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Self-diffusion of rodlike molecules in strong shear fields
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We apply recently derived Green-Kubo relations for the various elements of the self-diffusion tensor
(SDT) of shearing fluids to three different model systems of rodlike molecules: the Tildesley-Madden
model for carbon disulfide, the Gay-Berne fluid, and the Ryckaert-Bellemans model for decane. W' e
study how the various elements of the SDT depend on the shear rate. This dependence is explained in
greater detail by examining the various velocity autocorrelation functions, the order parameter, and the
shear induced rotation rate. We find that two different mechanisms are responsible for the behavior of
the diagonal elements of the SDT. The first is the elliptical distortion of the nearest-neighbor shell and
enhances the diagonal elements of the SDT. The second is the shear alignment of the molecules. This
facilitates diffusion in the alignment direction and suppresses diffusion in the perpendicular direction.
We also suggest "collision" sequences that are responsible for the sign of the off-diagonal elements of the
SDT.

PACS number(s): 03.40.Gc, 02.50.—r, 51.10.+y

I. INTRODUCTION

When a fluid is subject to a weak shear field, Curie's
principle of linear irreversible thermodynamics [1] states
that a planar shear, being a second-rank tensor, cannot
generate mass or heat currents which are polar vectors.
However, when the shear rate increases, nonlinear effects
become important and Curie's principle breaks down.
Then it is still impossible for a shear field to generate a
mass current or a heat flow but it can modify the thermal
conductivity and the diffusion coefficient. These
coefficients then become second-rank tensors with shear
rate dependent elements.

At equilibrium these two transport coefficients can be
calculated microscopically in several different ways. The
most straightforward method is to perform an equilibri-
um molecular-dynamics (EMD) simulation where the
Green-Kubo integrals of the heat current or mass current
autocorrelation functions are calculated from a single
molecular-dynamics simulation. In the case of self-
diffusion there is also a well-known relation between the
mean-square displacements (MSD) and the self-difFusion
coefficient. Another method is to perform nonequilibri-
um molecular-dynamics (NEMD) simulations. Then an
external field, driving an irreversible mass or heat
current, is coupled to the system. The functional form of
the field is chosen in such away that the current generat-
ed is exactly the same as that induced by a chemical po-
tential or temperature gradient, respectively. By using
linear response theory one can prove that the transport
coefFicient in question is obtained as the ratio of the
current to the field in the zero-field limit [2].

The first attempt to extend these methods to shearing
fluids was tnade by Heyes et al. [3]. These authors postu-
lated without proof expressions for the relations between
the diagonal elements of the self-diffusion tensor (SDT)
and the mean-square displacements.

In a series of papers [4—8] we have generalized and
proved the above expressions for fluids subject to strong

shear. We have derived Green-Kubo (GK) formulas for
diagonal and off-diagonal elements of the thermal con-
ductivity and mutual diffusion tensors and we have
proved the relations between the MSD and the various
elements of the SDT. It might be reasonable to believe
that since there are GK integ rais for the above-
mentioned quantities it should be a simple matter to gen-
eralize the NEMD methods to strongly shearing fluids.
Unfortunately, it has been shown that this is not the case
[7]. There are no simple eflicient NEMD algorithms for
the shear dependent thermal conductivity or the shear
dependent self- or mutual-diffusion tensors.

In Ref. [8] we applied the GK expressions to calculate
the SDT of a shearing Lennard-Jones fluid. We found
that, at the triple point, the diagonal elements of the SDT
increase by a factor of 2 when the reduced shear rate was
unity. (NB, reduced quantities are defined in Sec. II.)
The off-diagonal elements were found to be at least three
orders of magnitude smaller than the diagonal elements
and it was impossible to determine their sign. At lower
densities and higher temperatures the diagonal elements
of the SDT were less affected by the shear field. Howev-
er, the off-diagonal elements were found to increase
significantly with the shear rate and at reduced shear
rates of unity they were of the same magnitude as the di-
agonal ones.

