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Nonequilibrium variational principle for the time evolution of an ionized gas
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A restricted variational formulation for extended irreversible thermodynamics is proposed. Then, it is
applied to a heat- and electricity-conducting viscous Quid, and the resulting equations are reduced to or-
der two to be compared with those well known of kinetic theory. A better understanding of the phenom-
enological coeKcients than in previous reported works is obtained.
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I. INTRODUCTION

Variational principles to study the movement of fluids
have been used for a variety of cases: perfect fluids, con-
ducting fluids, non-Newtonian fluids, etc. The applica-
tions of variational principles of the Hamilton type have
been mostly restricted to perfect Auids (Kelvin [1] provid-
ed one in the Lagrangian form) since their success has
been limited in other areas of fluid mechanics. The
steady state without How [2] and a more general case in-
cluding flow [3] have been formulated from the classical
variational point of view in the Eulerian form for con-
ducting perfect fluids in the presence of an electromag-
netic field of forces and the viscous conducting fluid has
been treated in a channel Row [4]. The nonsteady prob-
lem for the magnetohydrodynamics of perfect fluids has
been worked out in both the Eulerian and Lagrangian
forms from classical principles [5]. The constraints on
the system are introduced in the above formalisms by us-
ing Lagrange multipliers.

When the equations include dissipative effects, the
presence of non-self-adjoint operators has induced the
search of a restricted type of variational principles (intro-
duced by Onsager [6]) since the classical ones are not
applicable. The description of the relaxation of magneti-
cally confined plasmas based on local potential variation-
al principles derived from the minimum entropy produc-
tion principle was published a long time ago [7—9]. Re-
cently, Hameiri and Bhattacharjee [10] applied
Prigogine s principle to obtain the equation for the elec-
tric charge flux in an incompressible conducting fluid in
the stationary state. They showed that the fluid evolves
to a relaxed state of minimum entropy production rather
than to a state of minimum energy, such as Taylor's
theory assumes [11]. Later, Rasband, Mason, and
Matheson [12] found the time evolution equations for the
conserved field variables describing the system through
the so-called generalized entropy production (GEP) func-
tional. Their work is based on a variational principle
which appears as a generalization of Prigogine s princi-
ple. Recently, Lebon and Dauby [13]formulated a varia-

tional principle within an extended thermodynamic ver-
sion for the heat-wave propagation in dielectric crystals
at low temperatures, deriving the Guyer-Krumhansl
equation.

As is well known, there is a wide interest in applying
variational principles to the recent theories of extended
thermodynamics and some other related works can be
found in the literature. See, for example, Bhattacharya
[14] within the wave approach of thermodynamics,
Nettleton [15]with a Lagrangian formulation of extended
thermodynamics using similar thermodynamical vari-
ables as those of Onsager [6], Sieniutycz [16—18] with a
relaxation factor in a functional giving hyperbolic equa-
tions for extended thermodynamics, and Eu [19]within a
variational scheme on the generalized equations of state.

In this paper we apply a recently sketched variational
formalism [20] of the restricted type to a heat- and
electricity-conducting fluid. This principle was formulat-
ed in the framework of extended irreversible thermo-
dynamics [21] (EIT) as presented in Ref. [21]. Although
we share the same objectives, our principle has some
essential differences with respect to the above-mentioned
ones since it is developed within a distinctive theoretical
framework. We will make some comparative comments
later on. With the aid of the restricted principle for EIT
we have arrived at the time evolution equations to second
order of nonconserved variables of the conducting fluid,
for which viscous properties are supposed, under an
external electromagnetic field of forces. According to the
formalism, for times smaller than the relaxation times,
the fluid evolves in such a way that a functional is an in-
variant extreme value in front of a set of transformations
proposed for the extended thermodynamic space of vari-
ables. The set of equations for the conserved variables is
closed with equations of the Maxwell-Cattaneo-Vernotte
type which are derived from the variational principle.
Thus we obtain a variational description of transient
transport processes for the system. The advantages are,
as is well known, twofold: to summarize the subject sug-
gesting analogies and generalizations, and to inspire
methods for obtaining model solutions to the problem in-
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eluding the use of additional information such as intuitive
considerations [22].

The conducting fluid has also been studied in a stan-
dard EIT by Goldstein and Garcia-Colin [23] and from a
microscopic point of view by Yang [24] and Spitzer [25].
Jou, Ferrer, and Llebot [26] have studied the stability of
the steady state under an external electric field without
considering the cross effects in the conducting fluid.

