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A Lagrangian with dissipative (e.g., Onsager s) potentials is constructed for the field description of ir-
reversible heat-conducting fluids, oF local equilibrium. Extremum conditions of action yield Clebsch
representations of temperature, chemical potential, velocities, and generalized momenta, including a
thermal momentum introduced recently [R. L. Selinger and F. R. S. Whitham, Proc. R. Soc. London,
Ser. A 302, 1 (1968); S. Sieniutycz and R. S. Berry, Phys. Rev. A 40, 348 (1989)]. The basic question
asked is "To what extent may irreversibility, represented by a given form of the entropy source, influence
the analytical form of the conservation laws for the energy and momentum?" Nother's energy for a fluid
with heat flow is obtained, which leads to a fundamental equation and extended Hamiltonian dynamics
obeying the second law of thermodynamics. While in the case of the Onsager potentials this energy
coincides numerically with the classical energy E, it contains an extra term (vanishing along the path)
still contributing to an irreversible evolution. Components of the energy-momentum tensor preserve all
terms regarded standardly as "irreversible" (heat, tangential stresses, etc.) generalized to the case when
thermodynamics includes the state gradients and the so-called thermal phase, which we introduce here.
This variable, the Lagrange multiplier of the entropy generation balance, is crucial for consistent treat-
ment of irreversible processes via an action formalism. We conclude with the hypothesis that embedding
the first and second laws in the context of the extremal behavior of action under irreversible conditions
may imply accretion of an additional term to the classical energy.

PACS number(s): 47.27.Te, 05.70.Ln, 44. 10.+ i

I. INTRODUCTION

In this work we are describing heat How in single-
component Quids as a distributed variational problem in
Eulerian or field representation. In such representation a
definite region in space time (control volume in time) is
observed rather than the definite Quid elements ("fluid
particles" ). Fluids are studied here in the most general
irreversible case in which the thermal conductivity ~ has
a finite value. Theories for fluids without heat ("perfect
Quids") or nonconducting fluids are known [1]. Treat-
ments of fluids with infinite conductivity have been put
forward [2,3] but exact variational principles for fluids
with finite thermal conductivity are still unknown. Such
principles must incorporate the second law within the ac-
tion formalism. As we show here, this is possible only
when the standard set of the thermodynamic variables is
extended by including an extra variable g, which we call
the thermal phase. This variable is the Lagrangian multi-
plier of the entropy constraint and, at the same time, the
thermodynamic conjugate of the entropy source in an ex-
tended Gibbs equation [4].

Hamilton's principle for physical fields is studied in
this work. It involves certain field variables, designated
in general formulas by q=(q, , qz, . . . , qt, . . . , q, ). They
describe the system state which should be determined as
functions of time t and position x(x,y, z), or the space-
time vector (x, t). We designate also this space-time vec-
tor as

x=(x, t), where =x(x, yz), x4=t .

The set of functions q(x, t) which make the distributed
action A stationary obeys the Euler-Lagrange equations:
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«r q =(q,q, , q, . . . , q'), and 5A/5q' are varia-
tional derivatives. The variational derivative of A is
equal to the well-known partial derivative only for A in-
dependent of rates or gradients (a singular problem).
Physics requires A to be dependent on the derivatives of
q, meaning dependence of action A on the path (surface,
configuration) chosen.

Since the conservation laws for the energy and momen-
tum can be studied only via Hamilton s variational prin-
ciples we do not consider in this work many other possi-
ble variational or extremum formulations for macroscop-
ic processes [5—11] and others. A critical assessment of
most of them is given in Finlayson's book [12].

Using Hamilton's variational principles has several
benefits.

(1) Physical insight into the behavior of complicated
phenomena can be acquired more easily from the laws
describing a single scalar quantity (action, entropy, etc.)
than from those in the form of the complicated sets of
many di8'erential equations.
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(2) All components of the energy-momentum tensor of
a distributed (e.g., hydrodynamic) system can be comput-
ed. Hence, exact conservation laws or, in nonconserva-
tive cases, balance laws, can be found from an exact La-
grangian A. Examples are classical mechanics and hy-
dromechanics of perfect fluids where A is known.

(3) Unification of processes of various sorts, e.g.,
mechanical, electrical, and even chemical, even many
complex multiflow processes of biology, can be achieved.

(4) Estimates can be made of approximate solutions of
various problems via direct variational methods and trial
functions.

The most formidable difhculty is that, in general, the
Lagrangians are unknown. For a majority of complex
processes, especially for irreversible processes with rever-
sible dynamical terms, no systematic rules are known so
far to obtain the Lagrangians. An action integral (a func-
tional) and the complete set of constraints are required
for any exact variational formulation.

Here we construct rather than assume a Lagrangian
describing irreversible processes of heat transfer, such
that the second law is obeyed. Our method follows an
original ideal of Serrin [13],who suggested that use of the
more complex form of the energy side condition in a La-
grangian rather than that expressing adiabaticity of the
perfect Quid should, perhaps, be helpful to treat complex,
irreversible processes in fluids. The global Lagrangian of
the thermal field A is the sum of the kinetic potential I
and the scalar product of the constraint expressions and
their Lagrange multipliers.

Such an approach looks like the standard one in the
theory of perfect fluids [1]but it is not. First, our kinetic
potential I. is embedded in an enlarged space containing
not only densities of matter and entropy, p and p„and
the fiuid velocity u= J/p (the classical variables) but also
the velocity of the entropy transfer, u, =J, /p„where J,
is the density of the total entropy Qux. Second, I. con-
tains the (negative) product of the entropy source o, and
its thermodynamic conjugate, the "thermal phase vari-
able "g. The distinction between u and u, preserves heat
effects [1] and the explicit thermal phase il preserves the
nonvanishing positive entropy source [4] cr, =BL/Brl.
This allows one to develop a self-consistent variational
treatment of real fluids in which the energy properties
and conservation laws are investigated in terms of an ex-
pression describing the entropy source o, In particular,
the Onsager representation of o., as the sum of the two
dissipation functions @ and 4 can be used. However,
other forms of o, preserving its positivity can also be
tested.

Hence the basic goal of this work follows: to work out
a self-consistent approach to heat Qow in irreversible
fluids containing the first and second laws of thermo-
dynamics in the context of the extremal behavior of an
action functional. The functional must preserve both en-
ergy conservation and entropy generation as consequence
of its extremum.

The properties of the energy and momentum and the
conservation laws in fluids conducting heat with a finite
rate will be an important objective of our study. They are
consequences of the objectivity of the action A. If the ac-

First Nother's theorem specifies the invariance conditions
for the action A [q(x, t)] with respect to the parallel
translations in time and space (homogeneity of time and
space)

The homogeneity of time requires invariance of A with
respect to (the one-parameter group of) time translations

t*=t+e, OO (Q( OO

'9 '9 ~ ps ps
'

p*=p

(3a)

where g, p, etc. are various field variables, components of
q. Their complete set in our heat transfer case will be
defined later. Equation (3a) says change of the initial
time does not change the system behavior if external
fields are absent so that the system is autonomous and
isolated. This leads to the conservation of the energy.

The homogeneity of space requires the invariance of 2
with respect to (the three-parameter group of) space
translations

t*=t,
x'=x+e, —OO (e ( oO, +=1,2, 3,

(3b)
ps =ps

4'*=4, p'=p.

This leads to the conservation of the linear momentum.
The isotropy of space requires the invariance of A with

respect to (the three-parameter group of) rotations
x""=R(e',e, e ) x where R is a rotation matrix depend-
ing on the Eulerian angles. It leads here to the conserva-
tion of angular momentum since the micropolar effects
are ignored. There are also internal symmetries (gauge
groups) related with the impossibility of fixing a phase
variable P by an experiment; these lead to the total mass
conservation. They are important in the reacting mul-
ticomponent systems which are not considered here [14].

The invariance conditions of 2 are the conservation
equations for the following energy-momentum tensor:

G '=g —5 "A
Bx, B(Bq&/Bxk )

(4)

(5'" is the Kronecker delta). They describe the vanishing
four-divergences (div, B/Bt) of G "of the general structure

T —I
G=

tion functional A [q(x, t) ] is physical, then as an objective
quantity it must be invariant with respect to the transfor-
mations of state and independent variables

A [q(x)]= A [q*(x')] .
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where T is the stress tensor, I is the momentum density,
Q is the energy fiux density, and E is the total energy
density. The components of this tensor are well known
for a fiuid conducting heat ideally [2] and for the adiabat-
ic fiuid where heat is absent, the "perfect fluid" [15].