In this paper we have chosen to extend the previous
study to fluids consisting of rodlike molecules, where the
effect of the shear field upon diffusion can be expected to
be larger because of the alignment of the molecules
caused by the presence of the shear. In particular, we
have chosen to examine three different systems: carbon
disulfide, the Gay-Berne (GB) fluid [9], and decane. The
CS2 molecules have been modeled as three fused
Lennard-Jones (LJ) spheres [10]. The length to width ra-
tio is about 2:1. The GB fluid simulated here can, loosely
speaking, be regarded as LJ ellipsoids with a length to
width ratio of 3:1. For decane we studied a model similar
to the Ryckaert-Bellemans model [11]. Unlike the other
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two molecules, this molecule is Qexible.
The paper is organized as follows; in Sec. II we review

the necessary theory and describe the various models, in
Sec. III the results are presented and discussed, and final-
ly in Sec. IV there is a conclusion.

II. THEORY AND METHOD

A. Model Auids

Since the effect of a shear field upon diffusion of Quids
consisting of spherical molecules was found to be small
[4,8] we believe that larger effects can be found if the fluid
consists of molecules that are more anisotropic. There-
fore, we have turned our attention to three models for
rodlike and Qexible molecules: the Tildesley-Madden
(TM) model of carbon disulfide [10], the Gay-Berne [9]
Quid, and the Ryckaert-Bellemans (RB) [11]model of de-
cane.

The TM model of carbon disulfide is a rigid three-
center interaction site model, where the different sites in-
teract according to a Lennard-Jones potential,

12 6

(2.1)
T T

where o.„,is the zero of the potential and c.„ is the depth
of the minimum. The carbon —sulfur bond length is 1.57
A. The values of the different potential parameters are
occ=3 35 A ocs=3.44 A oss=3. 52 A ~cc/km=51. 2
K, scs/k~ =96.80 K, and Ess/kz =183.00 K, where k~
is Boltzmann's constant. The cutoff distance between a
site of a species p and a site of a species v has been set to
r,„=2.5o.„,i.e., the cutoff distance is slightly different
for different kinds of interactions. The length to width
ratio of this molecule is roughly equal to 2:1. The numer-
ical results obtained for CS2 are given in reduced units.
The length unit is o.cc, the mass unit is me =12.00 amu,
the energy unit is c«and the time unit
=ace(mc/Ecc)' = l. 8 ps. We have chosen to simulate
the triple point where the density and temperatures are
equal to 1.55 g cm and 163 K. In reduced units this
becomes no cc=0.461 81 and kT& /E, cc=3.1836. The
equations of motion were integrated by a fourth-order
Cxear predictor corrector method with a time step of
0.002~ for reduced shear rates, y~, less than 0.50 and
0.001m for the higher shear rates. The run lengths were
1000m.

A Gay-Berne Auid consists of molecules shaped like el-
lipsoids of revolution, which interact according to the fol-
lowing pair potential:

UGB( 12 1 u2) E( 12 I 2) '
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6

(2.2a)

where u, and u2 are unit vectors along the axis of revolution of molecules 1 and 2, r, 2 is the unit vector in the direction
of the distance vector r, 2=r2 —r, between the centers of molecules 1 and 2, and r, 2 is the scalar distance between them.

The strength parameter s(r, 2, u„uz) and the range parameter cr(r, 2, u„u2) are given by
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with g=(a —1)/(x. +1), where v is the ratio of the
semiaxis in the direction of the axis of revolution and the
other semiaxis, i.e., the length to breadth ratio for a pro-
late ellipsoid of revolution. The parameter y'=(~'
—1)/(a" +1), where a' is the ratio of potential well
depths for the side by side configuration and the end to
end configuration. In this work we have used the value
3.00 for ~ and 5.00 for ~'. The simulation results for this
model are given in length, energy mass, and time units of
oo, so, m, and v =oo(m/Eo)' . The moment of inertia
about the axis of revolution is equal to zero. The mo-
ment of inertia about the two axes perpendicular to the
axis of revolution has been given the value mcrp, i.e., uni-

ty in reduced units. The equations of motion have been
integrated by a fourth-order Gear predictor corrector al-
gorithm with a time step of 0.001~. The run lengths were
500~. All simulation data reported for the GB Quid in

Pr.
r, = +n„yy, . (2.3a)

and

this work are for a reduced density no.
p of 0.30 and re-

duced temperature kz T/Ep of 1.25, except for the data in

Fig. 9 where the reduced density is 0.10 and the reduced
temperature is 1.25. The high density state point is just
below the isotropic liquid —nematic liquid crystal-phase
transition. The equilibrium properties of this Quid have
been comprehensively studied by de Miguel, Rull, Gub-
bins, and co-workers [12—15].

The rotational part of the equations of motion for these
two model systems was expressed in terms of quaternions
[16].

