26) expresses the fact that
each realization of the stochastic process is a solution of
Burgers's equation: P2 is nonzero if and only if the field
vq(z) evolves from vi(z) according to Burgers's equation
during the time interval from ti to t2, i.e., if and only if
the phase flow C"' " maps vi(x) to v2(x).

It is a well-known result of the theory of stochastic pro-
cesses that the Liouville equation (25) together with some
transition probability P2 uniquely defines a Markov pro-
cess v(x, t) provided the Chapman-Kolmogorov equation

P~ [vs(x), ts
I vi(x), ti]

B. The master-equation formulation

We now turn to the master-equation formulation of the
problem. As we have seen in Sec. III A the statistical for-
mulation of Burgers's model of turbulence naturally leads
to the stochastic Markov process v(x, t) = C'vo(x). It is
therefore reasonable to postulate this same Markov char-
acter for the stochastic process 6'uN), (t) as was done in
Sec. II by constructing a multivariate master equation.
It should be noted that the Markov character of v(x, t)
and t)uNp(t) is only guaranteed if the full phase space of
velocity fields is taken into account. Stated differently,
reducing the number of degrees of freedom would imme-
diately destroy the Markov property.

Being a Markov process, 6uN), (t) is characterized by
the joint probability distribution P ((N), ), t) and a tran-
sition probability P2,

P2: P2 Np ) t2 '

Np ~ ~1

Moreover, since the operator A constructed in Sec. II
does not depend explicitly on time, the transition proba-
bility depends only on the difference t2 ti of the—time ar
guments. The consistency condition connecting the prob-
ability distribution and the transition probability reads

P((N„), t) = ) Pt (( N),xt
~ ( N), )0

xjp (32)

where Pp N& denotes the initial probability distri-

bution. It is this equation that is the master-equation
analog of the Liouville equation (25). Comparing both
equations we see that the stochastic processes v(z, t) and
6uNp(t) are both specified by an initial distribution in
the corresponding phase space. However, each realiza-
tion of the random process v(z, t) is a smooth solution of
Burgers's equation; in contrast, the process 6'uNg(t) is a
discrete jump process each realization of which changes
discontinuously by finite steps. As a consequence of this
fact, turning from the random process v(x, t) to buNp(t),
the 6-functional transition probability P2 whose time
evolution is induced by the phase How 4' is replaced by
the discrete transition probability P2 the time evolution
of which is governed by the discrete master equation.

Since both stochastic processes introduced above are
homogeneous (in time) and since the initial probability
distributions Pp and Pp are completely arbitrary, it suf-
fices to analyze the relation between the time-dependent
probability distributions PH and P given by Eqs. (25)
and (32). Thus it is the aim of the present section to in-
vestigate the connection between these distributions and
to make precise the mathematical and physical meaning
of the transition from PH to P.

Of course, one could try to investigate this relation by
comparing directly these probability distributions. How-
ever, it is much more convenient to work with the char-
acteristic functionals of both processes and to compare
their equations of motion. Thus the strategy we are go-
ing to follow may be summarized as follows. In a first
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step, we derive the equation of motion for the character-
istic functional M ((zg), t) pertaining to the stochastic
process 6uNq(t),

M((z»), 5)
—= exp »6u6t) z»N» )

= (P((N)»)),

where we have introduced the function

X((N»)) —= exp Ii6u6t) .z»N»

The equation of motion for M contains, of course, the
small mesoscopic scales bu and bl introduced within our
discrete master-equation formulation. This is due to
the fact that the phase space I underlying our master-
equation formulation is discrete in space as well as veloc-
ity space. We therefore assume that in the limit of small
bu the stochastic process

up(t):—6uNp (t) (35)

E—1 E a6uBL(zgipq —zp, r }

Invoking Eq. (16) we find

represents a process which, to leading order, does not
depend on 6u. Thus the second step consists of an ex-
pansion of the equation of motion for M with respect to
this rnesoscopic velocity scale bu. In a third step we then
perform the continuum limit bl: 0. The leading-order
term of this expansion turns out to be identical to the
functional Hopf equation. Furthermore, the physical ori-
gin of the next to leading-order term is discussed and the
mesoscopic scales are related to physical quantities.

