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Convection in binary fluids: Amplitude equations, codimension-2 bifurcation,
and thermal fluctuations
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The near-threshold behavior for thermal convection in binary fluid mixtures heated from below is
determined for realistic (rigid and impervious) boundary conditions at top and bottom. We calculate up
to third order the coefficients of the amplitude equations for the stationary, the traveling-wave, and the
standing-wave convection. In all three cases, the bifurcation changes with decreasing separation ratio +
from forward to backward with the respective tricritical points occurring for negative %. For small
values of the Lewis number L, these tricritical points, together with the codimension-2 point, lie near
4'=0 and for L =0 they all degenerate to 4=0, which describes the limit of normal fluids. Near the
codimension-2 point, where the thresholds for the stationary and the Hopf bifurcation coincide, a gen-
eralized amplitude equation has to be considered, whose nonrescaleable coefficients are determined from
the already-known ones of the conventional amplitude equations. Some special properties of the travel-

ing waves, such as the Benjamin-Feir instability and the sign change of the group velocity, can be de-
duced from the codimension-2 amplitude equation. Finally, the influence of thermal fluctuations on the
convection onset is considered. We determine the strength of the additive noise term appearing in the
amplitude equation for free and previous boundary conditions as well as for rigid and impervious bound-

ary conditions for both the stationary bifurcation and the traveling waves. The space-time-correlation
function for the order parameter below threshold is derived. Our calculated noise strength and correla-
tion function agree rather well with the data of a recent experiment [W. Schopf and I. Rehberg, Euro-
phys. Lett. 17, 321 (1992)].

PACS number(s): 47.20.—k, 47.27.Te, 03.40.Gc, 05.40.+j

I. INTRODUCTION

Understanding the common features of pattern forma-
tion in spatially extended, dissipative nonequilibrium sys-
tems subjected to an external stress R is a major chal-
lenge. In such systems, patterns can arise when R
exceeds a critical value R, (for numerous examples and
references see, e.g. , Ref. [1]). One class of laboratory sys-
tems is fluid-dynamical ones such as Rayleigh-Benard
convection [2,3] in isotropic (e.g. , water) [4) or in intrinsi-
cally anisotropic fluids (e.g. , nematic liquid crystals) [5].
Besides these thermally driven systems, Taylor-Couette
flow [3,6] and electrohydrodynamic convection in nemat-
ic liquid crystals [7] play an important role. In contrast
to natural ones, these physical systems have the advan-
tage of great experimental flexibility. They are often ac-
cessible to highly accurate measurements, which makes a
comparison with results obtained from the known funda-
mental equations possible.

An interesting system that has attracted much atten-
tion during recent years is thermal convection in a hor-
izontal layer of a binary fluid [8,9]. This is a mixture of
two (miscible) fluids such as, e.g., water-alcohol or He-
He. Owing to the two-component nature one has the

Soret effect, and this leads to an additional control pa-
rameter besides the Rayleigh number R, namely, the sep-
aration ratio 4, which is a measure for the stabilizing

(qt (0) or destabilizing (+)0) effect of concentration gra-
dients [8,9]. Depending on 4, above a critical tempera-
ture difference, convection may set in as a stationary roll
pattern or via a Hopf bifurcation leading to time-periodic
states [8,9], which in the simplest case can manifest them-
selves as traveling waves (TW's) or standing waves (SW's)
[10]. The interest in observing a direct transition from a
thermally conductive to an oscillating convective state to-
gether with the possibility of a codimension-2 bifurcation,
where the thresholds for the stationary and the Hopf bi-
furcation coincide, has led to a large number of experi-
ments during recent years [9,11—18]. This development
was accompanied by considerable progress in the theoret-
ical understanding [10,19—30]. Analysis on the phenom-
enological level [30,31] or on the level of symmetry con-
siderations [10,32] often provided important insights.
Nevertheless it became important to calculate also vari-
ous properties of the transition to convection quantita-
tively from the fundamental equations. These ab initio
calculations can be divided into mode truncations
[21,22,33], full numerical simulations of the Navier-
Stokes equations [26], and symmetry-aided systematic
perturbation expansions around some bifurcation points
of interest [31,34—41]. These approaches are all valuable,
with restrictions and complementary advantages.

The transitions from a conductive to a convective state
share many properties with thermodynamic equilibrium
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phase transitions, so they are often referred to as none-
quilibrium phase transitions. Linearizing the full hydro-
dynamic equations around the basic (the pure thermal
conducting) state yields, for a periodic perturbation
~ e '+', a characteristic polynomial for the growth rate
o (we consider only the problem of quasi-one-
dimensional pattern formation, where the wave vector k
describing the structure points into a fixed direction, e.g. ,
the x direction). The transition takes place where the
real part of one or two roots passes through zero. In the
case of a forward bifurcation, the linear modes with posi-
tive Re(cr) saturate above the transition, whereas all other
modes are damped out. The spatiotemporal behavior of
these growing linear modes characterizes the convecting
pattern near threshold, where in its neighborhood they
obey the so-called amplitude equations [31,34]. These are
obtained from a perturbation expansion of the underlying
fluid equations for small amplitudes. To lowest order
they have a form analogous to the Ginzburg-Landau
equation for equilibrium phase transitions; therefore they
are also called generalized or complex Ginzburg-Landau
equations. The rather general case of a pair of complex-
conjugate eigenvalues o with Re(o )=0 (Hopf bifurca-
tion) leads to two coupled equations for the complex am-
plitudes of the linear modes [30,42]:

r (r), —v B„)A=e(1+ic ) A +g (1+ic, )8 A

—(a+ic2)I A
I

A —(y+ic3)IB I A,
(l. la)

T (r), +v i) )B =e(1+ic )B+g(1+ic,)B,B

(c +—ic2) IB I'B (y+—ic3) I
A I'B .

(1.1b).