The equations of motion for the centers of mass were
the Sllod equations [2]
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Pl =+i &X7Pyi O'Pi ~ (2.3b)

In the above equations r; is the laboratory position of the
center of mass of molecule i, F; is the intermolecular
force on molecule i due to the other molecules, and n„ is
the unit vector in the x direction. At low Reynolds num-
bers, the only nonzero component of the streaming veloc-
ity is the x component, u„, which is equal to n„yy (i.e.,
there is a velocity gradient in the y direction). Conse-
quently, the only nonzero element in the shear rate tensor
is Bu„/By =y. The streaming velocity at the position of
the center of gravity of molecule is n„yy;, so the peculiar
translational velocity of the center of gravity of the mole-
cule is pi/m.

The Gaussian thermostatting multiplier, a, is deter-
mined by making the peculiar translational kinetic energy
a constant of motion,

shifted by c. so that the potential is zero at the point of
truncation (this also ensures that the force is zero at the
cutoff distance, r/cr=2'~ ). This potential, often referred
to as the WCA potential, has no attractive part and is
short ranged, making it convenient from the computa-
tional point of view since the number of interacting
neighbors is reduced. This model is useful for examining
the qualitative behavior of Aexible versus rigid molecules,
but it is not expected to give quantitative agreement with
experimental results.

The molecular version of the Sllod algorithm [2] (so
named because of its close relationship with the Dolls
tensor algorithm) given by Edberg, Evans, and Morriss
[17] was used for the decane simulations. The number of
molecules, the kinetic temperature, the volume, and the
total momentum were all fixed. The equations of motion
for site a of molecule i are given by

(2.4)
and

pie
r,- = +n gy, -

m
(2.7a)

5
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where values of the coefficients [a, ] are given by I1116
K, 1462 K, —1578 K, —368 K, 3156 K, —3788 K].
Sites on different molecules, and sites more than three
bonds apart on the same molecule, interact through a
modified 12-6 Lennard- Jones potential,

The model used for the simulation of decane is a
simplification of the Ryckaert-Bellemans [ll] model for n

alkanes. The model alkane molecules are composed of
sites representing the CH2 or CH3 groups of the n alkane.
For simplicity we assume that all sites have the same
mass, 14.52 amu. The distance between neighboring sites
(the bond length) is fixed at 1.53 A and the bond angles
are fixed at 109.47, using a next-nearest-neighbor dis-
tance constraint. The freezirig out of the high-frequency
modes associated with bond vibration and libration en-
ables the use of much larger integration time steps than
would otherwise be possible, but gives slightly different
results than would be obtained for a model allowing bond
angle bending. A torsional or dihedral potential acts be-
tween each pair of methyl or methylene groups that are
three bonds apart on a given n-alkane chain. To model
this we use a potential function that depends on the
dihedral angle P, where cosP= —(r; Xr;+, ) (r;+, Xr;+z)
and r;, r, +1, and r, +2 are successive bond vectors. Fol-
lowing Ryckaert and Bellemans we use a truncated power
series in the cosine of P for the dihedral potential,

~ N C m~
F; +F; — n ~~; — o.

M; M;
(2.7b)

N

i=1 i

(2.8)

All results for decane are reported in units reduced with
respect to the alkyl group Lennard-Jones potential pa-
rameters c and o. and the alkyl group mass, m. The time
unit, r, is equal to o (m /E)'~ . More detailed descriptions
of the equations of motion and the simulation technique,
including the Gaussian constraint method, can be found
in the Refs. [17,18]. The state point we have chosen to
simulate has a density and temperature of 0.730 g cm
and 293 K, corresponding to reduced density p o.
=0.183 and temperature k~ T/v=4. 07. The run lengths
were 150~ and the time step was 0.001~.

where F represents the force due to dihedral and
Lennard-Jones potentials, and F represents the in-
tramolecular constraint forces. In these equations, m is
the mass of site e, M, is the mass of molecule i, n is the
unit vector in the x direction, y is the shear rate, p, is the
peculiar momentum of the center of mass of molecule i,
and a is the thermostatting multiplier (which should not
be confused with the site index, a ). The thermostat
keeps the molecular translational (or center-of-mass) ki-
netic temperature fixed, so that

12 '6

+c. , r (2'"o-
B. Theory

+LJ 0, r+2' o
(2.6)