In order to derive the equation governing the time evo-
lution of the characteristic function M we have to eval-
uate, according to Eq. (16), the expectation value of the
commutator [P, A]. This can be done easily by use of

P ((Np)) Eg yrEg

) (
'z"z' "' '*' —1) ((-N+ —N ) X((N )))

A'

+by ) ("'""'*"'"*"—') ((~» —~5+») +((~~H)
A'

+ ) ibuBl(zp, z+~ zp, z) + ibubl(zzz —zzz zl 2 (N2 —~ (~N ~))46l
e (37)

This is an exact equation for the time derivative of the characteristic functional M. We now expand the exponentials
containing the difFerences zgzyr —zg in powers of 6ubl up to second order. Employing Eq. (11) we obtain

BM v ) ibubl [z), +r + zg r —2z), ] (Ng P((N), )))Bt 6l2

v .(ibubl)2-
+6l ) 2 (zg+r —zp ) + (zp —z~ ) (I N~

I +((N~H)
A'

+ ) i6ub'l [zp+r —zg r] (Nq, P((Ng)))
A'

bu . (ibu6l)2, - 2 2 2
+46i ) 2

(ZA'+1 ZA') + (zA' ZA' —1) (Np +(p6)))
g/

(38)

Expressing Ng and N&, by derivatives with respect to z~, the equation for M can be written in the following form
which is appropriate to infer the structure of the continuum limit:

BM &. Zp+r+zp r —2zg 1 BM
6l2 bl Bzg

(zp+r —zp —j 26ubl (zp+r —zg) (zg —zg r) 1 B M
bl bt bl2 Bzq2

vbub'l ) 6l (((zg+r —zg)' (zg r zp)
)( ((2 6l2 bl2
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1 B
bl Bz),

b

bz(x) (40)

Moreover, we assume that the process u~(t) converges in
the continuum limit to a well-defined stochastic process
u(x, t). Hence we obtain to leading order in bl

0 B2z 6M i—M [z(x), t] = v dx —— dBt xzbz x 2

f'Bz 5
vbubl —dx

i(BxJ
x ux e' "&

Bz 62M
Bx bz(x)z

(41)

Performing an integration by parts finally yields

B—M [(z(x), t]

i B (b2M ) Bz (6'M )
2Bx (bz(x)2) Bx2 qbz(x)p

CBz)—vbubl dx
~(Bx)

x ux expi dyz y uy (42)

Equation (42) represents, including terms of order bubl,
the equation of motion for the characteristic functional
M of the stochastic process defined by our multivari-
ate master equation. Comparing Eq. (42) with (30) we
conclude that the leading-order terms in Eq. (42) are
identical to the Hopf functional equation. The next-to-
leading-order term, which may formally be written as

c[z(x), t] = —vbubl dx
~ ~

—. M[z(x), t],
(Bz& 1 b'

g x) ibzx

It is now easy to perform, at least formally, the contin-
uurn limit of this equation. In the limit bl: 0 the set of
numbers z~ turns into a function z(x). Correspondingly,
M ((zp); t) becomes a functional M[z(x), t] and ordinary
derivatives with respect to zp translate into functional
derivatives:

a rigorous mathematical sense. In order to give such a
proof one would first have to construct an embedding
of the phase space of smooth velocity fields into the dis-
crete phase space I' underlying our master equation. Sec-
ond, a measure in the space of probability distributions
is required which allows for a precise definition of con-
vergence. A mathematical investigation along these lines
must show, in particular, how the two limiting proce-
dures bu —+ 0 and bl —+ 0 have to be performed in order to
guarantee certain smoothness properties of the stochastic
process u(x, t).