Here c. is the scaled control parameter describing the rel-
ative distance from the bifurcation point:
E = (R —R, )/R, . With A (x, t ) being the amplitude of
the left traveling wave (e' '+" ') and B(x,t) the ampli-
tude of the right traveling wave (e' ' " '), these equa-
tions describe modulations of the waves on a slow time
and space scale for a Hopf bifurcation. The special cases
of pure traveling waves (A =0 or B =0) and standing

waves (A =+B) can be recovered. The nonlinear
Schro'dinger equation is included as a limiting case (A =0
or B =0; c„cz—+ oo). In its general form, Eqs. (l. la) and
(l. lb) cannot be derived from a potential. For
Ug

=cp =c
&

=c2 =c3 =y =0 they combine into a single
equation for the stationary bifurcation, where they have a
potential. This form is also well known as the Ginzburg-
Landau equation for a neutral superfluid. The amplitude
equations can in principle be derived by symmetry argu-
ments [31,42], thus being valid for a large class of
pattern-forming systems. Of course, the actual values of
the parameters depend on the special system.

In this paper we focus on the transition from the con-
ductive to the convective state for both the stationary
and the Hopf bifurcation of a binary fiuid mixture heated
from below. We consider a system of infinite horizontal
extent with realistic (rigid and impermeable) boundary
conditions on top and bottom. We analyze the linear sta-
bility of the conductive state (see also Refs. [19,24,25])
from which the linear coefficients of Eqs. (l. la) and (l. lb)
can be derived and which are the basis for further calcu-
lations. There exists a large amount of literature on the
solution properties of Eqs. (l. la) and (l. lb)
[30,39,42 —47]. However, the nonrescaleable nonlinear
parameters, which are the sign of a, the ratio c2/a, y,
and c3, were not known for realistic boundary conditions.
Thus we present here a full set of coefficients of Eqs.
(l.la) and (l. lb) for appropriately chosen fiuid parame-
ters with emphasis on the nonlinear coefficients (part of
the results was given in Ref. [28]; the linear coefficients
have already been discussed for the Hopf bifurcation in
great detail in Ref. [25]).

Near the codimension-2 point (CTP) the conductive
state becomes unstable against both a stationary and an
oscillatory mode, i.e., the real parts of two eigenvalues
pass through zero nearly simultaneously. This violates
the assumptions made for deriving amplitude equations
such as Eqs. (l. la) and (l. lb). Instead a new equation,
now second order in time, has to be used near the CTP
(see, e.g., Refs. [37,38,40,41]; in Ref. [41] the terms with
g„g3, f4, and f5 have been neglected, in Ref. [40] the
equation was discussed without spatial derivatives and
with Pk =0, and in Ref. [38] additionally f3 was set equal
to zero):

8 A — [ir)+(8 —iPk) ]8 A+rt(f +f )IA I 8 2+i)f A i3

—[(r+s)(1 ivgg, r) )+a~—3 ivyg, B —f, I
A

I ]A igf4I A
I

—
~3 A ii)f,—A 8 —A *=0 . (1.2)

This leads to a richer dynamical behavior, which is ex-
pected also from general mathematical considerations
[48). In this formulation the CTP is at s=0. Pk de-
scribes the wave-number difference between the unstable
stationary and oscillatory modes and fixes the magnitude
of the formal expansion parameter i) (see Sec. IV). X and
T are appropriately scaled space and time coordinates
(see Sec. IV) and the coefficients depend on the physical
system. A(X, T) is the scaled amplitude of the convec-

tion state under consideration. Equation (1.2) includes
Eqs. (l. la) and (l. lb) near the CTP as special cases, lead-
ing to relations between the respective coefficients. Via
these relations we are able to calculate the coefficients of
Eq. (1.2) from those of Eqs. (l. la) and (1.1b). The linear
properties of Eq. (1.2) have been discussed in the context
of binary Iiuid convection in Ref. [25] and parts of our re-
sults on the nonlinear coefficients f„f2, and f3 have
been published in Ref. [49].
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Close to a bifurcation point, the system becomes very
sensitive to perturbations; thus a problem of fundamental
interest is the influence of thermal Quctuations on the
transition from the heat-conducting to the convecting
state. Near phase transitions in thermodynamic equilib-
rium, thermal Auctuations induce a huge variety of in-
teresting phenomena [50], but early calculations [51—53]
for Rayleigh-Benard convection have shown that here the
influence of thermal noise on the threshold should usually
be restricted to an experimentally unresolvable small
range of the Rayleigh number [54]. Nevertheless, the
effect of thermal Quctuations has been detected directly
very recently in electroconvection of nematic liquid crys-
tals [55] and, using an intrinsic amplification mechanism,
also in binary fiuid convection [18]. Theoretically the
Auctuations can be described by adding a stochastic term
to the amplitude equation, as has been done by Graham
for the case of the stationary bifurcation in simple fluids
with unrealistic (free) boundary conditions [52]. Here we
extend these calculations to the Hopf bifurcation leading
to the amplitude equation

7 (a, —
U, a. )A =e(1+ic )A+/ (1+ic, )B A

—(a+ic2)~A~ A+&QF(x, t), (1.3)

with the space-time correlation of the noise term given by

(F*(x,r)F(x+bx, &+br)) =5(bx)5(b&)

and &Q being the noise strength [52].
The paper is organized as follows. In Sec. II the basic

equations and the boundary conditions are presented.
Also, the method of solution and the linear stability
analysis are given, as well as the derivation of the ampli-
tude equations (l. la) and (l. lb) from the basic equations,
showing how the coefficients are calculated. Readers
who are only interested in the results may omit this rath-
er technical section, where the mathematical basis for the
following is given, and should proceed directly to Secs.
III, IV, or V. In Sec. III the results for the linear stabili-
ty analysis are brieAy outlined. We discuss in detail the
coefficients of the amplitude equations for the stationary
bifurcation, the traveling wave, and the standing waves.
In Sec. IV the situation near the codimension-2 point is
illustrated. We derive the coefficients of the amplitude
equation (1.2) from the already-known coefficients of Eqs.
(l. la) and (1.1b) and discuss some important conse-
quences. The inAuence of thermal Quctuations is con-
sidered in Sec. V, where we explicitly give the magnitude
of the noise term appearing in Eq. (1.3) and compare it
with the case of free, permeable boundary conditions.
The quantitative agreement with recent experimental ob-
servations [18] is emphasized. Discussions of the results
and, where possible, comparison with other calculations
and experiments are presented at the end of Secs. III, IV,
and V. Each of these sections may be read independently
from the others.