When external fields are present, only the balance
equations result:

(6)

for j,k =1,2, 3,4. As shown here one can go to the ten-
sor G and hence to conservation laws direction from the
total energy density E, or by transforming this energy
into the kinetic potential L. In principle any thermo-
dynamic potential (TP) in its natural variables [16] can be
used, although some are easier to use than others. This is
represented by the scheme
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The plan of' our analysis is as follows. The dissipative
Lagrangian, constraints, and action A are introduced in
Sec. II. Extremum conditions on A (Sec. III) show the
importance of Clebsch variables (Lagrange multipliers of
mass and entropy balances) for "gradient representa-
tions" of the temperature T, chemical potential p, and
the generalized momenta p and p, associated with the ve-
locities u and u, . These gradient representations emerge
as natural consequences of the fact that the generalized
momenta are the derivatives with respect to velocities of
the kinetic potential L, and the nonequilibrium thermo-
dynamic intensities (T,p) are the negative derivatives of
L with respect to the densities of the entropy and matter,
p, and p. The latter property is necessary for consistency
with equilibrium theory. (Note that these definitions of T
and p are automatically obeyed in the equilibrium case
where L = —pe, and that in a general case, functional
derivatives rather than partial derivatives are used. ) Sec-
tions V and VI show that the preassigned dissipation
(given o, ) may change energy and momenta. Although
in the case of Onsager potentials numerical agreement
with classical energy can be achieved, this energy is a
nonclassical function of the generalized momenta, yield-
ing irreversible equations of motion. The related entropy
production is equal to the derivative BE/Bq. The gra-
dient representation of this energy is studied in Sec. VI
where the components of the energy-momentum tensor
are found. They contain terms usually regarded as "ir-
reversible" (heat q, stress II, work II u, etc.). In Sec. VII
the irreversibility of the heat transfer equations is shown.
The e6'ect of the thermal phase g on the conservation
laws of the energy and momentum is discussed in Sec.
VIII. Section IX treats the role of thermodynamic poten-

tials in various representations of the general Lagrangian
A. We show that independent variations of both (extend-
ed) state variables and their thermodynamic conjugates
are natural. Section X demonstrates the canonical struc-
ture of equations of motion in the Clebsch space of the
densities and phases and the related benefits allowing
transformations to various noncanonical variables
("physical variables" ) via the theory of Poisson brackets.
Section XI calls for tests of various (non-Onsagerian) ex-
pressions for entropy sources, and Section XII summa-
rizes our results. A relevant statement of the symmetry
and conservation considerations for this work was made
by Callen [16] in pp. 460—462 of his text.

II. A LAGRANGIAN
WITH DISSIPATIVE POTENTIALS AND CONSTRAINTS

L =—,'pu + —,'p 'g(p, p, )j, —p(e+%'), (9)

where 4 =%(x, t) is a scalar potential describing an exter-
nal field. Under the relaxation time approximation of the
Boltzmann equation, the inertial function of the ideal gas
can be found from the formula

id gasg(p, p, )' "'=
8

(10)

where m is the mass of the hard-sphere particle and kz is
the Boltzmann constant. Hence the "inertial function" g
of the ideal gas is constant. For real gases and Quids a
generalization of the above expression is [2,20]

g (p, p, ) = Tp/(c~ G),
where c is the specific heat capacity and 6 is the shear

We consider a single-component Quid of density p,
specific entropy s (entropy density p, ), and velocity u. An
essential difference in treating the Quids with heat and the
perfect fiuids (where the notion of heat is absent) is
caused by the fact that, in the Quids with heat the entro-
py can Qow even if the matter is at rest or the matter Qow
is constrainted in an arbitrary way. Exploiting this no-
tion, we showed [2] that for the treatment of heat prob-
lems it is enough to assume that the flow of the entropy is
an independent variable in Hamilton's principle. This is
a natural extension of the principle which suggests what
to use in an action functional, the total entropy Qux

J, =p, u+j„rather than its convective component p, u
only. The convective component plays a role in the
theory of the perfect Quid, causing the changes of the en-
tropy (at a definite point of the physical space) due to
Bow of the Quid, even if the individual Quid particles do
not exchange the heat. The heat exchange between the
particles in real Quids is attributed to the j, part of the
entropy Qux, the conductive part. The specific internal
energy e contains the contribution of j, known from the
statistical mechanics [17—19]. It may be expressed as [2]

e(p, p„j,)=e q(p, p, )+ 2P zg(p, p, )j2, -

where g(p, p, ) is an "inertial function" defined below.
The related kinetic potential of the Quid conducting heat
perfectly, which uses the Legendre transform of pe, is
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modulus, equal to the pressure P in the case of the ideal
gas. All the quantities must be expressed as functions of
the densities of matter and entropy, p and p, . Taking
in Eq. (11) c =SR/(2M)=5k&/(2m) and G =P
=pk~T/m, the ideal gas result, Eq. (10), is recovered.
An alternative form of Eq. (11)also can be used [20],

g (p, p, ) =~Tp/~, (12)

where ~ is the relaxation time and ~ is the thermal con-
ductivity. For the ideal gas ~ equals 2&em/(Sk&P) or
21rm /(Sk~pT), on the basis of the Clapeyron equation of
state, and Eq. (12) yields Eq. (10). Equation (12) is less
suitable than Eq. (11) since the relaxation time v is not
readily available for real gases and fluids. Equations (12)
and (11) yield the well-known formula for the thermal re-
laxation time, &=D,p/G =D, /co, where co=(G/p)'~ is
the so-called thermal propagation speed and D, =x./(pc )

is the heat diffusivity.
It should be remembered that we pursue a macroscopic

theory which presumably has a microscopic underlying
basis. In fact, the origin of the kinetic potential, Eq. (9),
is in kinetic theory, where, as already said, Grad's (19S8)
moment solution [17] of the Boltzmann equation is essen-
tial. Once L is formulated, however, it is a very suitable
starting point for describing heat transfer away from lo-
cal equilibrium, even for dense gases and polyatomic
fluids. Thus Eq. (9) summarizes some important micro-
scopic results in the manner suitable for the development
of the macroscopic theory of continua with the heat
transfer.

A canonical representation of the kinetic potential L
and its constraints is used where the variables of the La-
grangian are the absolute velocities and densities. The
constraint set will be taken in the standardized form in-
volving the four-divergences (with ps =p, )

ap
at

+V (pu)=0,

B(p, ) + V (p, u, ) =cr, (p,p„Vp, Vp„u, u, ),at

where u=J/p and u, =J, /p, are the absolute velocities
of the transferred matter and entropy, respectively. In
the framework of the Onsager theory the entropy source
can depend on gradients of all the state variables; howev-
er, the gradients of the velocities are here ignored. We
are interested mainly in heat transfer effects. Neverthe-
less some viscosity effects related to heat Qow will still
survive [2] (Sec. VIII).

The standardized constraints preserving the identity of
the Quid and thermal elements are taken into considera-
tion. In the sourceless case (o, =0) they are known from
the theory of the perfect fiuid ]1],where u =u„

coordinate conditions da/dt =0 and da, /dt=0 of the
material and thermal elements with the (sourceless) con-
tinuity equations for the matter and entropy. It follows
that generalization of these constraints to irreversible
Quids is to some extent arbitrary. In Sec. III we show
that this form of constraints can also be used for irrever-
sible fluids (with sources), corresponding with P= 1 in Eq.
(20), and fading memory of the thermal Lagrangian coor-
dinate a, .

To preserve a canonical formulation, all extensive vari-
ables in L should be used as densities rather than as
specific quantities. The densities are p, p, =ps, y=pa,
y, =p, u, . Hence the constraint set in canonical form is

ap
at

+V (pu)=0,

ap +V (p, u, )=o, ,at

(13}

(14')

ay +V (yu)=0,
at

(15')

ar, +V (y, u, )=0 .
at

(16')

Ag~g @=L+X c R (17)

where X represents Lagrange multipliers and c represents
constraints, and where Z and 2, are the following four-
divergence terms:

and

+V.(pug)
&(p+)

at
(18a)

In the case of multicomponent reacting fluids (not con-
sidered here) extra sources can appear in the mass con-
tinuity equations. However, regardless of any sources in
Eqs. (13)—(16), their left-hand sides always preserve the
same form of four-divergences. When these constraints
are embedded into the Lagrangian A, the source terms
are absorbed by the original (sourceless) kinetic potential
L, Eq. (9), so that the resulting form of the kinetic po-
tential I. already has these sources incorporated. The
case with sources therefore differs from the sourceless
case by the presence in L of the Lagrange multiplier-type
variables P, g, A, , and A,„associated with the constraints
(13)—(16). In this case, these variables become elevated to
the rank of the state variables.

The standardized Lagrangian A has the Stephens
structure [15]

B(pa)
at

+V.(upa }=0, (15)
a(f, ~) +V.(p, u, g)at

(18b)

B(p,a, )
+V (u, p, a, )=0 .

at
(16)

From the viewpoint of that theory, these constraints are
interpreted as the result of combining the constant initial

containing the multipliers p and rf of the mass and entro-

py balances. The subtracting of the four-divergences (18)
means gauging of the Lagrangian. It does not change the
equations of motion as Euler's equations of the variation-
al problem. At the same time it provides direct elimina-
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tion of the Lagrangian multipliers from the energy-
momentum tensor of the limiting perfect Quid [15], and
establishes the correspondence of this tensor to that
developed for real fluids. We will call the action based on

the Lagrangian (17) the standard action.
While multicomponent fluids are not considered here it

is instructive to begin with a general standard action of a
multicomponent Quid [14],

Ad Vdt

ay,
L(p;,p„Vp;, Vp„u;, u„Vu;, Vu„(b, , rt, y;, y„A,;,A,„x,t) —gp; +u;.VP;

'9+-—p,
&

+u, .V2) —gy; +u;.VA, ; —y, +u, VA, , dVdtl g] l l $ (19)

(in relativistic descriptions and extended thermodynamic
theories partial time derivatives may also appear in L).
The generalized kinetic potential L of this equation, with
the source terms absorbed, has the structure

L=L (p, ,p„u;, u, )

L =
—,'pu + —,'p, p 'g(p, p, )(u, —u)

—p[e (p, p, )+%(x,t)]—rto, . (22)

From Eqs. (9) and (21) the kinetic potential of a dissi-
pative fluid with heat is

n A-y
p;+p

pi
o, (p, ,p„u;, u, )

SyS
2)+p o, (p;,p„u;, u, ),

p$
(20)

The kinetic potential L of a fluid conducting heat ideal-
ly, Eq. (9), has been expressed in terms of the velocities
and densities, the canonical variables of the Lagrangian.
The same should be done for the entropy source o,

The Onsager-Joule expression of the entropy source o.,
proportional to the j„

L =L —go, , (21)

where L is the kinetic potential of the perfectly conduct-
ing fiuid, Eq. (9), corresponding to the vanishing entropy
source.

where L is the kinetic potential of the sourceless fluid
and o (o;,cr, ) are the respective sources of the species
and the entropy.