However, in spite of these mathematical questions we
can give the above statement concerning the relation be-
tween the random processes buNp(t) and v(x, t) the fol-
lowing meaning. On a purely formal level, the Hopf
equation (30) as well as Eq. (42) for the characteristic
functional of our multivariate stochastic process may be
regarded as a condensed way of writing the hierachy of
dynamic moment equations. In fact, functional differen-
tiating M~ and M with respect to z(x) one may derive
the differential equations for the (equal time) n-point cor-
relation functions for both processes. It is clear from the
structure of the functional equations (30) and (42) that
the resulting equations for the two stochastic processes
differ from each other by the corresponding functional
derivatives of the correction term c[z(x), t]. As one can
see from the definition of c[z(x), t] all nth-order func-
tional derivatives of c[z(x), t], taken at n different points,
exist. Thus the equations for the n-point correlation
functions differ by a term which vanishes as bu: 0.
This is the precise formulation of the conclusion we draw
from our investigation.

It should be clear that the functional derivatives of
c[z(x), t] induce b-function-type singularities. This is due
to the fact that for small but finite bu the continuum limit(b'l: 0) of buNg does not lead to a smooth stochastic
process. We will see below that this is to be expected
physically.

As an example, we derive the equation for the two-
point correlation function

1 b2
( (yt) ( t))=-.,

43
Following the usual procedure we obtain

is of order bu and, therefore, vanishes as bu: 0. Note
that including the case of external random stirring forces
Novikov derived a generalization [22] of Hopf's functional
equation in which an additional term appears which is of
similar structure as c[z(x), t]. However, in our formula-
tion the functional c[z(x), t] does not represent the effect
of external random forces. We shall see below that it has
a different physical interpretation.

Equation (42) constitutes the central result of this sec-
tion. It leads to the conclusion that in the limit bu: 0
the stochastic process buN&(t) underlying our master
equation is equivalent to the stochastic process v(x, t)
of the Hopf formulation.

From a mathematical point of view this conclusion has
to be taken with caution since we did not actually prove
that the probability distribution P converges to PH in

B 1 B
~, (~(u&) ~(*,&))+

2
~(v, ~)~,~'(* ~))

+— u(z, t) u (y, t))
1 B

( B' B' l= v
l B, + B, l (u(y, t) u(*, t))(Bx2 By~)

$2
c z) t

b'z(y)bz(x)
(45)

Apart from the last term the above equation is identical
to that one which is obtained from the functional Hopf
equation, of course. The functional derivatives of c[z, t]
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yield the expression (8 —= ([ u ~))

6z 0 8
c[z, t] = —2v6ubl 8 6(y —x),x x

(46)

which is obviously of order bu.
From a physical point of view there is another reason

why mathematical considerations concerning the contin-
uum limit of 6uNp(t) are only of secondary importance.
The reason is that the functional c[z(x), t] can be given a
clear physical meaning. As we will now show interpret-
ing this term as the influence of thermal fluctuations one
is forced to fix the product 6u6l to a finite value T.hus
questions about the existence of the continuum limit are
only of mathematical interest.

We now demonstrate that the term (46) can be inter-
preted as a random stress induced by thermal Huctua-
tions. To this end, we assume in the following that the
stochastic process is spatially homogeneous; in particular
this implies 6 = const. Introducing the Fourier transfor-
mation of the velocity,

(47)

where k = 2am/L and n e Z, we obtain from Eq. (45)

—(ui*,ui, ) + —) iq(ui, ~ ukuq) + c.c.

The fluctuation-dissipation-type relation (51) fixes bu6l
to a finite value. This means that from a physical view-
point the continuum limit makes no sense. This fact
should have been clear from the begining since below a
certain length scale the assumption of thermodynamic
equilibrium and, thus, a description by macroscopic vari-
ables only is no longer possible.