II. BASIC EQUATIONS, METHOD OF SOLUTION
AND AMPLITUDE EXPANSION

A. Hydrodynamic equations, heat-conduction state,
and boundary conditions

We consider a binary Quid mixture in a gravitational
field under the action of an external temperature gra-
dient. The equations for the velocity v(r, t), the tempera-
ture T(r, t), the concentration N(r, t), and the pressure
p(r, t ) describing the fiuid behavior are, in Boussinesq ap-
proximation [8,9,56],

V.v=0
BT +(v V)T=lrV T,
at

kz-
+(v.V)N=D V N+ V T

(2. la)

(2.1b)

(2.1c)

Bv +(v.V)v= — Vp+vV v+ g .1 2 P
at Po Po

(2.1d)

Because the Dufour effect is negligible in Quid mixtures
[8,9], the corresponding term is never included in this pa-
per. Equation (2.1a) is the continuity equation for an in-
compressible fiuid. In the heat equation (2. lb), I~ is the
thermal diffusivity of the Auid. In the continuity equa-
tion for the denser fiuid component (2.lc), D is the solu-
tional diffusivity and kz is the Soret coefficient, which
measures the cross coupling between temperature gra-
dients and mass Quxes and can have either plus or minus
sign. The momentum balance is described by the
Navier-Stokes equations (2.1d) where v is the kinematic
viscosity of the Quid and the gravity field g is chosen
parallel to the z direction: g= —ge, . For the total densi-
ty p, a linearized equation of state is used [8,9]:

p =pa[ 1 —a( T To ) +f3( N No )—], — (2.2)

with a= —(1/po)Bp/BT and P=(1/po)c)p/BN.
We consider a horizontal Auid layer of infinite extent in

the x-y plane with height d in z direction. At the
confining top and bottom plates realistic (rigid and im-
pervious) boundary conditions are assumed:

», aW kr aT
U, = =0= + at z =O, d,

Bz Bz T Bz

T= To+AT at z =0,
T=To at z=d .

(2.3)

In contrast to unrealistic (free and pervious) boundary
conditions, the vanishing tangential velocity components
at the boundaries (rigid) lead to BU, /Bz =0 and the van-
ishing concentration fiux (impervious) to
BN/Bz+(k /T )dT/Bz =0 atz=0, d.

The conditions for stationary heat conduction without
convective motion, v=o and vanishing time derivatives,
give for Eqs. (2. la) —(2.1d) together with Eqs. (2.2) and
(2.3) the solutions for the pure heat-conductive state:
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T„„d(z)= To+ 5 T 1 —— (2.4a)

N„„d(z)=No+ bN 1 —— kT
with hN= — 4T,

Q

(2.4b)

a
= —

gpo 1 (ab, T—133,N )—1 ——
d

(2.4c)

V u=O

(a, —v')a —R a.e =(a,ea„—a„ea, )a,
(2.5a)

(2.5b)

Here AN is not given by an explicit boundary condition
as would be in the thermohaline problem [57], but
through the Soret effect by the applied temperature
difference.

Inserting p(r, t ) =p„„d(z)+op(r, t ), T(r, t ) = T„„d(z)
+ T'(r, t ), and N (r, t ) =N„„d(z) +N'( r, t ) into Eqs.
(2.1a)—(2.ld) eventually leads to the equations for the de-
viations from the heat-conduction state in dimensionless
form (a two-dimensional, y-independent situation is as-
sumed, because at the convection onset only two-
dimensional rolls appear [3,8,9]):

B. Linear stability of the heat-conduction state

For calculating the characteristics of the convection
onset (e.g. , the critical Rayleigh number, wave number,
and frequency) from the underlying fiuid equations two
different methods have been used [19,24,25,28]. The set
of ordinary linear differential equations appearing here
(see below) was treated in the first approach by using
analytically known independent fundamental solutions.
This leads then in principle to the exact linear solutions
[24,25]. For the second method a set of linearly indepen-
dent solutions was calculated by numerical integration of
the linearized fiuid equations [19,28]. In both cases the
factors for superposing these independent solutions are
determined by fulfilling the boundary conditions. Even in
the first case this step has to be done numerically. While
the first approach provides a faster numerical code, the
second one is more advantageous in view of the weakly
nonlinear expansion. The first approach is already exten-
sively described in [24,25], therefore we describe only the
second one here.

For calculating the linear stability of the heat-
conduction state, we only need the linear parts [left-hand
sides (lhs's)] of Eqs. (2.5b) —(2.5d). The x and t depen-
dences are separated out by the ansatz

(a, —.Iv)~ +a,a —Ra, e=(a,ea„—a, ea, )(~+a),
(2.5c)

(a,v' pv')e p—ea, ~ p—(1+q )a—„a

8( zx, t)
i)(x, z, t)
4(x, z, t )

Bo(z)

go(z) e'""e '=uo(z)e'""e

1
No(z)

ik

(2.9)

=(a,ea. —a.ea, )v'e, (2.5d) leading to the coupled ordinary differential equations

with the boundary conditions

4 =B,C =B=B,q=O at z =0, 1 . (2.6)
Bo'=(o+k )8O R&o, — (2.10a)

Here lengths are scaled in units of layer thickness d and
times in units of the thermal diffusion time d /K, there-
fore the velocity is v=(~/d )u. For the deviations of the
temperature and the concentration field the scaling
T'=(b, TIR )8 and N'= —(kTb, T/TOR )c has been
chosen. For convenience two new functions are intro-
duced:

—+2k N" —k —+k

+4k ih+(1+%)k 8O,

(2.10b)

(2.10c)

i)( r, t ):=c ( r, t ) 8( r, t ), — (2.7a)

@(r,t) with u, =a 4& and u = —a, @ . (2.7b)

With the so-defined stream function N(r, t), Eq. (2.5a) is
fulfilled automatically. The pressure has been eliminated
by mixing the x and z components of Eq. (2.1d), and we
have set a+"=af/aa with a=x, z, or t. The system is
characterized by four dimensionless numbers, the Prandtl
number P, the Lewis number L, the Rayleigh number R,
and the separation ratio tII:

with the abbreviations f':=af Iaz, f":=a f Iaz, etc.
With eight newly defined functions y &

=BQ, y 2
=gp,

Ill I

y3 NQ y4 NQ y5 Np y6 0 Q y7 'l9Q and y8 =qp,
Eqs. (2.10a)—(2.10c) can be written as an eight-
dimensional system of first-order differential equations:

(2.11a)

(2.11b)

d' kTP=, L=, R= g" hT, q=
K K KV 0!TQ

(2.8)

We consider P and L as fixed for a given Quid and shall
use R and + as two independent control parameters.

I

I
y4 =y5

y5 =y6

(2.11c)

(2.11d)

(2.11e)
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y6=(1+%)k y, —k —+k2 y3P

+ —+2k y~+4k2y8, (2.11f)

co, =coo(k =k, ).
Now we can formulate the complete solution of the

linear part of Eqs. (2.5b) —(2.5d) at threshold (s =0, R„
k„and to, ) as a superposition of four linear independent
solutions (2.9}with k =+k, and to=+oi, :

y 7
= (cr +k )y, —Ry&,

Iy8=y2 ~

(2.11g)

(2.1111)

and the boundary conditions following from Eq. (2.6) are

1'io(x, z, t)

uo(x, z, t ):= 710(x,z, t )

&0(x,z, t}

y1=y2=y3 y4 0 at z=0 1 . (2.12) =(Roe ' +&oe ' )uo(z)e ' +c.c. (2.16)

With y being the eight-dimensional vector
(y, (z),y2(z), . . . ,ys(z) ), e; the eight 8-dimensional
Cartesian unit vectors, and P, and eight linear indepen-
dent solutions of (2.1la) —(2.1lh) with P, (0)=e, , the gen-
eral solution is

8

y(z) = g a;P, (z) . (2.13)

P,'( I ) P'( I ) P,'( I ) P,'( I ) a,
Ps(1} 06(1) $7(1) $8(1) a6

$~(1) $6(1) $7(1) $8(1)

(b~(1) $6(1) $7(1) $8(1) as

0
0
0
0

(2.14)

The boundary conditions (2.12) at z =0 lead to
ai=a2=a&=a&=0 so that (2.13) is reduced to
y(z) =g; ~a;$;(z).

Numerical integration (e.g., Runge-Kutta) of Eqs.
(2.11a)—(2.11h) with the initial conditions e5, e6, e7, es at
z =0 gives $5(1),$6(1),gi(1),$8(1) and the resulting solu-
tion y(1)=g; 5a;P;(I). The four parameters a, have to
be chosen such that the boundary conditions (2.12) at
z = 1 are fulfilled. This yields a set of homogeneous linear
equations for the a; (the superscripts denote the com-
ponents of P, }:

Here uo(z) is defined by Eq. (2.9), c.c. denotes the com-
plex conjugate, and A p and Bp are the amplitudes of the
left and the right traveling waves, respectively. For the
stationary bifurcation we have co, =O and one may set
Bo=o

To get unambiguous values for the nonlinear
coefficients one needs a definite normalization of the
linear solution. We choose up in such a manner that

f 0~@0(z) ~
dz = 1, with 40(z) from Eq. (2.9).

C. Amplitude equations

R —R,
R,

(2.17)

One aim of this paper is to derive an expression for the
as yet undetermined amplitudes Ao and Bo of Eq. (2.16),
namely, the amplitude equations (l. la) and (1.1b). The
nonlinear coefficients of those equations determine the bi-
furcation behavior (subcritical or supercritical) and in the
case of a supercritical bifurcation the absolute values of
the amplitudes Ap and Bo up to first order in e', where
e measures the distance from threshold:

with the solvability condition that the determinant of the
coefficient matrix has to vanish: det( ) =0. This
determinant is an implicit function, depending on
o. =s+ico, k, and R as well as on the other dimensionless
numbers g, P, and L, which we will consider fixed here.
To make the structure of the linear stability calculation
more transparent, we formally rewrite (2.14)

We give in the following the general derivation for the
Hopf bifurcation. The case of the stationary bifurcation
is obtained by simply setting Bo =0 and co =0.

1. Weakly nonlinear expansion of the basic equations
det( .

) =:f(o",k, R, . . . )=0 (2.15)

with f being a real-valued function for co=0 and
complex-valued otherwise [f(a*)=f"(o )]. Then for
given values of k and R, o. has to be adjusted to fulfill Eq.
(2.15), yielding the growth rate s and the frequency co of
the linear solution under consideration. To calculate the
neutral stability defined by s =0, we now have to adjust R
for a given k, again to fulfill Eq. (2.15). In other words,
the condition s=O gives us implicitly the neutral curve
Ro(k) and in the case of a Hopf bifurcation the frequency
oio(k) on the neutral curve in addition. The convection
onset is provided by the minimum of Ro(k) giving the
critical values R, =min[R0(k) ]=Ro(k =k, ) and

(At 8, +X )u =N(u, u ), (2.18)

with u consisting of the fields 8, 11,@ and JR and X
representing the linear and N the nonlinear parts of Eqs.
(2.5b) —(2.5d):

We describe here the formal scheme for the derivation
of the amplitude equations (l. la) and (l. lb) following
Refs. [34,39]. First we rewrite Eqs. (2.5b) —(2.5d) in the
symbolic form
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0

1 0
0 V

—V 2

N=(a, ea, —a„ea, ) q+a
V2(P

0 0

—RB„

(2.19)

sion (2.22), where the factor e' is included into uo],
these solvability conditions are the amplitude equations
for 30 and Bo, Eqs. (1.1a) and (l. lb).