The coefficient p plays a formal role; it depends on the
form of the identity constraints used in the action A.
The constraints (15) and (16) or (15') and (16') correspond
to P=O and a decay of the identity of the thermal paths.
Another approach, assuming da/dt =0 and da, /dt =0,
which follows that of the perfect fluid, corresponds to
P= l. But then the generalized temperature and chemi-
cal potential of the theory depend on A,;, A,„y,, and y, .
This seems to be an unphysical property so the value
p=O is assumed here, which leads to thermodynamic in-
tensities independent of these quantities (see examples in
Sec. III). It may be shown that taking p=O instead of
P= 1 interchanges the properties of y and A, . These quan-
tities, in a sense, replace each other, preserving the same
properties of the identity balances for the material and
thermal elements of the fluid.

In our example we ignore a possible dependence of L
on the velocity gradients and the related viscosity effects.
(The functional rather than partial derivatives of the ve-
locity u would appear if these effects were important. )

For the physical system considered here, a single-
component fluid conducting the heat with a finite con-
ductivity K, the simplest action involves the simplified
form of the general Lagrangian (20) taken for P=O,

o, =j, /I1 =i~ 'p2(u, —u)2

=(Tr) 'p, p 'g(p, p, )(u, —u) (23)

could be incorporated in L and hence in A, to be tested
as an example. However, the use of the formula (23) in
its original form is not obvious. It was already recog-
nized by Onsager [5] in 1931 (although in the context of
an entirely different variational approach which avoids
the conservation laws) that, in order to preserve a physi-
cal kinetics, the entropy source has to be given in a
specific way, expressing its functional representation.
The two dissipation functions contributing to o., have to
be used, so that o., =4+%'. This occurs because it is the
form of the source expression that is essential in varia-
tional calculus. The first dissipation function is velocity
dependent. Its original representation in terms of the
heat flux j is transformed below into the Lagrangian
representation variables used here:

C'(p p, j, )=-,'L '(p p, )j',

—1(~y 2) —lj2
2 q

—
1( )j2

=
—,'a '(p, p, )p, (u, —u)

The second dissipation function is force dependent.
Through the thermodynamic force X (gradient of T ' or
its generalization) the function 1P involves the derivatives
of the extended state (p, p„u, u, ) with respect to the
space-time variables (x, t)
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0'(P,P, VP, Vp, aj, /at, Vj, )= ,'L—x =~T VT ' —S, . Qjq

dt

=
—,'~(p, p, ) —V lnT —S,

2
d(u, —u)=

—,'x(p, p, ) c„'Vp, —Pc, 'Vp+g,
dt

(25)

It is easy to see that the numerical values of these two
dissipation functions are equal, i.e., N=O, when the phe-
nomenological equation for heat transfer holds (Gnsageri-
an property). In Eq. (25) Sq is the positive inertial
coe%cient equal to the negative second derivative of the
entropy with respect to the heat flux, —8 s /8 j,
S,= T S, and g, =S,p, '. The expansion of grad(lnT)
in terms of the gradients of the entropy and matter re-
sults from the differential thermostatic formula (with ac-
curacy to the level of the Aux terms)

dT ~P dT
dp, =c, + dp=c, +f3dp,

~p rv
(26)

where p=a(p, /ap)z ~ which equals s —k~/m for the
ideal gas. Hence the perfect differential of 1nT

dlnr=c, 'dp, Pc, 'dp, — (27)

which has been used in Eq. (25). The heat capacity per
unit volume c, appears as a(lnT/ap, )

' at constant p.
The product of ~ and c, ' is the well-known heat
diffusivity D, . This is a quasilinear description where all
coefficients can be treated as functions of densities only,
and these change on the time scale much slower than the
velocities u, —u.

In order not to expand formulas, in our examples we

assume that the coeScient g, is small sp that the accelera-
tion term can be ignored, unless the thermal inertia have
to be treated. In this case

%(P,P„VP,VP, )= —
—,'j, V lnT= ,'c, 'D,—(Vp,—PVP)

(28)

=
—,'c„' D, :VpVp, (29)

where p=(p, p, )" could be considered with j, and j
such that the sum of the corresponding dift'usional mo-
menta vanish. However, this form is ignored here; the
most important conclusion results from Eq. (28). It is as-
sumed that the multipliers y, y„A,, and k„are not ex-
plicitly present in L. The standard action for a one-
component Quid with heat is then

However, when thermal inertial are essential the substan-
tive derivatives in Eq. (25) cannot be ignored. They have
to be expressed in terms of partial time derivatives and
the generalized momenta should be introduced as the
functional rather than partial derivatives of J with
respect to the velocities.

Another type of dissipation function is

+(p p Vp Vp )= — (j, »+i. Vp)
1

—,'pu'+ —,'p, p 'f p, p, u, —u —pe p, p, —p% x, t —g —,'v p, u, —u

—g —,D,c, (Vp, —PVP) —
p +u VP —p, +u, .Vg —y +u. VA,

z an . aA

at ' ' at ' at

—y, +u, VA,,at
dVdt . (30)

We remind the reader of the meaning of the Lagrangian
multipliers or Clebsch variables [1,2]. The thermal phase
q is the velocity potential of the entropy Bow when this
flow is irrotational. At the same time it is the Lagrangian
action of the entropy element that has the initial velocity

The negative total time derivative of g is the non-
equilibrium temperature. The matter phase P is the ve-
locity potential when the Quid Aow is irrotational and is
at the same time the Lagrangian action of the Quid ele-
ment that has the initial velocity A, . The negative total

time derivative of p is the nonequilibrium chemical po-
tentia1.

III. KXTRKMUM CONDITIONS
OF ACTION AND GRADIENT REPRESENTATIONS

a +V (yu)=0,
at

(15')

The stationarity conditions of the functional (30) with

respect to the multipliers A, and A,, are Eqs. (15') and (16'):
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By. +V.(y, u, ) =0 .
Bt

These are Clebsch representations of the thermodynamic
intensities. For the dissipation model based on the On-
sager potentials these intensities are

They describe, for y=pa and y, =p, a„ the identity be-
havior. For material trajectories, da/dt =0, or

Ba +u-Va=0 .
Bt

(31)

Ba visas+u .Va = — ~0 .
Bt p,

(32)

The identity of the thermal trajectories is decaying in this
model (P=O). Indeed it results from Eqs. (14) and (16')
that d lna, /dt = —o., jp„or

and

T(p„p, ri) = T'q(p„p) —— (u, —u)
1 BQ

2 Bp

+ — (Vp, —PVP)
1 Bb

2 Bp

b —(Vp —PVP) Vp
B

Bp

V[g—D, c, '(Vp, —PVP)] (37)

This means an exponential decay of a, for the constant
entropy source per unit entropy, a sort of the relation
describing the fading memory due to the thermal irrever-
sibility.

The stationarity conditions of A with respect to the la-
bels y and y, describe the constancy of the multipliers X
and A,, along the material and thermal paths

BA, +u. VA, =O,
Bt

BA,
+u, .VA,, =0 .

Bt

(33)

(34)

Modifying the entropy source term in L, Eq. (22), by the
coefficient —(g+A.,y, /p, ) replacing —g, a more tradi-
tional description would be obtained with a, constant but

decaying. Perhaps an experiment comparing the
difference in the nonequilibrium temperatures —the nega-
tive derivatives of t. with respect to p, —would reveal
which model is better. We rely here on the functional
(30) with the term —go, only since it leads to a more
reasonable nonequilibrium temperature, as the quantity
independent of A,, and y, .

The stationarity conditions of A with respect to phases
P and g are the balance laws for mass and entropy

p(p»p, 1)=p, ' (p»p) ,'pu ——(—u, —u)
2Bp

+ — (Vp, —PVP) +%(x,t)1 Bb
2 Bp

(Vp —/3VP) Vp
BP
Bp

+V [gD,c, 'P(VP, —PVP)] .

Here

tt(p p rj)=p. [p 8'(p p ) rt (p p )

b(p„p, g) = riD, c„'—
(39)

(40)

are the resulting coefficients at the half squares of u, —u
and (gradp) in L. The thermodynamic intensities are al-
ways equal to the negative total time derivatives of the
phases, the property which holds in this formalism for
both equilibrium and nonequilibrium situations. The
nonequilibrium temperatures and chemical potentials
defined above in terms of L are the phase-dependent
quantities having a nonlocal nature. From the properties
of the canonical formalism for reversible processes (i.e.,
when the contribution of gradients of p, and p is inessen-
tial)

Bp +V (pu)= — =0BL
Bt By

(13) BL

Bps

BE
Bps

(41)

Bps BL+V.(p, u, )= — =4+4 .
Bt ' '

Bq
(14")

5L
5p,

BY) +u, .Vg
Bt

(35)

+u VP
Bt

(36)

These describe, respectively, the conservation of mass
and the entropy production or the sum of the two dissipa-
tion functions N and %.