It should be clear that performing stochastic simula-
tions of our master equation (see Sec. IV) it is by no
means necessary to choose parameters in such a way that
the Huctuation-dissipation relation (51) is satisfied. In
other words, it is not necessary to take into account all
scales ranging from the hydrodynamic to the thermody-
namic degrees of freedom. On the contrary, in view of
practical applications another interpretation of the finite
mesoscopic scales 6l and bu is possible. This interpreta-
tion is based on the fact that any experimental measure-
ment is characterized by some finite resolution in velocity
space as well as position space. It is therefore natural to
assume that

6l = Al, 66u = o.

where Al denotes the spatial resolution and cr the vari-
ance of the error of velocity measurements. Fixing the
mesoscopic parameters in this way, it might be possible
to simulate directly that velocity field which is actually
measured.

IV. STOCHASTIC SIMULATIONS

1
EA: = (u~ua)

2
(49)

The convolution sum on the left-hand side of Eq. (48)
results from the inertial term of Burgers's equation and
obviously couples the diferent modes. The first term on
the right-hand side represents the decay of the hydro-
dynamic modes due to viscous friction whereas the last
term is the Fourier transform of (46). At small scales,
that is for large k, the inHuence of the inertial term may
be neglected. It is then easy to see that the effect of the
last term in (48) is to slow down the exponential decay
of the energy of the mode k until, finally, the stationary
value

s 1
Ef, = —66u6l

2
(50)

is reached. One can go one step further by requiring that
the kinetic energy EI', of each stationary mode is equal to
its thermodynamic equilibrium value at temperature T.
This requirement leads to the relation E& ——zk~T/p (p
denotes the Huid density and k& the Boltzmann constant)
which implies

6bubl =
p

(51)

= —2vk (ugui, ) + 2v66u6LLk . (48)

Recall that (u&ui, ) is proportional to the kinetic energy
Eg (per unit mass) pertaining to the mode k,

In the preceding section we have demonstrated that the
master equation formulation of homogeneous turbulence
indeed leads to the infinite hierarchy of correlation func-
tions which is expected from the Hopf statistical theory
of turbulence. In fact we showed that in the continuum
limit the equation for the characteristic functional de-
rived from our multivariate master equation is the well-
known Hopf functional equation. It is the aim of the
present section to show that the power of this approach
lies in its practical relevance. Namely, this approach to
Huid dynamics makes possible the formulation of very
stable and efficient numerical algorithms for computa-
tional investigations of turbulence.

In this section we describe how stochastic simulation
algorithms for the random process (Ng) can be derived
starting from our master equation. First, by means
of Burgers's model of turbulence we review briefly the
stochastic simulation method. In Sec. IVB we then
present and discuss some results of stochastic simulations
which have been performed for the Burgers model of ho-
mogeneous turbulence.

A. The stochastic simulation algorithm

Basically, by means of the stochastic simulation
method [23] an ensemble of realizations of (N~) is gener-
ated. From this ensemble the physical quantities of inter-
est can then be evaluated as ensemble averages, I et us
first summarize the important facts which will be needed
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in order to explain how a realization of the stochastic
process is generated.

Recall that the master equation (9) defines all possible
transitions and the corresponding transition rates of the
stochastic process (Ng). In each transition exactly two
numbers, say Ng, and one of its neighbors Ng~i, change
by +1 or —1. The probability per unit time w& that N&
and one of its neighbors change can be read off from the
master equation

where

+1 for Ng ) 0
—1 for Ng (0;

(b) convective transitions:

Np -+ Np —1 (ii N~~ + N~2+i
probability =

Np+i ~ Np+i + 1 4hl @i~

2v bu
u/A I

Np
I
+ g IN' + N&+1)bt2 4bl

(52)

Obviously, the total transition rate TV which describes
the rate of a transition to occur somewhere in the system
can easily be computed as the sum of all mp,

W((W&) = ) (53)

Now, the generation of a realization proceeds along the
following lines

(i) Let us assume that at time t the state of the system
is given by (N&(t) j. In the first step, the time t + 7 of
the next transition is determined. Our algorithm uses a
stochastic time step v. to be evaluated as follows. The
quantity W((Np(t)))dw is obviously the probability for
the next transition to occur somewhere in the system
within the infinitesimal time step d~. Therefore the prob-
ability pdw of the next transition to take place in the time
interval [7., w + dw] is given by

P« = W exp( —Wr) dr

Thus the total transition rate W determines the waiting
time distribution, i.e. , the probability distribution of the
time w the system remains in the state (Np(t)). In the
stochastic simulation the random number 7 which deter-
mines the time for the next, transition to occur can be
obtained by the inversion method with the help of the
following formula

1

W (P'~(~))) (54)

where q is a uniformly distributed random number in the
interval [0, 1].