In Sec. II the extended irreversible thermodynamics we
are using is described brieAy. Next, in Sec. III we state
the variational formulation of the restricted type for EIT,
based on a functional defined in terms of the balance of
the generalized thermodynamic potential g. Then the
variational principle is applied to a heat- and electricity-
conducting viscous Auid for which we choose a suitable
extended thermodynamic space and we comment on the
results. The paper is closed with some concluding re-
marks in Sec. IV.

II. EXTENDED IRREVERSIBLE
THERMODYNAMICS

are introduced in it and the other from the balance equa-
tion when the Aux J„together with the production cr are
written as the most general vector and scalar quantities in
the extended thermodynamic space (and parameters of
the closure assumption), respectively, and are substituted
in Eq. (1). This comparison leads to the time evolution
equations for the nonconserved variables which, together
with the conservation equations, constitute a full set
describing the system.

The EIT has been applied with success to a lot of prob-
lems of chemical kinetics [15,34] and generalized hydro-
dynamics and with encouraging results to the theory of
fluctuations [35], non-Newtonian fluids [36,37], ther-
moelectric phenomena [38], flow in porous media [39,40],
the properties of Auids driven onto far from equilibrium
stationary states by external gradients [41],etc.

III. THE MODEL:
A VARIATIONAL APPROACH

TO THE TIME EVOLUTION EQUATIONS
OF A CONDUCTING VISCOUS FLUID

In its axiomatic form EIT can be stated as follows [27].
The space of the thermodynamic variables is enlarged
with respect to that of linear irreversible thermodynamics
in order to include the nonconserved variables (fluxes of
the system). Thus to describe the system off local equilib-
rium it is assumed that a generalized thermodynamic po-
tential il (entropylike function) exists and is a well-
behaved local function of all the variables of the extended
thermodynamics space [28,29]; its time evolution is
determined by an equation of the Gibbs form which must
reduce to the usual Gibbs equation in local equilibrium.
(ii) The generalized thermodynamic potential i) obeys a
balance equation of the form

p = —V J+o.6'g
dt

with J„ the Aux of the entropylike function g and 0. the
production term, which has the properties remarked by
Rodriguez and Lopez de Haro [30]. Concerning the
methodology the following is assumed: (iii) The
coeKcients appearing in the Gibbs equation and the Aux
of q depend on the scalar invariants of the system which
are formed of nonconserved variables as well as the con-
served ones. The scalars of the theory are expanded
around the local equilibrium state with Auxes equal to
zero and a systematic order criterion to approximate
these series [31]. (iv) The generalized thermodynamic
potential production term can depend additionally on pa-
rameters not belonging to the extended space, since the
tangent space is not generated by the extended space (this
constitutes the closure assumption [30]). Moreover, the
production is not assumed to be necessarily a semiposi-
tive definite quantity [32,33] opening the possibility to
other extra couplings between the nonconserved variables
allowed in this EIT framework, in contrast with other
versions of KIT [34].

The standard procedure of EIT is to compare the two
expressions of the temporal derivative of g obtained; one
from the Gibbs equation when the conservation equations

In a previous work we have outlined a variational prin-
ciple for systems which can be described by the EIT
theory [20,42]. The variational equation is

5I=5f p +V J —o dVdt=0,dq
n dt

(2)

with the following conditions: (i) The variation 5 is car-
ried out on the nonconserved variables only, (ii) the
tangent thermodynamic space (time and spatial deriva-
tives) is fixed during the variation, and (iii) the conserva-
tion equations and the representation theorems for the
unknown quantities in the extended space are subsidiary
conditions of the generalized Gibbs equation for an en-
tropylike function. As can be seen, the principle (2) is of
the restricted type and on the line of work of Onsager [6],
Rosen [43], and Gyarmati [44]. It has the same level of
generality as that of Gyarmati's principle.

Now let us suppose a conducting viscous Auid which is
described by the set of thermodynamic variables: specific
volume U, internal energy u, electron number density per
mass unit c„heat Aux q, Aux of electric current i, trace-
less viscous stress tensor ~ and its trace ~, which consti-
tute the extended thermodynamic space. Note that our
choice of the extended space differs with respect to that
of Goldstein and Garcia-Colin [23]. These authors did
not include either the Aux of electric current or the asso-
ciated electronic density in the extended space. So, they
did not obtain an evolution equation for the electric Aux
but only for the heat Aux and the viscous stress tensor.
Nevertheless, there is a microscopic justification to intro-
duce the equation of i for the conducting viscous Auid
[26]. We may also mention that in other references the
rigid solid conductor has been treated including both
charge density and Aux of electric current and a
Maxwell-Cattaneo-Vernotte equation for i has been ob-
tained [26,34,45].