Although the scheme of the above expansion is
straightforward and in principle feasible, it would be a
tremendous task to actually calculate the solution of the
full Eq. (2.23b) and evaluate the inhomogeneous part of
Eq. (2.23c). The procedure, however, can technically be
performed much easier by calculating the linear and non-
linear coefficients of the amplitude equations separately,
and this is described in the following section.

2. Linear coejficients of the amplitude equations

0 —RB
—l (1++)a, I q a„— rV'—

The amplitudes Ao and Bo now vary on the slow scales

X=E X T) =E' t T=E't (2.20)

which are treated as independent variables, so we have

Ao = Ao(X, T&, T) and Bo =Bo(X,T&, T) . (2.21)

To get the linear coefficients rp U& co go c, of Eqs.
(1.1a) and (l.lb) one only needs to know the linear prop-
erties near R, and k, : the growth rate s(R, k=k, ), the
neutral curve Ro(k), and the dispersion o3(k), so the non-
linear expansion is not necessary for this step. The
derivation is given in detail in Ref. [39]. It is valid for
many different systems, because it does not depend on the
special form of the basic equations. Eventually one gets
the following results [39]:

We expand the solution of (2.18) with respect to e'~,

u(x, z, t,X, T, , T)=e' uo( . )+au, ( )

Bco

ak '
1 Bco

as
' " ''aR'

C

(2.24)
+e u( )+.2 (2.22)

(ua, +X,)u, =o (e'"),
(A, B, +%0)u, =N, (uo) —

(ALBA +X, )uo (e)

(AB, +%0)u2=N2(uo, u, ) JN(Br —u, +Bruo)

(2.23a)

(2.23b)

where the arguments on the left-hand side are repeated
on the right-hand side, and substitute 8, ~B,
+e'~ Br +eBz-, 8 8 +e' Bz according to Eq. (2.20)

1

as well as R =R, (1+e). Inserting all this into Eq. (2.18)
yields at successive orders of e'

a'R ro a'~
2R, Bk 2g Bk

The derivatives are all taken at the critical values
R„k„co„s=0. While wo and co can in principle be cal-
culated according to Eq. (2.24), a more accurate ap-
proach is to use an integral expression involving the
linear solutions uo and uo [see Ref. [25]; note the mis-
print on the lhs of their Eq. (3.15)]:

f [g "(ri +6 )+8 *8 4*(d, ——k, )@ ]dz
0

1+leo R, go*+Bo* No dz

X2(uo, u)) (e ) (2.23c) (2.25)

The new operators X„Xz and N, , N2 are complicated
functions of the new variables, but we shall see below that
it is not necessary to know their explicit form. Xo is the
linear operator X defined in Eq. (2.19) with R replaced by
R„so Eq. (2.23a) is simply the linear part of Eq. (2.18)
with the already known solution (2.16), but where the
amplitudes are now functions of the slow variables [see
Eq. (2.21)]. The right-hand side (rhs) of Eq. (2.23b) de-
pends only on uo, which is already calculated at order
e'~ and is of the form of Eq. (2.16). Therefore Eq.
(2.23b) is an inhomogeneous boundary-value problem for
u&(x, z, t, X, T&, T) that can be solved by an integration
scheme similar to the one described above. After insert-
ing uo and u& into Eq. (2.23c), there is no need to really
solve this equation. Projecting instead the whole equa-
tion onto uo, where uo is the solution to the adjoint equa-
tion of (2.23a), the rhs of Eq. (2.23c) yields a solvability
condition. By rescaling now back to the old variables x
and t [and choosing a slightly different form of the expan-

3. Nonlinear coe+cients of the amplitude equations

To calculate the nonlinear coefficients a, c2, y, c3 of
Eqs. (l. la) and (l. lb) the introduction of the slow vari-
ables X and T is not necessary, because they only appear
in the linear part of the amplitude equations, which is
now known from Sec. II C 2. With this simplification one
obtains instead of Eqs. (2.23a) —(2.23c)

(JRB, +%0)uo=0 (e' ),
(ALB, +SO)u, =N, (uo) (e),
(ua, +Z, )u, =N, (u„u, ) —r,u, (e'"),

(2.26a)

(2.26b)

(2.26c)

where the operators N; and X2 are now simpler than
those above in Eqs. (2.23b) and (2.23c). Xo is again the
linear operator defined in Eq. (2.19) with R replaced by
R, and N, (uo) is also given by Eq. (2.19) with the func-
tions 8, g, and N replaced by Bo, go, and No. The
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remaining operators are sw ~Tw and c =csw Tw (2.29b)

and

0 0 —R,B

L = 0 0 —RB„
0 0 0

For the stationary pattern (SP) where Bo=0 the situation
is much simpler, because only one equation arises and the
whole procedure for deriving the remaining nonlinear
coefficients has to be done only once.