(ii) Having determined the transition time we have to
perform a specific transition, i.e. , we have to determine
the new state (Np(t+ 7)) of the system. To this end, one
chooses according to the relative probabilities iiip/W a
certain cell. Once a definite cell A, say, has been chosen,
the new state of the system is to be selected from the
following possibilities: (a) Diffusive transitions:

Note that each of these transitions corresponds to one of
the five terms in our master equation (9) and that the
sum of transition probabilities given above add up to 1.
Performing one of these transitions yields the new state
(Np(t + ~)}.

(iii) The complete trajectory of the stochastic process
can be determined by repeating the above scheme until
a desired Final time is reached. Finally, by generating a
large number S of realizations of the stochastic process

(Nq(t)), j = 1, . . . , S, one can evaluate the interesting
quantities as ensemble averages.

The simplicity of the above scheme makes clear that
the numerical simulation of a stochastic process defined
by a master equation is straightforward. In fact, in the
description of complex polymerization reactions involv-

ing a very large number of reacting particles, stochastic
simulation algorithms have been shown to be more eK-
cient than the integration of the corresponding macro-
scopic difFerential equations [6, 7]. As has been demon-
strated in previous work [3—5] the stochastic simulation
algorithm derived from our master equation turns out to
be very stable. For instance, in the simulation of shock
waves at high Reynolds numbers such effects like numeri-
cal viscosity and the Gibbs phenomenon, observed in the
integration by other conventional schemes, are strongly
suppressed [13].

B. Stochastic simulations
of the Burgers model of turbulence

In this subsection we will apply the stochastic simula-
tion method described above to Burgers's model of ho-
mogeneous turbulence. Let us first precisely define the
initial conditions and the physical quantities which have
been used in our calculations.

Within our discrete description the two-point correla-
tion function is defined by

q(p, , t) = —) &I &ii'(N~+„N~),
A=O

p = 0, 1, 2, . . . , M, (58)

Ng ~Ng —s v INDIprobability =
Ng+1 ~ NP+1 + s bt2 u)p

Ng ~Ng —8 v INDIprobability =
A —1~ P —1+S bt2

(55)

(56)

where, assuming spatial homogeneity, a space average has
been taken. The expectation value is, as explained in Sec.
IV A, evaluated by averaging over the ensemble which is
generated by the stochastic simulation. Computing the
Fourier transform of the correlation function we obtain
the energy spectrum Ei, defined in Eq. (49). The total
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kinetic energy E is evaluated by means of the expression

E(t) = ) b'l bu (K~)
1

(59)

N

uo(2:) = ) (A, cosk, z jB, sink, x) + w(x)
i,=l

which leads to the energy dissipation rate s(t) = E.—
The initial random velocity is given by a superposition
of N = 1000 randomly chosen modes,

—2
0.0
2

—2
0.0 0.2

t =0.08
o

0.4 0.6

0.6

0.8 1.0

1.0

(60)
—2

0.0 0.2 0.8

Here, k, = 2~n, (we choose I = 1) and the n, denote
identically distributed random integers with distribution
function P(n) = P(—n). The amplitudes A, and B, are
also identically distributed and independent real random
numbers with zero mean and with variance

(A, A~) = (B,B~) = A b,,
Furthermore, we add a small fluctuating field m(z)
with zero mean and correlation function (m(y) ui(x)) =
tU b'lb(y —x), where w = 8bu. It follows from these
conditions that the initial field (60) is homogeneous and
that the initial energy spectrum is given by Ei, (0)
A P(k/2vr)/2+Gbubl/2. In our calculations we used
A = 1/3 and a Poisson-distributed initial spectrum