The stationarity conditions of 3 with respect to the
densities of the entropy and matter express the nonequili-
brium thermodynamic intensities —the negative func-
tional derivatives of L with respect to the corresponding
densities —in terms of the gradients and time derivatives
of corresponding phases g and P,

r

BL BE
Bp Bp

(42)

It is easy to verify that these equations hold, in particu-
lar, for the case of the perfect Quid. The hold also for re-
versible nonequilibrium Auids conducting heat ideally
[2,3]. Here they hold for the functional rather than usual
partial derivatives, the consequence of the complex situa-
tion where the characteristic functions (L, E, etc.) depend
on the state gradients and the thermal phase g. The
correspondence with the classical definitions of T and p is
preserved provided that the total energy density E is ex-
pressed in terms of the generalized momenta rather than
velocities.

The above definitions include the external potential;
hence the explicit appearance of %(x, t) in the equation
for p, identical to the way it appears in the definition of
the electrochemical potential. However, external field
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=p, Vg+y, VX, (43)

and the momentum density of matter

8L
p =— =pu —a (p„p, q)(u, —u)

(44)

This is the gradient representation of the momenta. We
will show soon that, from Nother's theorem, the total
momentum density of the Quid I is the sum of p and p,
which yields I =pu, the well-known result. Since the
thermal momentum is finite, both the entropy flow and
the: Row of matter contribute to pu. Therefore
p =pu —p, is smaller than pu, and the momentum p may
be called the bare momentum of the matter. The momen-

can be excluded from p if one wants to match require-
ments of the gauge invariance of the resulting energy-
momentum tensor, forcing one to work with the kinetic
potential L without this field. The external potential will
then appear separately in the so-called interaction La-
grangian. The inclusion of external fields into definition
of p causes the explicit dependence of the generalized
thermodynamic potentials (Sec. IX) on space and time
coordinates, representing the role of these fields. Such
formalism is convenient when the external forces F are
needed; they can be obtained as the partial derivatives of
the potentials with respect to x, and their action can be
taken into account in the single formalism.

The stationarity conditions of A with respect to the ab-
solute velocities define the generalized (phase-dependent)
momentum densities —the derivatives of L with respect
to the transfer velocities —in terms of the gradients of the
phases and labels. The thermal momentum density is

BL
p, = =—a(p„p, g)(u, —u)

S

p
PVQ+yVA, +p, Vq+y, VA, ,

(45)

p+ps ps'+
&(P P, n)

PVp+yVA, +P, V7l+y, VA, , P, Vq+y, VA.,+
p a (p,p„g)

(46)

Such equation are less fundamental than the gradient rep-
resentation of the momenta. They pertain here to the
particular model, but, for this model, they are very use-
ful. Along with the Clebsch representations of the ther-
modynamic intensities, Eqs. (35) and (36), the velocity or
momentum representations play an essential role in the
theory of the nonequilibrium thermodynamic potentials
and Poisson brackets (Secs. IX and X).

The stationary Lagrangian A results from the sta-
tionarity conditions, Eqs. (33)—(36), as the following func-
tional Legendre transform of the kinetic potential L:

6L 6LA=L —
p —p,

6p
'

5p,
(47)

and it is equal to a nonequilibrium pressure P which de-
pends on the transfer velocities, intensities, and phases as
its natural variables. For the model using the Onsager
potentials

turn densities are no longer so simply related to the veloc-
ities as in the case of reversible processes.

Solving the above equations in terms of u and u, yields
the Clebsch (gradient) representations of the velocities

P+P,

cpu Pe (P P ) Pq'(»r)+ —,'& (p, p„g)(u, u)' 2b(p, p„—rj)(V—P,— OVP)'+p, &'q—(p, p, )

Ba 2, r)b, ap—
—,'p, (u, —u) + —,'p, (Vp, —PVP) p, b (Vp, —PVP).VP P, V—.[qD, c, '(—Vp, PVP)]-

S ps Ps

+pp'q(p, p, )+p%'(x, r) —,'pu —
—,'p (u, —u)—+ —,'p (Vp, —pVP) pb (Vp, ——I3VP) Vp

aa , , ab , aP
2 2 gp

& 2 gp
~

gp

+pV [rID, c„'P(VP, —PVP)], (48)

where a and b are defined by Eqs. (39) and (40). This yields

A=P(P, P„VP,Vp„g)

=P"(p,p, )+ —,'a*(p,p„g)(u, —u)' —
—,'b*(p,p„g)(VP, —13VP)' —p, b +pb (Vp, —PVP). VP

ps p

—
p V [rID,c„'(Vp, —PVP)]+PV [rID, c, 'P(VP, —PVP)], (49)
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where a * and b * are the Legendre transforms of a and b
with respect to densities p, and p. The nonequilibrium
(second and further lines) contributions to the pressure
are related to the effects of the second viscosity.

Iy. NOT&ER'5 ENERGY FOR FLUID %KITH HEAT

The total energy density E computed as the component
G of the energy-momentum tensor 6' is

For arbitrary L of Eq. (19) or (30)

aA ay aA a~ aA
a(ay/at) at a(a~/at) at a(ax/at) at

aw+
a(ax, /at) at

=(pVQ+yVA, ) u+(p, Vg+y, VA, , ).u, L— (51)

and in view of the gradient representations of the mo-
menta, Eqs. (43) and (44)

E=G44=y
ax4 a(aq(/ax4) p u+ps us (52)

BA
at a(aq)/at )

(50)
This is a generalization of the well-known formula for en-
ergy of classical mechanics E =p- u —L including
thermal degrees of freedom. For L of Eqs. (22) and (30),

E=[pu —a(u, —u)] u+a(u, —u) u, —L

=pu +a (u, —u) —L

'(p, p, )p2(u, —u)2+ ,'qD, c„—'(Vp,—pVp) + —,'pu + —,'p 'g j, +pe'"(p, p, )+p'0(x, t) .

This can be written as follows:

E=—,'pu + —,'p 'gj, +pe'"(p, p, )+p%(x, t) —g(4 —4),
(54)

where the difference N —0 represents the co-called ther-
modynamic Hamiltonian [21]. Thus the total energy den-
sity is equal to that obtained in nonequilibrium statistical
mechanics [2,18] with accuracy to the phase (g) term
containing Onsager's thermodynamic Hamiltonian.

If the evolution equation for the entropy fiux is such
that 4& —4 vanishes (Onsagerian property) the total ener-

gy density F. coincides numerically with that of nonequili-
brium statistical mechanics. The evolution obeying
@=0 is generally a rough approximation of the motion
and holds only very close to equilibrium. Far from equi-
librium the formula (54) should hold in its entirety, and
the qualitative and quantitative role of the q term cannot
be excluded, provided, of course, that the process model
based on the dissipation function is still acceptable.

Three crucial points should be kept in mind.

(1) F«any proper description of motion the energy E
should be expressed in terms of the momenta rather than
the velocities or Quxes.

(2) The transfer implied by E'"' is reversible whereas
that implied by E is not, even if numerically, 4=+.

(3) Far from equilibrium, formula (54) should hold in
its entirely, and deviation from E""' (due to the thermal
phase ri) cannot be excluded.

Hence the basic conclusion follows: One may have
E =(numerically)E"" which contains more information
that E"'", thus leading to irreversible equations of trans-
port. %"e will show superiority of E over E"'".

&. FUNDAMENTAL EQUATION
AND THE ENERGY-MOMENTUM TENSOR

The natural variables of energy are momenta, not ve-
locities or fluxes. Therefore Eq. (54) should be expressed
in terms of p and p, . Since u, —u =p, /a and
u = (p+p, )/p the energy density E of the fluid with heat
becomes

&~c,~„r,v„v, *,t~=l~ V+~ 'r ~, +le '(~+
2(

—
1g ~&

—1
)

+ ri+(p, p„Vp„Vp )+pe'q(p, p, )+p%'(x, t), (55)

where the dissipation potential 'P is given by Eq. (28).
This is the fundamental equation, in the sense of Callen
[16], for the single-component nonequilibrium fluid con-
ducting heat. We show here that it contains all the infor-
mation about both statics and dynamics of the Quid.
Such equations are known in thermostatics, where they
operate only with standard thermodynamic variables
(here p and p, ), or in the reversible fluid dynamics

l

[2,3,22,23).
An essential difference of the present equation from

other equations of this sort is that it contains explicitly
the new variable thermal phase g, which preserves the ir-
reversibility property. 'While it has recently been predict-
ed that the explicit phase g in E means that irreversibility
is built in [4], no examples have been presented until now,
to the authors' knowledge. This also means that a
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P+Ps
(57)

BE —P.+p
Bp p

t—+—=u =--
p a ps

(58)

characteristic set of ordinary differential equations (corre-
sponding to motions under gradients of E) is non-
Hamiltonian; however, we omit here the discussion of
this important point.