III. CONVECTION ONSET AND COEFFICIENTS
OF THE AMPLITUDE EQUATIONS: RESULTS

N, (u„u, )=(a,e,a„—a„e,a, ) ~, +a,
p2(p

8O

+(a,e,a„—a„e,a, ) ~,+a,
p2Q

To facilitate the calculation further, the complete solu-
tion (2.16) is not inserted into Eq. (2.26b), but rather we
consider the system (2.26a) —(2.26c) separately for the
traveling waves (Bo =0) and for the standing waves
(Ao=Bo). Then inserting uo into (2.26b) again yields ui
and the solvability condition for Eq. (2.26c) now reads,
after projecting onto u 0,

0= —Ao f 'u o*8+ouodz+
l &o l &o f 'uo*Nzdz

=:I,w, +I,
l w, l'w, , (2.27)

with uo defined by Eq. (2.16). Nz is Nz from above with
only the z dependence remaining and where also the am-
plitude factor Ao has been drawn out. We have

0 0 —R,
5Xo= 0 0 —R,

0 0 0

The integrals I, and I2 are calculated by using the expli-
cit numerical expressions for uo and N2. Now comparing
Eq. (2.27) with either Eqs. (l. la) or (l.lb) (with no cou-
pling terms, because only one wave is considered} one can
identify

I2
a=Re(g) and c2 =1m(g) with g= —(1+ico)

1

With the tools described in Sec. II the threshold prop-
erties, such as the critical Rayleigh number R„ the criti-
cal wave number k„and the Hopf frequency co„as well
as the coefficients for the amplitude equations (l. la) and
(l. lb), can now be calculated for the stationary and the
oscillatory bifurcation for different parameter combina-
tions. We have chosen L =0.03, P=0.6, which is ap-
propriate for a He- He mixture [12] and l. =0.01, P = 10
for a water-ethanol inixture [14,16,18].

In order to test the numerical calculations we have
compared R„k„and co, with the results of Refs. [24,25].
The linear coefficients of the amplitude equations for the
Hopf bifurcation are given in Ref. [25] and for 4=0 the
case of a simple Quid has to be recovered, where the non-
linear coefficient is known [35,58]. These values are all
reproduced. Furthermore, for unrealistic (free and pervi-
ous) boundary conditions, where all coefficients can be
calculated analytically, we obtain the correct results by
the numerics. Another test for some linear and the non-
linear coefficients is their behavior near the codimension-
2 point, where they have to fulfill some consistency rela-
tions (see Refs. [41,49] and Sec. IV below}.

For further reference, we first discuss very briefly the
linear stability behavior (for more details see Ref. [24]).
Figure 1 shows the stability diagram for a Quid with
L =0.03, P=0.6 for realistic boundary conditions. The
critical Rayleigh numbers R,"" (solid line) and R,~"
(dashed line) coincide at the CTP at

3000

2000

(2.28) -0.4 -0.3 -0.2 -0.1 0.0 0.1
I

'
I

'
I

'
I

'
I

8

Doing this separately for the TW's and the SW's, we ob-
tain a, cz as well as a, cz for the respective ampli-
tude equations. To get from these the coefficients of the
coupled amplitude equations (l. la) and (l. lb) one has to
extract the two special cases. For TW's (Bo=0) it is easy
to see that

1000

I 0

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

e=a and c2 c (2.29a)

while for the SW's (Ao=Bo) one gets for the nonlinear
part of Eq. (l. la)

—[a+@+i(cz+c3 )] l Ao l Ao =: (a +ic2 —)
l Ao l Ao

yielding

FIG. 1. Stability diagram for a Quid with L=0.03 and
P =0.6. The solid and dashed lines represent the stationary and
the oscillatory bifurcation, respectively. The curves for the crit-
ical Rayleigh number R, intersect at slightly negative 4', at the
codimension-2 point. The insets show the critical wave number
k, and the critical frequency ~, as functions of %.
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% CTp= —5.4346 X 10 . R,"does not end at the CTP as
for free boundary conditions, but exists in a small range
for + & +cTp. This has to do with the fact that the criti-
cal wave numbers k,""for the stationary and k, "for the
oscillatory bifurcation are different at the CTP and the
critical frequency is not zero there. R,'"' diverges for
slightly negative %' at 4d, a value that can be given
analytically for free, pervious boundaries:
%d = L/(1—+L). Here the characteristic polynomial of
the basic equations (2.5b) —(2.5d) becomes highly degen-
erate, which leads to the fact that R,"" for realistic
boundary conditions diverges at the same %'d and the
critical wave number k,""reaches a value independent of
L.

The critical wave number k;" for the Hopf bifurcation
stays nearly constant over the whole 4 regime, while k,""
decreases rapidly for positive + and becomes zero for
4) 4„=0.13 (see lower left inset of Fig. 1). This feature
of infinite wavelength has been discussed in detail in Refs.
[24,57] and the value of %„can be given analytically:
%„=L/( —,",, L) and—R, =720L/4 for 4) 4'„[24].
The upper right inset in Fig. 1 shows the critical frequen-
cy co, .

A. Stationary bifurcation
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The linear solution at threshold (2.16) simplifies for the
stationary pattern (SP) to

uo(x, z)= Aouo(z)e ' +c.c. , (3.1)

0

-20
-0.05 0.00 0.05 0.10 0.15

leading to the amplitude equation for Ao,

,a, a, =ex, +g2a„'a, —al &,I'a, . (3.2)

In Fig. 2 we give the coefficients of Eq. (3.2) as functions
of 4' for L=0.03, P=0.6 (solid lines) and L=0.01,
P = 10 (dashed lines). It is worth mentioning that for the
stationary bifurcation R„k„and go depend only on L,
whereas 'To and a depend on L and P. For %'=0 only the
P dependence is left.

The coherence length go, shown in Fig. 2(a), tends to
zero for 4'~+„, where the neutral curve becomes Hatter
and Aatter. The maximum value of go for negative 4' is
independent of L, but not the locations of these points.
For 4—+Cd, go seems to have a nonzero value, which is
independent of L. The relaxation time ~o shown in Fig.
2(b) diverges for %=%„. The blowup near 4=0 (see in-
set) shows that ro depends on P for ~II =0 (dotted line) and
we found ro ~ 1/P for small P (as for unrealistic boundary
conditions). This dependence is also known from calcula-
tions for a simple Iluid with realistic boundaries [35].
crosses zero for + slightly smaller than VcTp while for
free, previous boundaries one has ro(%'cTP) =0.