0
with parameters o.=3.923 A and c/k& =72 K. In con-
trast to the original RB model our Lennard-Jones poten-
tial has been truncated at its minimum r/o. =2', and

When a one-component Auid is subject to strong shear,
the self-diffusion coefficient becomes a second-rank tensor
with shear rate dependent components. If the shear rate
y is given by y=Bu /By, where u„ is the streaming ve-
locity in the x direction, the representation of the self-
diffusion tensor in Cartesian coordinates becomes
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0= Dy
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D z= ', j (p, (t)p, p(0)),dt
m

u; t u&0 dt Vi=1%,
O

(2.10)

where a, /3=x, y, z. The average ( ) is a time average
taken over a shearing steady state, hence the subscript y.
Note that the p, in this equation are components of the
peculiar momenta of the molecular centers of mass and
that the velocities U, =p; /m, where m is the molecular
mass, are peculiar velocities. These relations can be in-
tegrated giving Einstein relations for the mean-square
displacement at long times. The diagonal components
become

The xz, yz, zx, and zy elements are identically zero by
symmetry. In previous work [6] the following Green-
Kubo relations for the various components of this tensor
were derived:

( co ) =—,' V X u , (2.15)

where u is the steaming velocity. Therefore the average
angular velocity in simple shear flow becomes (co)
= —yn, /2, where n, is the unit vector in the z direction.
In the nonlinear regime it has been found that the rota-
tion rate is lower than y/2 [19,20]. It is reasonable to as-
sume that the rotation period of the molecules should be
of the same order as the decay time of the velocity auto-
correlation functions in order to affect diffusion.

molecules align themselves at 45' to the streamlines. In
the simulations in this work we are mainly in the non-
linear regime and here the alignment angle is less than
45'

The following discussion will involve the traceless sym-
metric parts of the pressure tensor and the SDT. We will
also refer to the angle between the eigenvector corre-
sponding to the largest eigenvalue of these two tensors
and the streamlines as alignment angles.

Linear irreversible thermodynamics predicts that mole-
cules in a homogeneous fluid under steady shear rotate at
an average angular velocity equal to half the vorticity,
i.e.,

lim (q;(t) ) =2D t Vi=1,X,
f —moo

(2. 1 1)
III. RESULTS AND DISCUSSION

where

p;(s)q;(t):—r;(0)+j ds
o m

(2.12)

is the convected, Lagrangian, position of particle i. It is
not possible to obtain separate Einstein relations for the
two nonzero off-diagonal elements of the diffusion tensor
[5]. It is only possible to obtain an Einstein relation for
the sum of these two elements,

lim (q; (t)q; (t))r=(D @+DE )t Vi=1,%
f~oo

(2.13)

All of the values of the diffusion coefficients reported
here have been obtained by computing the Green-Kubo
integrals, Eq. (2.10). In some cases we have evaluated the
MSD expressions as a cross-check. Then the GK values
and the MSD values have always been found to agree
within the statistical uncertainty.

A useful quantity when one deals with anisotropic mol-
ecules is the symmetric traceless order tensor,

The first system that we examined was carbon disulfide
at its triple point. The diagonal elements of the SDT as a
function of shear rate are depicted in Fig. 1. As one can
see, they increase dramatically with y up to y~=1.0.
Then they level off or decrease again. For shear rates
greater than 3 a string phase forms [2]. The ratio be-
tween the maximum of the xx element of the SDT and
the equilibrium value is about 40 which is much larger
than the corresponding ratio for a LJ fluid at the triple
point, namely, about 2. Part of the reason for this is that
the equilibrium diffusion coefficient of CS2 at the triple
point is very low. It is about 10 times smaller than the
diffusion coefficient of a LJ fluid at its triple point.

In order to understand why the diffusion coefficient in-
creases so dramatically one can study the velocity auto-
correlation functions (VACF). If we look at the VACF of
the dense equilibrium fluid, Fig. 2, we find that it consists

3 1 NS=—
2 X,,

(2.14)
0.06

The unit vector u; is parallel to the axis of revolution of
the GB or CS2 molecules or the eigenvector correspond-
ing to the largest eigenvalue of the averaged inertial ellip-
soid of the decane molecule. The largest eigenvalue of
the order tensor will be denoted by S. When the orienta-
tion of the molecules is random, S is zero, and when they
are perfectly aligned S is unity. The eigenvector corre-
sponding to S is called the director and it can be inter-
preted as the preferred alignment direction of the mole-
cules. The angle between the streamlines and the direc-
tor is known as the alignment angle. In the linear regime