P(n+ 1) = — e
1 p
2 nt

(61)

Second, we introduce a Taylor-Reynolds number by

where n = 0, 1, 2, 3, . . . , (M + 1)/2, and P(0) = 0. We
shall characterize this initial condition by two Reynolds
numbers: First, we define an integral Reynolds number
based on the total length L = 1 and rms velocity U =
(u2) 1/2

FIG. 1. One realization of the stochastic process up
buNp defined by the master equation (9) and the random
initial condition given by (60) and (65) for v = 5000 and
three diferent times t = 0, t = 0.02, and t = 0.08, The
parameter p of the initial configuration was chosen to be p, =
10. The stochastic simulation has been performed with the
parameters bu = 5 x 10, M + 1 = 1024.

typical sawtooth structure consisting of smooth increas-
ing ramps followed by sharp shocks.

In Fig. 2 we show the energy dissipation rate z as func-
tion of time for v = 3000 (RI. = 1733, RA = 156) and
v = 5000 (Rl, = 2821, RA = 253). In both eases the
results have been obtained by averaging over 100 realiza-
tions. Figure 2 clearly demonstrates the characteristic
features of the dissipation: During a short initial period
in which the dissipation rate is small, shocks form and
the resulting steep velocity gradients lead to a strong en-
hancement of the dissipation rate. The latter reaches a
maximum at a characteristic time t = 0.02. During the
post shock period the dissipation rate can be clearly seen
to become independent of the viscosity as is predicted by
analytical considerations [24, 25j.

Finally, we shall discuss the energy spectrum. Fig-

(63)

where the Taylor microscale A is defined by

(
2~ ~(0) Q k2Eg (0)
A 2vE(0) Q El, (0)

2

I(V + 1) + V] (64)

The following simulations have been performed along
the lines described in Sec. IVA employing the param-
eters bn = 5 x 10 4 and M + 1 = 1024. The random
initial configuration is given by

o„(o)= t;("'~*'~
~bu

(65)

In Fig. 1 we depict one realization of the stochastic pro-
cess u~ ——bu&p for three difFerent times and v = 5000
As can be seen from the figure, the initial field develops a

0~
0.00 0.02 0.04 0.06 0.08

FIG. 2. The energy dissipation rate c as a function of
time for two different kinematic viscosities v = 3000 (dot-
ted line) and v = 5000 (continuous line). The stochastic
simulation has been performed with the same random initial
condition and the same parameters as in Fig. 1. The energy
dissipation rate has been estimated by averaging over 100 re-
alizations of the stochastic process.
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10

1000

FIG. 3. The energy spectrum Zi, (t) obtained by Fourier
transforming the correlation function (58) for three difFerent
times t = 0, t = 0.02, and t = 0.06. The correlation func-
tion has been estimated by averaging over 100 realizations.
The stochastic simulation has been performed with the same
random initial condition and with the same parameters as in
Fig. 1. The kinematic viscosity is v = 5000 . The continu-
ous line represents the SafFman curve (66) for the parameters
W = 0.85 x 10 and d = 0.0078.

ure 3 shows EI, as obtained from the Pourier transform
of the correlation function Q(p, t). Again, the expecta-
tion value has been evaluated by averaging over 100 re-
alizations of the stochastic process. We show the energy
spectrum for three difFerent times and for the viscosity
v = 5000 (Rr, = 2821, RA = 253). As can be seen,
a k power-law behavior appears which represents the
universal inertial range of Burgers's model. In order to
demonstrate the accuracy of the stochastic simulation
method over the whole range of wavenumbers we com-
pare the spectrum at time t = 0.06 with the analytical
result given by Saffman [25]

Ei, = W sinh (dk/2vr) (66)