Finally, the nonlinear coefficient a is given in Fig. 2(c).
For 4 & 0 it is positive, so here we deal with a forward bi-
furcation. a diverges for 4=4, indicating that the am-
plitude Ao tends to zero. At this point the linear solution
(3.1) ceases to exist. For 4=0, a depends on P (in con-
trast to unrealistic boundaries, where a=const), but the
inAuence is noticeable only for P &0.2. This can be seen
from Fig. 3, where a(4=0) is plotted against P. We

8000
(c)

6000

4000

2000

0

0.08

0.06

0.04

0.02

0.00

2x 10

-2000
-0.05 0.00 0.05 0.10 0.15

FIG. 2. Coefficients of the amplitude equation (3.1) as func-
tions of + for L =0.03, P =0.6 (solid line) and L =0.01, P =10
(dashed line). (a) The coherence length go tends to zero for
V=%'„, where k, becomes zero and therefore the wavelength
diverges (see lower inset of Fig. 1). (b) The relaxation time v.

O

diverges for O=% . The inset is an extreme magnification of
the regime near 4=0. 0=0 is indicated by the dotted line. rO

changes sign for +&%'gTp. (c) The nonlinear coefficient a
diverges for %=%„. The inset is an extreme magnification of
the regime near '0=0. a changes sign at the tricritical point

For +)WT'c' the bifurcation is forward; otherwise it is
backward.
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FIG. 3. Dependence of a on the Prandtl number P for 4'=0.
The inAuence is important only for P &0.02 and goes like 1/P'
for small P (see inset).

FIG. 4. Dependence of the tricritical point %T'c' on L for
fixed P=0.6, where the proportionality 4&c'~ —L' is found.
The inset shows the dependence on P for fixed L =0.03. This
influence is important only for P & 1.

found ao-1/P for small P; see inset of Fig. 3 where we
plotted I/&a vs P (see also Ref. [35]). The same relation
holds for other values of 4 with a noticeable influence re-
stricted to still smaller values of P, so for usual fluids this
P dependence is unimportant. a changes sign at the tri-
critical point at O'T'c' and for P & O'T'c' the bifurcation is
subcritical. We always find %'cTp & 0 T'g &0, so the bifur-
cation is backward at the CTP. In Fig. 4 we show the
dependence of the location of the tricritical point on L
for fixed P =0.6. The proportionality %'zc'~ —L for
small L agrees with the result obtained for free boundary
conditions. The inset shows Wzc' as a function of P for
fixed L=0.03. Variations become important only for
P ( 1 (for free boundary conditions %T'c' does not depend
on P)

In Table I we give the numerical values of the
coefficients of Eq. (3.2) for our parameters P and I. for
three different values of O'. We have chosen the
codimension-2 point % cTp P 0 and a positive value

/2. The critical values R, and k, are listed, too.

B. Hopf bifurcation

Since we are discussing the TW's and the SW's sepa-
rately, we can consider a single amplitude equation hav-
ing the same form for both cases:

r B, A =e(1+ic )A +g (I+i c)B„A

(a+—icz)l Apl Ap . (3.3)

For this purpose, for TW's, we have transformed into the
comoving frame (x~x+Uzt) and for SW's we have set
Ap=Bp. The linear coefficients given by Eqs. (2.24) and
(2.25) are equal in both cases and are discussed in detail
in Ref. [25]. These results are compatible with ours ex-
cept for c, for small ~%~ values. Here we have improved
our numerical accuracy leading to a correction of our
former results on c, [28].

According to Eq. (2.24) one has to differentiate numeri-
cally the function cp(k) by evaluating co(k, +nb, k) at
different values of the wave number k, depending on the
order of the formula for the derivative (n =0, 1,2, . . .). It
has turned out that the result depends on the choice of
Ak and we have to find the optimal hko using the
method described in Ref. [59] (see Fig. 1 therein). This
Ako depends on O. In Fig. 5 we show as a result of these
sophisticated calculations c

&
as a function of 4 for

L =0.03, P=0.6. In most of the 4' regime there is no
qualitative change to the former results and c& changes
sign for 4(+cTP (here at ql= —0. 105). The remarkable
feature not discussed before is shown in the inset of Fig. 5

TABLE I. Coe%cients of the amplitude equation (3.2) and the critical values for three different 4':
Vcp„% =0, and% =4„/2.

+cTp

L=0.01, P=10
+cTp= 3.526X 10

0.02 +cTP

L =0.03, P=0.6
+cTp = —5.4346 X 10

0.06

R,
k,
4o
+0
a

1717.27
3.1216
0.148
1.93 X 10

—13.75

1707.76
3.1163
0.148
0.0535
0.0701

347.90
1.4817
0.048

39.67
10404

1758.26
3.1435
0.149
0.0024

—7.95

1707.76
3.1163
0.148
0.0943
0.0716

346.43
1.5245
0.050

12.46
1082
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0

-6 -3 x10

-0.6 -0.6 -0.4 -0.3 -0.2 -0.1 0.0

FIG. 5. Linear coefticient c& of the amplitude equation (3.3)
as a function o orf 4 f r L =0 03 P =0 6. The inset is a
magnification o e'fi ' f th regime near the codimension-2 point. c

&

changes sign very close to the CTP.

and the whole procedure described in Sec. II C 3 has to be
done with this expression, eventually leading to the non-
linear coefficients u and cz of Eq. (3.3). The results
are plotted as functions of 4 in Fig. 6 for I ==0 03
P=0.6 (dot-dashed lines) and L =0.01, P=10 (dashed
lines). a shown in Fig. 6(a), is negative in nearly the
whole 4 regime. So the bifurcation is in most cases bac-
ward, a fact that was already known from early experi-
ments in binary mixtures [9]. Only near 4=0, a
c anges sign anh ign and the bifurcation becomes forward (see in-

TWset). The location of this tricritical point +Tc depends on
the Lewis number L such as L f—or small L [see Fig.
8(a), so for an exploration of this regime a fluid wi'd with
large t. would be desirable. At the CTP a is positive.
The coefficient c which determines the nonlinear fre-
quency renormalization [see Eq. (3.4)], is shown m Fig.
6(b). It is positive over the whole qi regime and from the
inset one sees that cz diverges for small absolute values
of O'. This happens where the oscillatory branch ceases
to exist.