0.04

A

oooI

FIG. 1. The diagonal elements of the SDT of CS2 as a func-
tion of the shear rate. The open squares, the open diamonds,
and the open circles depict Dz Dyy and D„, respectively.
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FIG. 2. Diagonal velocity autocor relation functions,
Z (t)=(v (t)v (0)) of CSz. The full curve, the dashed curve,
and the dash-dotted curve denote Z „(t) Zyy(t) and Z„(t) at a
reduced shear rate of 1.0. The dotted curve is the equilibrium
velocity autocorrelation function.

of a positive region immediately followed by a negative
area. This negative region is due to rebounds when a
molecule collides with its nearest neighbors. If one in-
tegrates this function with respect to time the negative
contribution almost cancels the positive contribution so
the resulting diffusion coeScient is very small. When we
study the VACF for the diagonal elements of the SDT at
high shear rates we find that the negative rebound area
has vanished and that the initial positive part of the
VACF remains positive for a longer time than at equilib-
rium. This leads to a sharp increase of the magnitude of
the time integral of the VACF and thereby the diagonal
elements of the SDT. This is basically the same mecha-
nism that enhances the diffusion in a Lennard-Jones fluid
under shear [4,8].

Another important phenomenon that affects diffusion
is the alignment of the molecules relative to the stream-
lines. The alignment angle of the order tensor decreases
very rapidly with the shear rate. At y~=0. 25 it has fal-
len from the linear value of 45 to about 25'. It then stays
at this value at least up to a reduced shear rate of 3.0.
The order parameter, which is shown in Fig. 3(a), also in-
creases very steeply to about 0.40. The high degree of or-
dering and the small alignment angle favor diffusion in
the x direction, i.e., in the direction closest to the direc-
tion of the streamlines, at the expense of the z and y
directions.

An interesting question is whether the SDT, which is a
second-rank tensor, is correlated with any of the other
second-rank tensors in the system, such as the pressure
tensor or the order tensor. In order to answer this ques-
tion we have compared their alignment angles. We have
found that the alignment angles of the SDT and the order
tensor are fairly well correlated for y~(1.0. The behav-
ior of the alignment angle of the pressure tensor, which
can be seen in Fig. 3(b), is different. (We have only
displayed the alignment angles of the SDT, the order ten-
sor, and the pressure tensor of decane. However, the be-
havior of the alignment angles of these tensors in the GB
fiuid and CSz is similar. )

In the case of CS2 the shear alignment is probably less

45 o

30

bQ

15

0

0

0

(b)

-15
0.0 0.5 1.0 1.5

FICr. 3(a). The order parameter S as a function of the shear
rate for the three diff'erent systems discussed in this work. The
open circles, the open squares, and the filled circles represent
the GB Quid, decane, and CS2, respectively. (b) The alignment
angle of various second-order symmetric traceless tensors in de-
cane. The diamonds, the circles, and the squares depict the
alignment angles of the pressure tensor, order tensor, and the
traceless symmetric part of the SDT.

important than the distortion of the coordination shell
and the eradication of the rebound region of the VACF.
The leveling off and decrease of the diagonal elements of
the SDT for reduced shear rates greater than 1.0 is due to
the decrease of the initial positive region of the VACF.
This is to a smaller extent due to increased pressure and
to a larger extent due to the increased rotational tempera-
ture. Note that some caution is appropriate here. Up to
a reduced shear rate of approximately 1.0 the equiparti-
tion principle is roughly valid. This means that the sys-
tern properties are largely independent of the details of
the thermostatting mechanism [21]. The fact that we
only thermostat the molecular translational degrees of
freedom consequently has little effect. For higher shear
rates this is no longer true so the properties become
dependent on the nature of the thermostat.

A relevant question to ask is to what extent does the
shear induced rotation affect the VACF's? At a reduced
shear rate of unity this period is equal to 45~. This is
much longer than the decay time of VACF's, which is
about 1.0~. It is thus reasonable to expect that the
influence of the shear induced rotation upon the diffusion
is very small.