V. CONCLUSIONS

It has been demonstrated in this paper that a recently
proposed stochastic formulation of fluid dynamics leads
to an approach to turbulence. The basic idea of our ap-
proach has been explained by means of Burgers's equa-
tion which represents a simplified, paradigmatic version
of the Navier-Stokes equation. Discretizing position as
well as velocity space by means of a length scale 6l and

SafFman derived this expression for the Burgers model
by assuming that the small-scale structure is given by
periodic trains of shocks. Note that Eg as given by (66)
approaches for dk/(27r) (( 1 the form Ei, = 47r2W/(dk)~.
The energy scale W and the dissipation length d which
depend on the large scale properties of the initial con-
dition have been determined from our data by compari-
son with the limiting behavior of the Saffman result for
large wave numbers [Eg —4Wexp( —dk/vr)]. We find
W = 0.85 x 10 s and d = 0.0078. As demonstrated in
Fig. 3 the agreement between the analytical result (66)
with our stochastic simulation is excellent over the whole
range of wave numbers.

a velocity scale bu we have constructed a discrete phase
space I'. Each point in this space is given by a set (Ng) of
integers which completely fixes the velocity of the fluid.
The probabilistic dynamics is introduced by regarding
(N~) as a multivariate stochastic process governed by
a master equation for the joint probability distribution
P. The master equation that we propose has been in-
vestigated in this paper by different techniques. First,
we have shown that neglecting higher moments the time
evolution equation for the first moments 6u(Ng) is noth-
ing but a discretized version of Burgers's equation. A
systematic 0 expansion reveals that, in fact, Burgers's
equation is the macroscopic equation corresponding to
our multivariate master equation [14].

This result is only valid, of course, under the assump-
tion that the stochastic process (Ng) describes a stable
flow on which small fluctuations are superimposed. Thus,
in order to prove that our -stochastic theory is applica-
ble to turbulent situations which are characterized by
large fluctuations, we have investigated the characteris-
tic functional pertaining to (Ng). It has been demon-.-'tra+ed that the time evolution equation for this charac-
terist, ic functional obeys in the continuum limit the well-
known Hopf functional equation which characterizes the
statistical properties of an ensemble of turbulent veloc-
ity fields. Furthermore, the next-to-leading-order term in
an expansion in bu and b/ has the structure of a random
stress. The latter has a clear physical interpretation. By
relating the mesoscopic scales to thermodynamic state
variables it represents the effect of thermal Buctuations
in the fluid. Prom a pragmatic point of view the meso-
scopic scales may also be interpreted as representing the
finite resolution in position and velocity of experimental
observations.

These theoretical investigations constitute the basis
of a stochastic simulation method for turbulent Bows.
In fact, by a simple simulation algorithm derived from
our master equation an ensemble of realizations of the
stochastic process (Np) is generated and physical quan-
tities are estimated as ensemble averages. This method is
illustrated by stochastic simulations of Burgers's model
of turbulence. The simulations are shown to yield very
accurate results.

We emphasize that this stochastic simulation method
is completely different from direct numerical simulation
methods [9, 26—28] which generate trajectories by solving
the Navier-Stokes equation. Furthermore, the stochas-
tic simulation method presented in this paper should be
distinguished from the method given by Hosokawa and
Yamamoto [29, 30]. In order to reduce the number of de-
grees of freedom these authors use a space of randomly
sampled Fourier modes and a modified Navier-Stokes op-
erator which acts in this space. The important point to
note here is that in this method the time evolution is, in
contrast to our approach, given by a deterministic differ-
ential equation.

It should be clear that the theoretical considerations
and the simulation technique presented in this paper are
not restricted to (1+1)-dimensional flows. In fact, it is
straightforward to write down a master equation for a
multivariate stochastic process which describes (3+1)-
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dimensional Bows. A stochastic counterpart of the pres-
sure gradient which is absent in Burgers's equation may
be constructed as well. This point was the subject of an-
other publication [5]. Furthermore, it can be shown that

the equation of continuity and the equation expressing
the conservation of energy may be treated by the same
tools. Of course, these considerations are beyond the
scope of the present work.
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