Diff'erentiating E with respect to g yields the entropy
generation

BE Ps+ Ps
2 ++(p&ps~Vps~ Vp)

2[p (p g —'tli~ )]
=

—,'p, ~ '(u, u) —+'P(P, P„VP„VP)=@+%' . (56)

The derivatives of E with respect to momenta p and p,
are the absolute transfer velocities of matter and entropy

Those with respect to the time t characterize the energy
change in terms of the nonstationarity of the external
fields

Bt
BL
Bt Bt

(60)

The energy E is constant in any system if the external
fields are time independent (see also conservation laws,
Sec. VIII). This solves the paradox when dissipative sys-
tems are sometimes regarded as nonconservative I24],
whereas they are actually always conservative when only
the external fields are time independent. This also proves
that the thermal phase q, not time t, is the relevant quan-
tity to describe dissipation.

The functional derivatives of the energy E with respect
to the densities must always be taken whenever E con-
tains the gradients and/or time derivatives of the densi-
ties. This gives rise to the nonequilibrium temperatures
and chemical potentials

5E'
5p.

'The negative partial derivatives of E with respect to
space coordinates (independent variables) are the external
force density pF, '5Ep-

5pBE
Bx

=pV% = —pF . (59) For the Onsager model of dissipation, from Eq. (55),

(61)

(62)

5E BE BE
5p, Bp, 'BVP,

= T'q(p, p, )+ p, + (Vp, —PVP) b(Vp, —PVp) Vp —VrrID, c, —(Vp, PVp)]-laa-', lab, aP —
1

B

2

= T'q(p, p, ) — + (Vp, —PVp) b(Vp, —PVP) Vp —V[r)D, c, —(Vp, —PVp)]
laa lao , aP

2ap, a 2ap, '
ap,

5L
5p,

(63)

coincidence with Eq. (37) is achieved since p, /a =u, —u.
Similarly

5E BE BE
5p Bp 'BVD

potentials (which are actually the functionals rather than
the potentials in the classical sense) should be based on
the Legendre transformations involving the functional
rather than the ordinary partial derivatives.

BL BL
Bp 'BVp =p(p p, Vp Vp, n»

VI. DYNAMICS
THROUGH FUNDAMENTAL EQUATION I—

HAMILTONIAN

(64)

where p is given by Eq. (38). This result and Eq. (47)
prove that the theory of nonequilibrium thermodynamic

When the gradient representations of the momenta,
Eqs. (43) and (44), are substituted into E, Eq. (55), the fol-
lowing Hamiltonian density is obtained:

H(P, P„VP,VP„VQ, VrI, P, q, VA, , VA,„y,y„x,t)= ,'p '(PVQ+yVA, ) +—p '(PVQ+yVA) (P, Vg+y, VA, , )

+ 2p ~+ —
~ p ~~+

p'(p 'g —q ')

+gy(p, p, Vp, Vp, )+pe'q(p, p, ) +p+(x, t), (65)
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which allows one to describe all dynamics of the problem
in terms of the Poisson brackets formalism (see Sec. X).
The matter phase P is not explicitly present in H and E
since there are no chemical reactions in the system; oth-
erwise the phase P, of the individual species would inevit-
ably appear [14].

In terms of H, the action functional has the general
structure of Hamilton-Jacobi type,

aH
avr

and

aH
avr,

aH
r(p+p. )=p rpu=ru,

(69)

(70)

E2

2 = —f H(P, P, VP, VP„PVQ+yV&, P, Vri aH rS
ave p y. (p+p )+ p

$ a

+y, VA,„rt,g, x, t)+p, +y,at at =y, u+y, (u, —u)=y, u, . (71)

+p +r dvdt .ay ax
at at

(66)

It can immediately be verified that the formal application
of Eq. (50) to the integrand A of Eq. (66) recovers the en-

ergy E in the form of H. The integrand A is used below
to determine other components of the energy-momentum
tensor in terms of H rather than A itself. For this pur-
pose the following equalities are helpful, which hold for
our heat transfer model:

The last two equations represent the "Aows of identity"
for the matter and the entropy. We will use H for two
purposes: (a) obtaining the conservation laws, and (b)
representing dynamics in canonical form.

For the purpose of conservation laws the knowled e of
all the components of the energy-moment tensor G' are
necessary. We know already only the energy density, Eq.
(54) or (55). Now we will find other components. Ac-
cording to Eq. (4) the spatial part of G'" or the stress ten-
sor T ~=G ~ (a,13=1,2, 3) is

aH =p+ p, =pu (mass flux),

aH ps
(p+p, )+ p,

P$

ave p
' a

(67)

&
aqua aA
ax a(aql /ax ~)

(72)

=p, u+p, (u, —u) =p, u, (entropy flux),
From Eqs. (66) and (72) and the gradient representations
of momenta, Eqs. (43) and (44), for arbitrary H and L

—aH a~ —aH ax —aH
ax a(ayzaxt') ax a(a~yaxt') ax a(w. sax~)

aA, $ —aH gapp
ax a(ax, yax~)

a M,.+r
ax ax

anup —p. .+r . up —5 pp
ax

au au
(73)

and for Onsager's model of heat transfer

Tap a p a p gapp

= —pu u ~+a ( u, —u ) u ~—a (u, —u ) uP o~P-
= —pu u~ —a(p„p, g)(u, —u) (u, —u)~

o P(p p Vp Vp "l) (74)

where a (p„p, rI ) is defined by Eq. (39) and
P (p„p, gradp„gradp, r) ) is the nonequilibrium pressure
given by Eq. (49). Entropy and heat flows are therefore
inherently connected with nonequilibrium stresses,
represented here by the middle term in the second line of
Eq. (74). This was first revealed by Grad [17] in his mo-

ment analysis of the solution of the Boltzmann equation.
The nonequilibrium pressure tensor related to the viscous
stresses is

II ~=a(p„p, il)(u, —u) (u, —u )~ .

It vanishes at equilibrium when u, =u. It should be real-
ized that this is the defining macroscopic expression for
the viscous stress, which is not linked to any phenomeno-
logical law relating this stress to the velocity gradients.
(A similar remark holds for the heat fiux, discussed
below. ) The deviatoric and spherical parts of these
stresses can be evaluated in the usual way [9]. Also the P
term can be split into equilibrium and nonequilibrium
parts, Eq. (49), giving rise to the bulk viscosity effects.

The momentum density —I = —G is
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a G~4 ~I BA

a(aq( /at )

aw

a(aqua/at )

yielding, in vector notation for A of Eq. (66),

a~ aA

a(ayiat) a(a&iat) " a(a~~at
BA

a(ax, zat)

=p Vp +y VA, +p, Vq +y, V A,, = +BL BL
BU Bu

for arbitrary L. In our model,

(76)

(77)

aH ap aH aA.

a(vy) at a(vx) at

BH ()q (3H

a(v~) at a(vx, ) at

ay ax a~= —pu —yu —p, u, —y, u,
Bt Bt ' ' Bt ' ' Bt

From this is is seen that, in order to get Q, the partial
time derivatives of the multipliers should be eliminated.
These will be expressed first in terms of their gradients
and then the gradient representation of the momenta will
be exploited. We substitute into Eq. (80) the already
known stationarity conditions

Bg 5L= —u Vq+ = —u Vq —T
Bt '

5p,

I =p+p, =pu (78) a~
u 'V~,

at
(82)

so the classical result holds that the momentum density is
the mass Aow.

The energy flux density Q~= —G ~ is
ancl

ay = —u VP — = —u VP —p,Bt 5p

and hence

aw aw

a(a„za t')
=~

a(v„) a
(79) BA, = —u. VA,

Bt

which yields in terms of L

(84)

M, 6LQ=pu u VP — +yu(u VA, )+p, u, u. vq — +y, u, (u VA, , )
5p &ps

M, M= —pu —p, u, +u[u (pvp+yvk)]+u, [u, .(p, vrI+y, VA,, )]
5p

' '5p,

BL 6L BL 6L=u u- —
p +u, u, . —p,Bu 5p BU, 6p,

In terms of the physical quantities

Q=u(p u+pp)+u, (p u, +p, T)

=u(pp+Tp, )+u p+u, p, +Tp, (u, —u)

=u[pp+ Tp, +pu +p, .(u, —u)] —u p, —u p, (u, —u)+u, p, +Tp, (u, —u)

=u(E +P)+u, .p, (u, —u)+ Tp, (u, —u)

=u(E +P)+ [a (u, —u)(u, —u)] u, + Tp, (u, —u)

=u(E+P)+II u, +3, . (86)

In the above equation the following equality has been
usecl:

pp+ Tp, +pu'+p, .(u, —u) =E+P,
which can be veri6ed by straightforward but lengthy cal-
culus using the expressions for nonequilibrium p, T, I',
and E. It is a nonequilibrium extension of the well-

known static formula

eq + Teq eeq+peq

Equation (87) without the dissipation potentials @ and +
and the thermal phase g (contained therein implicitly)
can be derived in reversible extended thermodynamics of
a fluid with heat flow; see Eq. (38) in Ref. [3].

In Eq. (86) the work of the nonequilibrium thermal
stresses, II u„appears. It is related to the entropy veloc-
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ity rather than to that of matter. Since the role of the ve-
locity gradients has been ignored the viscosity ePects
represented by II in the model are associated only with
the Bow of the entropy and heat, excluding that of the
matter [17]. It is practical to split this work into two
parts, the convective work of the nonequilibrium stresses,
II.u, and their diffusional work II (u, —u).