The subsidiary equations of Eq. (2) are the balance
equations:
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lU
p =Vv

dt

61c
p = —Vidt'

p = —Vp —V r+pz(E+vXB)+iXB,Jv
dt

(5)

where P,J. =P;J(u, y, c„I). Since the tangent space is not
fully spanned by the extended thermodynamic space, the
production o may depend on the scalar invariants and
other parameters [30] which are described as

0 =o(u, u, c„I,, parameters) .

The scalar invariants are taken here as
8Q 8U

p = —V q —
pJ7 7:V—v+i (E+v XB) 7.V—.v, (6)

dt dt

where we have included the effect of the complete
Lorentz force, z is the charge per mass unit, v is the ve-
locity, p the pressure, and E and B are the electric and
magnetic fields, respectively. The generalized Gibbs
equation for an entropylike function is then

d7) ~
du

~
du

~
dc

~ dq
dt dt dt jt' dt

I& =~, Iz =q.q, I3 =1 1,
I4=q i I5= tr(77), I6= tr(r 7.7),

~ ++ ~ ++I7=q z.q, I8=& z 1, I9 q 7 1,

Iio=q (77) q, Iii =i (VV) i,
I,2=q (77) i,

(10)

d7 +p dl +p d1
dt

while the additional parameters for o. are
(7)

Here the coefficients p; are quantities which depend on
the conserved densities and the scalar invariants I;,
which in turn are constructed with the nonconserved
variables of the extended space. Explicitly, the scalar,
vector, and order two tensor quantities appearing in Eq.
(7) are given by

P, =P, (u, v, c„I;), P2=Pz(u, U, c„I;),
/33=/33(u, U, c„I;), /37=/37(u, u, c„I,. ),
/34 =P4iq+/342'+/3437. q+/3447. i,
/36=@iq+Azi+AP q+AF. i

P5 =P5 17.+/3»qq+/353ii+/354iq+/355' 7.

+p5617"i+/357q7' q+ p5sqV. i,
J„=n, q+ a2i+ cz3~q+ o.4~ i,

p, =V v, p2=(Vv)', p3=(Vv)',

p&=E+vXB, ps=iXB,

where ( )' and ( )' are the symmetric and antisymmetric
parts of the tensor Vv, respectively. It is convenient to
remark that the choice of the parameters p; is not made
in a direct way, but rather by observing the relevant vari-
ables for the description of the system appearing in the
balance equations [Eqs. (3)—(6)]. These parameters orig-
inate time and spatial inhomogeneities and for this reason
they may be considered the generalized thermodynamic
forces. We included the electric field E in the fourth pa-
rameter in Eqs. (11) in order to consider the complete
Lorentz force and do not restrict ourselves to the magne-
tohydrodynamics (MHD) approximation here.

Introducing Eqs. (3)—(7) in variational equation we ar-
rive at

5J p, V q p,pV —v /3, 7'V—v+/3, i.(—E+v XB) /3, 7V v+/32V —v /33V i p4~- —8q

d7 dl d7
+/75 +P6 +/37 +a,V q+q Va, +azV i+i.Vaz+a3V. (7 q)+(7 q) Va3+a4V (7 i)

dt dt dt

+(7-i).Va4 —o. dV dr . (12)

The variation process leads to a set of coupled time evo-
lution equations for the cruxes which do not involve any
extra approximation. We omit them here because they
are not useful for this discussion. However, they permit
an overview of the formal structure of the time evolution
equations in EIT. Now we approximate Eq. (12) by
means of the order criterion of nonconserved thermo-

dynamic variables [31] where the order of an equation is
determined by the nonequilibrium thermodynamic vari-
ables alone, no matter which specific operator is acting
on them. So, if the functional in Eq. (2) is to be approxi-
mated to order two, the coefficient P2 must also be
developed to order two, while the other P's must be ex-
panded to order one:
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P, =P, +P„+O(2),
02 Pzo+Pzlr+Pzzq q+P23i i+I 24q i+&25r'r+O(3)

p3 p30 p3 ir +0 ( 2 ), 134=p41q +p42i +0 ( 2 )

~5 ~51r+ O(2), p6=p6, i+p62q+0(2),

p7p70+p71r+O(2), ai=aip+aiir+O(2)

a2 = a20+ a21r+ 0(2), a3 —a30+ 0( 1 )

a4=a40+O(1) .