The diagonal elements of the SDT of the GB fluid are
displayed in Fig. 4. The xx element increases sharply at
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0.3

0.2

0.0

FIG. 4. As in Fig. 1 but the system is the GB fluid.

low shear rates and reaches a maximum at a reduced
shear rate of 1.0, after which it diminishes again. The yy
and the zz elements decrease monotonically with y. This
is in marked contrast to CS2 where all the elements in-
crease with y. The rise of D „ is strongly correlated with
the rise of the order parameter, which is displayed in Fig.
3(a), and the fall of the alignment angle of the order ten-
sor. At y~=0. 15 it has fallen to about 20'. After this it
remains constant at this value, at least for y~(3.0. As in

CSz, the alignment angles of the order tensor and the
SDT are fairly well correlated, but the alignment angle of
the pressure tensor is different. In the GB fluid align-
ment accounts for most of the shear induced changes in
the SDT. This conclusion can be motivated by studying
the VACF's at various shear rates. The diagonal VACF's
of the GB Auid are shown in Fig. 5. At equilibrium the
VACF decays almost monotonically to zero without any
negative backscattering regions. This is probably due to
the ease with which elongated molecules can break
through any nearest-neighbor cage. At a reduced shear
rate of 1.0, the decay time of the xx VACF has increased
markedly. This longer decay time causes an increase of
D „. On the other hand, the decay times of the yy and zz
VACF's decrease and features of backscattering become
apparent, both of which contribute to the reduction of

1.5

Dyy and D„. This behavior is not unreasonable, because
when the molecules are aligned almost parallel to the x
axis and the streamlines, the molecules have to move
sideways if they are to move in the y or z direction. At
higher shear rates D falls off again. This coincides with
a rise in the rotational kinetic energy due to higher in-
stantaneous angular velocities around the y axis and the z
axis. Both of these rotational modes are likely to impede
diffusion in the x direction. As mentioned before, the dis-
tribution of kinetic energy between various degrees of
freedom at high shear rates depends on the thermostat-
ting mechanism and it is very likely that other mecha-
nisms would produce different results when y~ ~ 1.0.

The shortest average shear induced rotation period is
about 250~, even at the highest shear rates. This is far
longer than the decay time of the VACF's. One can thus
expect that the influence of this phenomenon upon
diffusion is negligible.

Finally we considered the diagonal elements of the
SDT for decane. The functional dependence of these ele-
ments upon the shear rate, which is depicted in Fig. 6,
seems to be something intermediate between that of the
GB Quid and CS2. The behavior of the xx element seems
to be very similar to that of the same quantity for the GB
fIuid. It is obviously closely related to the order parame-
ter, shown in Fig. 3(a). It is evident from Fig. 3(b) that
the alignment angles of the order tensor and the SDT are
also fairly well correlated but the alignment angle of the
pressure tensor behaves differently.

It should also be noted that, unlike CS2 and the GB
fluid, decane molecules change their shape as the shear
rate increases. The radius of gyration initially increases,
reaching a maximum at y~=0. 60 and then it decreases.
The decrease of D„„athigher shear rates can be attribut-
ed to higher pressure and increasing rotational tempera-
ture. Contrary to the case of the GB Quid, Dyy and D„
grow with y and they do not decrease until the shear rate
becomes very high. This is similar to CS2. By studying
the diagonal VACF's, shown in Fig. 7, one finds that the
equilibrium correlation functions are negative after the
initial positive contribution has decayed. This negative
region is fairly long and shallow so it is quite different

0.10

1.0
A

)
0.5

V

0.0

0.0 0.2 04 0.6
I

0.8 1.0

0.08

0.06

0.04
0

FIG. 5. Diagonal velocity autocorrelation functions,
Z (t)=(u (t)u (0)) of the CxB fluid. The full curve, the
dashed curve, and the dash-dotted curve denote Z (t) Zyy(t),
and Z„(t) at a reduced shear rate of 1.0. The dotted curve is
the equilibrium velocity autocorrelation function.

0.02

0.0 0.4 0.8 1.2

FIG. 6. As in Fig. 1 but the system is decane.

1.6
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0.4

0.3

0.2

0.1

ly becomes negative while D „remains positive. At high
shear rates, the SDT of CS2 is thus a mirror image of the
SDT of decane.

As in the case for the diagonal elements of the SDT we
can obtain some further understanding by studying the
off-diagonal VACF's, (u (t)u (0)) and (v»(t)u„(0)). In
the systems and state points studied in this work the
cross correlation functions have a very rich structure.