VII. MACROSCOPIC VIEW OF HEAT
AND EQUATIONS OF HEAT TRANSFER

In the energy flux Q the "pure heat flux" (excluding
any contribution of stresses II) appears,

i, +V (i, u, ) —u, X(VXi, ) —Vq+i, = r,—VT .a.
ai '

(91)

This equation allows a nonequilibrium steady state,
whereas its reversible counterparts (for the "ideal con-
ductors") do not. It contains odd and even terms with
respect to time reversal, which is why it is capable of
describing irreversible Aows. This is an equation of heat
transfer of the Maxwell-Cattaneo structure [26] with the
entropic relaxation time ~„

Ps

j~=Tp, (u, —u)=Tj, . (89) s ~s

M,
Bt p, Bu,

BL 5L+'
p, B-,

"
5p,

As in the case of the nonequilibrium stresses it should be
realized that this is a defining macroscopic expression for
the heat Aux which does not have anything in common
with any phenomenological law linking that Aux with the
temperature gradient. An equation describing that link

in this formalism is contained in the equations of motion,
the stationarity conditions of the action functional, Eqs.
(35)—(40), (43), and (44). This may be verified by trans-
forming these equations into an equation directly describ-

ing the heat flow j, Eq. (89). A transformation pro-
cedure for an arbitrary kinetic potential L is given else-

where [14], and since it resembles that known in the
theory of perfect fluids, known as the method of eliminat-

ing the Lagrange multipliers [25] it is omitted here. Only

the ready-to-use result is given below:

d ~j+ j = —~VT.
dr ' (93)

The Maxwell-Cattaneo equation is obtained for r =~„the
entropy relaxation time identified with that of heat. As is
well known, combining this equation with the internal en-

ergy balance yields the damped wave equation for the
temperature

Note that the relaxation time was not introduced so far in
the action approach so it can be defined now in a suitable
way. The most essential property of this equation of
motion is associated with its irreversibility. It is caused
by the presence of the Aux i, itself, not only its time
derivative. In corresponding equations of reversible pro-
cesses Auxes are not explicitly included, and only their
time derivatives appear [20]. For weak dissipation and
large thermal conductivity K, it results from Eq. (96) link-

jq that l, =gp 'j T '=~~ 'j,
after linearization,

M.—u, X VX
p Bu

Os BL

Ps Ps~us
—Vg =0 .

dT D V2T— d'T
c Ddt

(94)

(90)

As follows from the results of Sec. IX the so-called
"hotter" temperatures T+, Eq. (112), and the thermal
momenta per unit entropy, Eq. (106), play the essential
role in this equation. However, we work below in terms
of T rather than T+. For L of Eq. (22), Eq. (90) yields

preserving causality due to the finite propagation speed
of the thermal disturbances

co =(D, /r)'~ = [K/(pc~r)]' (95)

However, one would like better to have a more exact
equation for heat How in terms of the heat Aux rather
than the momentum i, . Since

j =Tj,=—Tp, (u, —u)= TPs Ps TPsls

Tp, i, Tl,

P~(P g K 7J) P g K 7)

Tls

K T7 K
(96)

(rT —g)j, p~ T(r ~, ) —g+j +j = —~VT .
T~ ~, q ~T q

—u, X VX

where Eq. (12) expressing g in terms of the heat relaxation time w has been used. [Equation (96) gives already described

relation j =Ki, /r in a classical limit when the effect of rI is ignorable. ] Multiplying Eq. (91) by the coefficient of i, in

Eq. (96) and rearranging, one obtains

(rT rl)j—
+V

(rT —iI)j .u, (97)
' Bt TK' TK
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Again the correspondence with Fourier s law appears when the entropy relaxation time v; is the same as that of heat
r=D, /co, and when the nonclassical terms with q can be ignored. Various equivalent forms of Eq. (97) can be ob-
tained. The simplest structures appear when the total time derivative of the thermal momentum is used. However, we
will not write them down here. The relation of such equations to Fourier s law is always approximate, in view of the
approximate nature of the Fourier law itself. But an approximation is also contained in Onsager s theory and in the I.a-
grangian that we have used related to the Onsager potentials. It is an assumption that, in a dissipative process, the
form of the energy function is the same as in a reversible process, the assumption which can never be exact in view of
the present theory. Therefore, instead of trying to simplify and then test equations such as Eq. (97), an original set of
the Euler equations should be tested (a canonical set, Sec. X).

VIII. THERMAL PHASE AND PHASE-DEPENDENT CONSERVATION LAWS

The form of the components of the energy-momentum tensor is typical of that of real fluids. Indeed, we have ob-
tained the terms usually regarded as irreversible, the nonequilibrium stresses II, their work, II u, and the conductive
fluxes of the heat and entropy, j and j,. However, it should be realized that the expressions for the components of the
energy-momentum tensor are more general than those encountered in standard textbooks; they contain the contribu-
tions of the thermal phase g and the state gradients. The price of the suitable formal coincidence is the complexity of
the (functional) expressions for the thermodynamic intensities T and p and momenta p and p, . These now depend not
only on the densities of the matter and entropy (classical variables) but also on their gradients and the thermal phase g.
The latter variable is inevitable to preserve a nonvanishing entropy generation. Writing the static quantities and dissi-
pation potentials explicitly in Q one can obtain the energy flux in a more explicit form

u2Q=u +p+(x, t)+pe'q(p„p)+ ,'pgj, q(—C& 0—') +[—IP'q+IKP(p, p„u u„Vp„—q)+II] u

+ II ( u, —u ) + [T'"+b T(p,p„u u„Vp„r—) ) ]j, , (98)

q=II (u —u)+Tj, (99)

where I is the unit tensor and the nonequilibrium correc-
tions to P' and T'q result from Eqs. (49) and (37). All
classical terms of the energy ffux [27] can be identified
here, together with a few new or relatively unknown
terms, such as the g term of the nonequilibrium internal
energy, the dissipative Hamiltonian term —r)(4 —4), the
difFusional work II (u, —u ), and the nonequilibrium
correction to the temperature, AT. That the pressure
nonequilibrium correction must exist is known from clas-
sical fiuid thermomechanics [28]. Here, however, this
correction is also phase dependent. When an alternative
definition of the heat flux density, including the
diff'usional work II (u, —u), is used,

Bpu
Bt

+V (puu+ IP+ II)=pF . (102)

' aG" aA ' aG'~ aG aA
ar ~ i ax~ ar ar

which yields for our model

(103)

Again, this equation is only formally identical with that
known from the classical fluid mechanics or irreversible
thermodynamics. Actually it is a generalization of the
classical result because the nonequilibrium pressure P
and the nonequilibrium stress II depend explicitly on the
thermal phase q and gradients.

Taking j =4 in the general balance formula, Eq. (6),
one obtains for P=1,2, 3 the general expression for the
energy balance

rather than j = Tj„then the diffusive entropy flux takes
on, in terms of 0 and q, the form V [u(E +P)+ II u+ q]+ =pBE BO

Bt Bt
(104)

(100)

Such a form appears in the entropy balances of the ex-
tended nonequilibrium thermodynamics [19] where, how-
ever, the meaning of the coefficient of H is not explicitly
identified with u, —u.

Taking j=a = 1,2, 3, and k = 1,2, 3,4, in the general
formula for the balance of the energy and momentum,
Eq. (6), one has the momentum balance
' aGJ" aA ' aG i' ai

k 1
Bxk BXJ p=1 BXP Bt ax

whence, for our model

where the total energy is given by Eq. (54). Integrating
this equation over an arbitrary fixed volume of the space
one obtains the law of energy conservation in an isolated
system if the external fields are stationary or absent. In
any nonisolated system the energy change equals the sum
of the net input of E due to flow and the heat and work
terms. These conclusions are, of course standard; howev-
er, to our knowledge, they are first obtained formally here
for an irreversible process, in which the definitions of the
Lagrangian and of the components of G'" must be extend-
ed to preserve the continuity relations for entropy gen-
eration. In the context of Nother's theorem the applica-
tions of these conclusions were known until now only for
thermodynamically reversible processes conserving the
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entropy, such as processes of perfect fluids [15] or heat
superconductors [2,3]. A number of trials in the litera-
ture attempt to link dissipation with time-dependent La-
grangians; see, for example, the book by Vujanovic and
Jones [24] and Ray's critical paper [29]. It should be ob-
served [consider the A term of Eq. (103)] that a time-
dependent Lagrangian cannot lead to the energy conser-
vation law. The use of the thermal phase q is necessary
to secure simultaneous entropy generation and energy
conservation in the absence of time-dependent external
fields.

IX. THERMOHYDRODYNAMIC,
PHASE-DEPENDENT POTKNTIAI. S:

UNION OF HYDROMECHANICS
AND THERMODYNAMICS

Functions or functionals that can be obtained from L
or E through Legendre transformations are called the
thermohydrodynamic potentials (THP). Their depen-
dence on velocities or momenta, state gradients, and
phases (il and p), and their dissipative properties make
them the extensions of the classical mechanical Lagrang-
ians and usual thermostatic potentials. Here we give just
an introduction to this problem.