(13)

=A, , V T '+A2V(T 'I4, )+A3q+&(4(V.v)q

+A,5(Vv)' q+A, 6(Vv)' q+A, 7T '(E+vXB)

+&(SiXB+A9i+A.,o(V v)i+A, »(Vv)' i

+&12(Vv)' i+A»V r+A, «r. (E+v XB), (15a)

where Xi= —k/f61, k =(041/136, p42/P62) —', ~2=k/P62,
2k' iA3- , etc.

=y, T '(E+vXB)+yziXB+y3i+y4(V v)i
dt

+y, ( Vv)' i+ y6( Vv)' i+ y7VT '+ ysV( T 'P, )

+y9q+ y io(V.v )q+ y 1 1(Vv)' q+ y, z(Vv)'. q

+y»V r+y, 4(E+vXB), (15b)

where y 1
=k '/1342, k ' = (P61/1341 ~62/fI42)

y2 k o 4 ~41 crs/f42)& y3= —2k o 2/~42& etc.

=g, r+gz(V v)r+$3r Vv+$4T 'Vv+$5Vq
dt

+$6(E+v XB)q+$7Vi+$8(E+vXB)i, (15c)

where g, =2o 3/P51,
g4=I310/Psi, etc.

z
= —2p25/p51, $3 =F13/p51,

d7 —1=g r+g T V v+(3rV v, . (15d)

Here, the a; and the P; are functions of u, U, and c,
only. Since EIT must reduce to linear irreversible ther-
modynamics (LIT) to first order, it is required that
f311=pzi =13331=p70 =0, aio= T, azo —T pe. Iil this
way the two first generalized equations of the state are
the state equations of LIT. T and p, are the temperature
and the electrochemical potential at local equilibrium, re-
spectively.

On the other hand, the production of the entropylike
function to order two is

o =oor +o,q q+ozi i+o.3r:r+cr4p5 q

+cr5(pz q) q+o 6(p3 q) q+o'7p5 i+crs(pz i) i

+09(p3 i) i+o 10(r pz):r+crii(r p3):r

+cr,z(r q) p4+cr»(r i) p4+o, 4p, r . (14)

By substitution of Eqs. (13) and (14) in Eq. (12) and as-
suming both e3Q and 0,40 constants, we obtain the next set
of time evolution equations for the fluxes of the system:

Ce
pT5 5~ 6 5~ 7 2 p

5 p
2 p 2 p

4= —1 4= —2
U

4= —2pT 4 = —-', ks =2

(16)

where g, is the shear viscosity. This identification coin-
cides with that of Cuevas [46]. The comparison with
Spitzer's work gives

y, =T(m;m, c /Zpe )

yz=(Zm, —m;)(m, m, c /Zpe )

y3= r(m, m, c—/Zpe )

(17)

m, and m; are the electron and ion masses, respectively,
Z the ionic charge, and r the resistivity.

We can recognize in A, si X 8 of Eq. (15a) an additional
contribution to the heat flux which is a product of the in-
teraction between the magnetic field and the electric flux,
known as the Ettingshausen effect [47]. This term will
lead to an additional term in the linear Fourier law. Also
the same term in Eq. (15b) is associated with the Hall
effect and it describes an electric flux perpendicular to the
magnetic field.

If we make the Yang-Spitzer approximation then Eqs.
(15) are an equivalent set of their kinetic equations, there-
fore in this approximation the remainder terms (not
necessarily their respective coefficient) must be negligible.
Otherwise, the remainder terms may appear for systems
which do not satisfy the MHD approximation. So, we
have to keep in mind the complete set of coefficients in
Eqs. (15).