0.0 ~ y ~
~~~~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I I I I

0.0 0.5 1.0 1.5
0.02

FIG. 7. Diagonal velocity auto correlation functions,
Z (t)=(u (t)u (0)) of decane. The full curve, the dashed
curve, and the dash-dotted curve denote Z ( t), Z» ( t), and
Z„(t) at a reduced shear rate of 0.60. The dotted curve is the
equilibrium velocity autocorrelation function.

0.01

0.00 Ii

(a)-

from the VACF of CS2 or a LJ Quid. However, the result
is the same, namely, to decrease the GK integral and
thereby the diffusion coefficient. At higher shear rates
this negative region vanishes and D„and D„are
enhanced. This is different from the GB Auid where the
yy and zz VACF's develop backscattering features at high
shear rates. The difference is presumably due to the Aexi-
bility of the decane molecule. Collisions are softened by
internal relaxation, and this "shock absorber" effect may
be enhanced at high shear rates, where dihedral angle
transition rates are far higher than they are at equilibri-
um. The xx VACF of decane is very similar to that of
the GB Auid. The decay time of (v, (t)v„(0)) increases
as the system becomes more ordered and the alignment
angle of the order tensor decreases to about 20'.

One of the major differences between the SDT of a
shearing system and that of an equilibrium system is that
the D and the Dy elements of the diffusion tensor are
nonzero. This means that a concentration gradient of la-
beled particles in the x direction can drive a current in
the y direction and vice versa. We have found that the
functional dependence of these elements upon the shear
rate for the three different systems studied in this work is
very similar so we discuss them at the same time. The
off-diagonal elements are depicted in Fig. 8 as functions
of y, for CSz [Fig. 8(a)], GB [Fig. 8(b)], and decane [Fig.
8(c)]. The behavior of D and D» of decane and the GB
Quid is very similar at low shear rates. They are nearly
equal and positive. As the 'shear rate grows D„becomes
larger than D and they both pass through a maximum.
After this, D falls off very rapidly and eventually be-
comes negative. In the GB Quid Dxy follows Dyz in the
rapid decline whereas D„„ in decane diminishes more
slowly and remains positive. The diffusion tensor of de-
cane is thus highly asymmetric at high shear rates and
the off-diagonal components eventually have different
signs. In CS2 the off-diagonal elements are also equal and
positive at low shear rates. At higher shear rates D„y of
CS2 behaves like D „of decane. Conversely, we have
found that D of CSz behaves like D of decane. The
element D&y is consequently smaller than D and it final-
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FIG. 8. The off-diagonal elements of the SDT of (a) CS2, (b)
the CxB Quid, and (c) decane as functions of the shear rate. The
filled squares depict D„~ and the filled circles depict D~„.
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der parameter upon the shear rate. The alignment angle
of the order tensor and the traceless symmetric part of
the SDT also agree fairly well at low shear rates,
y~(1.0. At higher shear rates they diverge. The shear
rate dependence of the alignment angle of the symmetric
traceless pressure tensor is different from that of the oth-
er two tensors.

We have found that the period of the shear induced ro-
tation is far longer than the convergence time of the
Green-Kubo integrals for the various elements of the
SDT. Shear induced rotation consequently does not
affect diffusion very much.

A major difference between the equilibrium SDT and
the SDT of a shearing fIuid is that the xy and yx elements
of the latter system are nonzero. We have found an argu-
ment why these elements should be negative at low densi-
ties, both for molecular and atomic Auids. Our simula-
tion results indicate that this is indeed the case. This is
very different from the high-density results. Then the

off-diagonal elements of the SDT for a Lennard-Jones
fIuid are almost zero but those of the molecular Auids in
this study are positive. We found that this is due to a
very large peak in the velocity cross-correlation function
at time t =0.1~. It is possible that this large peak is due
to a certain kind of collision that becomes possible when
the molecules are strongly aligned. At low shear rates
D and D „are equal within the statistical uncertainties
but as the shear rate increases they become more and
more unequal and may even have opposite signs. The
SDT is then highly asymmetric.

Finally we note that in order to obtain measurable
changes of the SDT the shear rate must be of order one in
reduced units for decane and the GB Quid and order 0.10
for CS2. These high shear rates are hard to realize in a
laboratory for decane or CSz. In order to see nonlinear
behavior experimentally one could more easily study col-
loidal systems or Auids consisting of rodlike polymers. In
these systems the nonlinear regime is more accessible.
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