One may distinguish three types of THP's. Those ob-
tained from the kinetic potential L by the thermodynam-
ic Legendre transformation of thermodynamic variables
(densities, intensities) are called the THP's of the La-
grangian type, or Lagrangians. These THP's always con-
tain velocities. Those obtained from the kinetic potential
L (or another Lagrangian) by mechanical Legendre trans-
formation involving all the velocities are called the THP's
of the energy type, because they always contain the mo-
menta, the natural variables of the energy. For example,
the pressure function I' (u, u„p,p, ) is a Lagrangian-type
THP, whereas the grand potential O(p, p„p,p, ), which
coincides with the negative of P only in the static case
when the role of the kinetic terms is inessential, is a THP
of the energy type. In the static situation all Lagrangians
become the usual thermodynamic potentials with nega-
tive sign, and all the energy-type THP's, as well as
Lagrangian-type THP's, become the usual THP's.

The third group is composed of mixed structures, con-
taining both velocities and momenta (and any thermo-
dynamic variables). They are called Routhians, per
analogiam with such mixed structures in classical
mechanics [30,31]. From the viewpoint of their sign in

Eq. (105) they may behave both like Lagrangians and like
energy-type THP's. The sign of any Routhian, for a
given set of its natural variables, can be changed; corre-
sponding with the change of sign in Eq. (105). Energy-
type Routhians R yield the entropy source as the partial
derivative of R with respect to the thermal phase with the
positive sign; the Lagrangian-type R—with the negative
sign. The Routhian form is especially useful if some but
not all of the extensive (coordinatelike) variables do not
appear in the Lagrangian [31].

Potentials obtained by Legendre transformation of a
THP with respect to phases (leading to sources of the en-

tropy and species as field variables) and the entropy-

representation THP's are not considered here. The
sources are, however, implicit in any TH potentials con-
taining an explicit thermal phase.

The entropy production o., is always the partial deriva-
tive of an arbitrary THP with respect to the thermal
phase g:

aL
an

ap
7f

ar,
~ ~ a

aft

aE aF ar an
aYf a'g a'g a'g

(105)

In this formula, the partial derivatives pertain, respec-
tively to the Lagrangian, the pressure (the mechanical
transform of L with respect to both p and p, ), the trans-
form of L with respect to p only, the energy, the free en-

ergy, the transform of E with respect to p only, and the
grand potential. For the energy-type THP the positive
sign of the derivatives should be taken to obtain positive
o.„whereas for the Lagrangian-type THP the sign should
be negative. Note, of course, that different natural vari-
ables are held constant in each of the partial derivatives
appearing in Eq. (105).

The perfect differentials of the thermodynamic poten-
tials (L, P, I L, F, F, I, 0, etc. ) obey formulas generaliz-
ing those known for the reversible (sourceless) processes.
This means that the generalized momentum densities,
Eqs. (43) and (44), can be obtained not only from L but
also from any other THP's containing transfer velocities
among their independent variables, which have to be
their natural variables. These are the Lagrangian-type
THP's. It is sometimes convenient, e.g. , in the case of
phenomenological equations, to refer these momenta to
the units of entropies and masses as the basic entities of
the action formalism:

ar,
I=p p= . =VP+aVX .

pau pau pau
(107)

On the other hand, differentiation of the energy-type
THP's yields the absolute velocities u and u„

and

aE aF ar
ap, ap, ap,

aE aI' ar
Bp ap Bp

(108)

(109)

which may also be given gradient representations. Simi-
larly, any of the thermodynamic intensities can be ex-
pressed as the derivative of the arbitrary thermodynamic
potential involving the corresponding density:

5p,
6E
5p,

(110)

aL ap arI.
i, =p, 'p, = = = . -. =Vg+aV'A, ,

p, au, p, au, p, au,

(106)
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+ . aL 5LT =1 u~+ T= ~ u
p au, '

5p,
'9+. "at+" at

(112)

aL 5L
p —1 u+p — u

pau 5p
By
at

+
at

(113)

where the last terms describe their multiplier representa-
tion. [Note that the functional derivatives of the Hamil-
tonian H are neither cooler nor hotter intensities; see the
canonical Eqs. (129)—(136).] In terms of hotter quanti-
ties the energy flux (85) takes the simple form

Q=upp, +u, p, T+ (114)

without division into the "irreversible" and convective
terms of the conventional representation, Eq. (86). The
quantities T+ and p+ obey

pp++p, T+ =E +I',
which can be written in terms of p and T as

pp+p, T+p.u+p, u, =E+P

(115)

(116)

extending the classical Eq. (88); it is equivalent to Eq.
(87). The form (114) stresses that the energy flow is the
result of the transfer of the entropy and matter moving
with their absolute velocities u, and u and all resulting
effects are consequences of this fact.

The THP's have a dynamical role. The theory
developed in this work can be recovered without loss in
the generality if the Lagrangian L of the general action
functional

L(u, u„p,p„VP, Vp„rj, x, t)

5L 5FI. 5E 5F
5p 5p 5p 5p

These "cooler" intensities (containing kinetic terms
with negative signs) are the most fundamental ingredients
of the canonical formalism. It may be shown [4] that the
relativistic temperatures of Einstein belong to this
category. However, they are certain "differential mea-
sures" of the partial (negative) Lagrangians rather than
the energies of the Aowing elements. There also exist cor-
responding "diff'erential energies" (identical with Ott's
temperatures [32] in the relativistic case ). They appear
explicitly in the energy flux formula, Eq. (85), in its origi-
nal form resulting from the energy-momentum tensor,
Eq. (4). The "hotter" intensities are defined on the basis
of Eqs. (81)—(85), (106), and (107) as

[see Eqs. (19) or (30)] is expressed as the appropriate
Legendre transformation of any chosen thermohydro-
dynamic potential. This THP should be given in terms of
its own natural variables. Here the THP's are discussed
in the context of their role in the action functional (30) or
(30'). While they can live their independent life, the rep-
resentations of L and A given below [Eqs. (117)—(122)
and (125)—(128)] must be considered jointly with the
above-mentioned functional.

An interesting issue is that the thermodynamic vari-
ables and their conjugates can be varied independently or
jointly in various representations of A. Hence there are
two classes of the Lagrangians A, nonextremal or ex-
tremal with respect to the thermodynamic conjugates of
the natural variables of a given THP. The former contain
these conjugates as independent variables; the latter have
them already eliminated and only the natural variables
are present. This resembles a situation in mechanics
where, as commonly known, the mornenta and velocities
can be varied independently in the "nonextremal"
L =p dxldt E(—p, x, t) giving rise to Hamilton's equa-
tions of motion. However, one can first substitute the
momentum p(dxldt, x, t), found from the extremum con-
dition of such L with respect to p, dx/dt =BE/Bp, into
the expression p.dx/dt E(p, x, t). —Then one works
with L(dx/dt, x, t), in the Lagrangian picture. The two
pictures are equivalent. An analogous situation occurs
here; expressing the natural variables of a THP in terms
of those of the global Lagrangian A(u, u„T,p, , g, x, t),
e.g. , expressing the energy E (p„p,p,p„rt, x, t) in
terms of (u, u„T,p, r), x, t) by substituting in E
the functions p, (u, u„T,p, rI, x, t), p(u, u„T,p, ri, x, t),
p(u, u„T,p, rI, x, t), and p, (u, u„T,p, g, x, t), yields A in
terms of its natural variables A(d x/dt, d x, Idt,
T( drt/dt), p—( dP/dt), ri, x—, t). Such a Lagrangian ap-
proach leading to second-order equations will be investi-
gated elsewhere. On the other hand, treating the natural
variables and their conjugates on an equal footing, the
Harniltonian-like forms are constructed. They are ana-
lyzed below.

The following representations of L can replace it in the
action functional (30')

L =P(u, u„p, , T, Vp, VT, rt, x, t) p, T pp, (—117a)—

L =Ft (u, u„p, T, VP, V T, ri, x, t) p, T, —

L =I t (u, u„p,p„Vp, Vp„ri, x, t) pp . —
(117b)

(117c)

These lead, respectively, to the following structures of the
Lagrangian A:

A=P(u, u„p, T, Vp, , V T, r), x, t) —p, T pp p,rj— —
—

p +u VP —p +u .Vg
By B&
at at

aA +u.VX
at

ax—y, +u, .VA, , d Vdt
at

(30')

—pg —yA, —y, A, ,

A=Fr (u, u„p, T, Vp, V T, rI, x, t) —p, T p,r'I—
PP 1'~—r, ~—, , —

A PL(u~u»p~ps~Vp~Vps 9~x~t) pp p~9
—PP —yA, —y, i, ,

(118a)

(118b)

(118c)
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and, after using the stationarity conditions, to the general
forms

A=P(u(V), u, (V),p( —p), T( —il), Vp( —p), V T, rj, x, t)

&A=6 f I [p dx+p, .dx, p—,dry p—dg
l

E—(p, p„p,p„VP, Vp„i),x, x„t)dt]d V]

A =FI ( u, u, ( V ),p, T( —i) ), Vp, V T, rI, x, t )

—pP —yA, —y, A, ,

A= 1 t. (u(V), u„p( —P),P„Vp, Vp„r), x, t )

ps'9 'V ~ 'V s ~s

(119b)

(119c)

L =p u+p, u, E(p, p„p,p„—Vp, Vp„rt, x, t), (120)

p u+ps us ps I pP y~ ys~s

—E ( p, p„p,p„Vp, Vp„rt, x, t) . (121)

When the first of these equations is used in the action
functional (30') the field description is in terms of E, asso-
ciated with p, p„T, and p in appropriate Clebsch repre-
sentations, resulting, as always, from the stationarity con-
ditions on the action A. The link with the Lagrangian
description of motion is made by the equation

A=p x+p, x, —p, iI —pj

where gradient representation of definite variables has
been symbolically stressed. The quantities I', I'I, and I I
of the middle group of equations are Lagrangian-type
THP's. The pressure P may be regarded as the Lagrang-
ian of the grand potential 0, as it is the Legendre trans-
form of the (extended, momenta containing) grand poten-
tial 0 with respect to the momenta p and p, . The func-
tion Fl is the free energy Lagrangian. The kinetic poten-
tial L is the Lagrangian of the energy. Here we have
omitted a verification of the related Euler-Lagrange equa-
tions for THP. It is easy to show their equivalence with
those obtained from the original L, but details are left to
the reader. The theory does not involve difhculties pro-
vided that the required THP is given. On the other hand,
great difhculties appear in carrying out the transforma-
tions when this THP has to be obtained from another
one. These problems arise because the gradient represen-
tations of the momenta contain densities, which must be
expressed in terms of the derivatives of the THP which is
yet unknown. Close to equilibrium some approximate
approach is possible E3]. However, generally it is better
to work in terms of an original THP.