To stress that the comparison of our results to second
order is in agreement with those stemming out of kinetic
theory as derived in Yang's work let us make two addi-
tional comments: (1) second order in the Gibbs equation
for the generalized thermodynamical potential g implies
first order in the time evo1ution equation for the two non-
conserved variables q and r of the system [Eqs. (15a) and
(15c)], so the second-order terms in Yang's equations
(4.26 and 4.27 in Ref. [24]) for the slightly ionized gas

where $1=2oo/P71 42=1/p71, $3=o 21/p71
The set (15) together with Eqs. (3)—(6) and Maxwell's

equations close the set of equations to second order re-
quired to describe the conducting viscous fluid in a time
scale for which the fluxes have not relaxed. They can be
solved for given initial and boundary conditions whenev-
er the coefficients &(.„y,, g, , and g; are known. Explicit
expressions for the last may be obtained from kinetic
theory or experimental information. We do the first by
comparing Eqs. (15) with those of Yang [24] and Spitzer
[25]. Yang arrived at time evolution equations for both q
and ~ fluxes and Spitzer for the current flux i. With
respect to the first we find the next identification:

2—pT5 2 — P — 7I 3 3
& 4 5

V
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will not appear in our equations in this approximation;
however, they will show up if we go up to third order.
This is due to the fact that, contrary to the systematic ex-
pansion implied in our ordering scheme, the moment
method chooses to approximate the full distribution func-
tion by truncating velocity moments of higher order than
those involved in the kinetic theory expressions for q and
~, which clearly is not systematic. Let us further point
out that all the remainder terms in Yang's equations are
present in Eqs. (15a) and (15c). (2) The terms in the flux
of electric current i appear when we considered this vari-
able in the extended thermodynamic space and, in any
case, the fact that they are missing in Yang's equations
means that either they are negligible for a slightly ionized
gas or they arise from the higher moments that have been
truncated in the 13-moment approximation. Finally,
those terms may have significance in systems which are
not subject to these restrictions.

IU. CONCLUDING REMARKS

In this paper it is shown how the time evolution equa-
tions to second order for the dissipative Auxes in a heat-
and electricity-conducting viscous Quid can be derived
from a concise variational formalism. The results include
those of Cuevas [46] and those of Goldstein and Garcia-
Colin [23]. If we impose the condition that the gas be a
nonconducting Quid the equations of del Rio and Lopez
de Haro [31] are obtained. Similarly, we can recover the
results of Llebot, Jou, and Casas-Vazquez [38] constrain-
ing our equations to a rigid electrical conductor. The re-
sults of Jou, Ferrer, and Llebot [26] are not explicitly in-
cluded in the approximation used here, but it is clear
that the method can reproduce them, as in their paper, to
order four.

From a formal point of view the principle presented
here divers from other variational formulations in vari-
ous aspects. The functional is defined in terms of general
quantities concerning the outstanding variables of the
system, we do not make any assumption about the nature
of the state and phenomenological equations, i.e., about
their form or properties. In this sense, the principle has
the same level of generality as those of Onsager [6] and
Prigogine [7], and moreover it attempts to involve sys-
tems beyond local equilibrium. In spite of the resem-
blance of the principles functional to that of Gyarmati
[15,44], mention must be made that we do not use the

concept of dissipative potential in its definition and this
fact constitutes an important difference between the two
formulations. We introduce directly the production of
the entropylike function q in the functional. Further-
more, we consider the cruxes as thermodynamic variables
in contrast with Gyarmati's approach which includes the
time derivatives of the conserved quantities as indepen-
dent variables.

On the other hand, we develop the coefficients in
Taylor s series around local equilibrium, but this is a pos-
sibility given by the formal development of the EIT
theory. The principle, as it is shown here, inherits the
EIT's capacity to develop the series to higher orders. It
also oQ'ers the framework to consider nonanalytic expres-
sions for the equations of state off local equilibrium and
other phenomenological coefficients, which in the stan-
dard procedure have not been possible to treat.

The identification of the phenomenological coefficients
is beyond that of Goldstein and Garcia-Colin [23] and
Cuevas [46] because it has been possible to compare the
time evolution equation for the Aux i with the results of
kinetic theory. Such an equation is lacking in Goldstein
and Garcia-Colin's paper. It must be pointed out that we
have had to use the closure assumption [30] in order to
make an exact comparison between the macroscopic
equations and the kinetic formulation of the ionized gas.

Let us make some further remarks to conclude. First,
the variational principle may contribute to the study of
the consequences which EIT can introduce on the time
description of the electromagnetic field (as is known, the
extremum of a scalar quantity does not depend on the
coordinate system, so variational principles provide an
invariant description of phenomena in front of changes in
the frame of reference). Second, it may provide the basis
for fruitful comparisons among the extended irreversible
thermodynamics used here and other extended versions
for nonequilibrium processes.
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