Here the generalization of the classical formula
L =p u —E holds on the basis of Eq. (52), and hence

Its lumped version, obtained after integrating of the
above equation with respect to the volume in a homo-
geneous case, is

25A=5 f I [P dx+P dx Sd—q M—dg]
1

E(P, P—„M,S, rI, x, x„t)dt] =0, (124)

~here all the extensive quantities are referred to the
whole system. Since the integration volume V was com-
pletely arbitrary (not necessarily that of a system with
constant mass) a generalization of this equation for the
system with variable mass (e.g. , chemical rocket engine)
is immediate. It requires only explicit dependence of E
on P.

Still other potentials can be considered. Since the tem-
perature and mass density are frequently met variables,
the free energy seems to be a useful THP of energy type.
It appears in the following representations of L and A:

L =p.u+p, u, —Tp, —F(p, p„p, T, VP, V T, rl x, t),
(125)

A=p u+p, u, —Tp, —p, i) —pg —yA, —y, A,,
—F(p, p„p, T, VP, V T, rt, x, t),

where again Clebsch representations are generated from
A. For example, while there is no stationarity condition
for L with respect to p„ the global Lagrangian A yields
such a condition in the Clebsch form T= —dg!dt, be-
cause p, appears in the constraint term of A. Indeed, A,
not L, governs the process. In the free energy formalism
the complexity of temperature, Eq. (37), disappears since
T becomes an independent variable. Instead, the entropy
density p, = BF/BT (conta—ined in the gradient repre-
sentations of the momenta) can be a very complex func-
tion. This kind of complexity appears also for the grand
potential where the densities p and p, must be presented
in terms of —BQ/BT and —BQ/Bp.

The grand potential 0 is the Legendre transform of E
with respect to p, and p, or that of L with respect to p„
p, u„and u; hence

L =p-u+p, .u, —Tp, —pp

E ( p, p„p,P„VP, Vp„rt, x,x„t ), (122)
—II ( p, p„p, T, Vp, V T, iI, x, t), (127)

where the velocity definitions u=dx/dt and u, =dx, (dt
have been used to replace the momentum-multiplier term
(with p, p„)I,, and A,, ) of Eq. (121), and all the intensities
are in terms of the total time derivatives of the general-
ized state: x, x„ iI, p, A, , and A, This implies a general
Fermat principle for distributed systems

A=P u+P u —TP, PP P, r) p4' y&—y—,&, — — —

—Q(p, p„p, T, Vp, V T, rj, x, t) . (128)

The formula for I, the THP involving the transformation
with respect to mass density and momenta, is omitted.
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X. DYNAMICS
THROUGH THE FUNDAMENTAL EQUATION II—

POISSON BRACKET FORMALISM

ay.
5A., :

at
5H

S

(136)

[=p(p, p„g,x, t)+(u. V)g=p+ —a(u V)k],

5P: — = — (=V pu),ap 6H
'dt 5$
a~ 6H
at

(129)

(130)

[=T(p,p, , g)+(u, V)g=T+ —a, (u, V)k, ], (131)

aps
5g:

5H (=V p, u, —4—qi),
6r]

(132)

BA oH
[ ( V)g]

at 5y

5X. ay 5H
( =V.ru),

5X

5y: (133)

(134)

The energy form (66) of the action 2 is very useful as it
constitutes the basis for the powerful Poisson bracket for-
malism involving H rather than L or A. Since H of Eq.
(66) does not contain time derivatives of Clebsch vari-
ables, the three-dimensional integral of the total energy
plays an essential role in the functional bracket formula-
tion. Using Eqs. (67) through (71), the Euler-Lagrange
equations of the functional (66) in terms of the density H
can be written in the canonical form

ay sH
5p:

at 5p,

ay sH
at '

6p

ap 5H

aq 6H
~", =[a III=

~

aps
[ ]

5H
at " 5r]

BX
[g I

oH
at '

6y
a 6Hr =[r,H)=
at ' 6l,
a~ = [A,„HI =

S

6H
a&

=['

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

The expressions in square brackets and parentheses verify
this Hamiltonian representation for the Quid Hamiltonian
(65), or the energy E, Eqs. (54) or (55), in which the gra-
dient representations of the velocities or momenta have
been substituted. Indeed, the equations obtained are
equivalent to the stationarity conditions on 3 obtained
from the kinetic potential L, Eqs. (13), (14), (15'), (16'),
and (31) through (44). Their Poissonian form is

ax'y: -a' 5H [=—(u, V)&, ],
5y,

(135) for the Hamiltonian density (65). This canonical Hamil-
tonian system can be written in the form

( —4, i
—

p, i n, t
—p, , t

——~, t r i
——~,, i r, i

)'—=&
P '9 PS y S yS

(145)

where B is the Hamiltonian matrix

0 1 0 0
—1 0 0 0
0 0 0 1

0 0 —1 0
0 0 0 0
0 O O O

0 0 0 0
0 0 0 0

0 0
0 0
O 0
0 0
0 1

—1 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 1

—1 0

(146)

Through transformations of the Hamiltonian matrix [23],
the theory of Poisson brackets allows a passage from the
canonical field equations used here into another
equivalent set of field equations, expressed in terms of
various physical variables, associated with the noncanoni-
cal Poissonian brackets. For example, one can replace
the variables g and P of the above set by the momentum
densities p and p„gaining information about the equa-
tions of motion, c.f. Eq. (90).

XI. TESTING MODELS OF ENTROPY SOURCES

One can correctly argue that those of our results which
do not pertain to any particular model are more valuable
than those that are based on the specific forms of the en-

tropy generation in the Lagrangian. This is because we
still know too little about dissipation and dissipative po-
tentials. However, the generality of Eqs. (129)—(146) con-
stitutes an excellent tool for investigating various positive
expressions for entropy sources. By changing the analyti-
cal form of o., in the chosen kinetic potential L, the gra-
dient representations of the velocities and momenta are
changed and hence various Hamiltonians H and related
equations of motion can be obtained. Those forms of o.,
which lead to the best agreement between experiments
and the resulting energy and equations of motion are,
heuristically, the most appropriate models of dissipation
in the framework of the present theory. The aptness of
the Onsager model, based as it is on the dissipation po-
tentials, and its extensions and modifications can also be
tested in this this way. A tool is therefore obtained to
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test models for dissipation. Such tests are planned to be
presented in a future paper.

XII. FINAL REMARKS

What has been achieved in this development?
(1) A unification of first and second law of thermo-

dynamics in the context of the extremal behavior of ac-
tion (on the example of heat transfer in fluids) where the
matter and the entropy are the two basic independent en-
tities.

(2) A mathematical method of simultaneous derivation
and synthesis of conservation laws and equations of
transport, within a generalized Hamilton s principle in-
cluding dissipative terms and still leading to the canoni-
cal formalism (transformation theory of the Poisson
brackets).

(3) Introduction of a view of heat and dissipative work
as effects of the transport of the entropy in the Quid
fr arne.

(4) A thermodynamic method unifying hydromechan-
ics and thermodynamics within the context of the extend-
ed thermohydrodynamic potentials, obeying Legendre
transformations with respect to both mechanical and
thermodynamical variables.

(5) A proof that the energy E of the action approach,

while (in Onsager's scheme) numerically equal to E""'of
statistical mechanics, is not the same function as theE""' that generates an irreversible motion due to pres-
ence of certain extra terms in E. These terms may vanish
along the path making E =E"'",but since their deriva-
tives are generally nonvanishing, certain additional terms
appear in the equations of motion that preserve dissipa-
tion. Onsager's potentials are not necessarily the simplest
and most effective in this theoretical scheme, and other
dissipation models can be tested, for example, a model in
which the generation of the entropy resembles a chemical
reaction.

(6) A supposition that far from equilibrium the energy
and conservation laws may have forms different from
those currently accepted, with the thermal phase playing
an essential role. This problem is associated with the
definition of the nonequilibrium temperature. Stability
properties of such new E around equilibrium should be
proven, in order to make it an admissible physical candi-
date.
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