For the question of Benjamin-Feir instability one has

' 1/2
E

Ao(x, t)= x t
Fexp i K +0-

ko &o
(3.4)

and happens near the CTP. After the sign change,
c1 reaches a minimum and increases again for
increasing, going through zero not exactly at, ut

t %= —5.44X10 'very close to the CTP, namely, at 4'= —5.
= —5.4346X10 ). This is consistent with the de-( CTP

generate amplitude equation (1.3) valid near the CTP (see

From now on we regard only the nonlinear coefficients
of Eq. (3.3), which have to be derived individually for the
TW's and the SW's. For a) 0, Eq. (3.3) has the periodic
solution

0.0

-0.2
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-0.6

-0.8

I-0.4

-0.8

-1.2 I, I

-5 -4 -3 -2I, I

I

I
I

I
I
I

I

I

1

I

"3-1 x10

(a)

F =1—K /e, and A=a[co —(c2/a)]
—[c, —(c2/a)]IC2. These solutions are stable in a finite
wave-number band if a+c,c2) 0. Otherwise Benjamin-
Feir instability arises and the solution is unstable in the
whole range of existence It ( e [34]. If the bifurcation is

2 the TW's are stable with respect to periodic
Tw) 0erturbations [42]. We shall see below that for a )

this is always the case. If one of the coefficients a or
a is less than zero, the bifurcation is backward and the
solution (3.4) becomes unstable. There still exist, howev-
er, stable small-amplitude chaotic and even stationary
solutions in some range of the c, -c2 regime [47]. For
more general large-amplitude solutions near 4'Tc an am-
plitude equation up to fifth order has to be derived, while

onl the full numericsfurther away from O'Tc + + +Tc o»y
seems to be a reasonable approach.

-0.6 -0.5 -0.4 -0.3 -0.2 0.0

i(k x+co t)
uo(x, z, t)=Aouo(z)e ' ' +c.c. (3.5)

I. Traveling waues

For, e.g., a left TW (Bo=0) the linear solution (2.16)
becomes
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FIG. 6. Nonlinear coeKcients for traveling waves for
L =0.03, P =0.6 (dot-dashed lines) and L =0.01, P = 10 (dashed
lines). The insets are magnifications of the regime near 4=0.
(a) a is negative in nearly the whole 4 regime and changes
sign only for very slightly negative 4 (see inset). So the bifurca-
tion is in most cases backward, but is forward at the
codimension-2 point. (b) c2 is always positive and diverges at
that point where the oscillatory branch ends.
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to calculate a~w+c&c~zw, which allows for stable TW's
only for a positive value. In the case of forward bifurcat-
ing TW's (a )0) this quantity is negative except for a
very small range near the CTP. For L =0.03, P=0.6,
a becomes positive at %zz = —7.858X10, but the
solution (3.4) is stable only for —S.44X 10
with %~p= 5.4346X10; otherwise it is unstable.
This is consistent with the general investigation of the vi-
cinity of the CTP (see Ref. [41] and Sec. IV below).

2. Standing waves

Here the linear solution can be constructed, e.g., by
setting Ao =Bo in Eq. (2.16), leading to

uo(x, z, r) =2Aouo(z)cos(k, x )e ' +c.c. , (3.6)

and the expansion procedure of Sec. II C 3 yields a and
cz shown in Fig. 7 for the same parameters as above.

s%"a, plotted in Fig. 7(a), can have one or three tricritical
points. For our parameter combinations a changes
sign three times, but for L =0.03, P=5 this would hap-
pen only once. The tricritical points occur for small ab-

solute values of 4, so a is negative in most of the 4 re-
gime also. The inset shows a magnification of the regime
near 4=0, indicating that the tricritical point for SW's,
W~c, always lies below +~c. En the range where the bi-sw T%'

furcations for TW's and for SW's are both forward, we
found o. ) 2Q.', leading to TW's in this regime. TheSW TW

coefficient cz, shown in Fig. 7(b), has a similar behavior
TWas c z . It is always positive and diverges where the oscil-

latory branch ends. This is also consistent with the more
general considerations of Sec. IV.

3. Coupled amplitude equations

To describe the near-threshold behavior in the case of a
Hopf bifurcation in general, the coupled amplitude equa-
tions (l. la) and (l. lb) have to be considered, whose
coefficients can now all be given. The linear ones are
those from Eq. (2.24); a and cz are simply a and cz
given in Fig. 6. With a and cz from Fig. 7, it is easy
to calculate y and c3 according to Eq. (2.29b). The re-
sults are shown in Fig. 8(a) (y) and 8(b) (c3) for the same
parameters as above.

In Table II we give the full set of the coefficients of
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FIG. 7. Nonlinear coefficients for standing waves for
L =0.03, P =0.6 (dot-dashed lines) and L =0.01, P =10 (dashed
lines). (a) In contrast to a, a changes sign up to three
times, but is also negative in a large range of the 4 regime. The
behavior near 4=0 is shown in the inset. a is positive at the
codimension-2 point. (b) cz is always positive and diverges
where the oscillatory branch ends.
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FIG. 8. The remaining nonlinear coefficients for the coupled
amplitude equations (1.1a) and (1.1b) for L =0.03, P =0.6 (dot-
dashed lines) and L =0.01, P = 10 (dashed lines). (a)

$W TW (b) $W TW
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TABLE II. Coefficients of the amplitude equations (1.1a) and (1.1b) and the critical values for
different 0: %cTp 'PTc, %'= —0. 1, and 4'= —0.5.

L=0.01, P=10
0„,= —3.526x10-'

eTw= —5x10 '

L=0.03, P=0.6
PcTp = 5.4346 X 10

TTcw 7.858 X10-4

k,
cue

7p

Vg

Co

ko
Ci

C2

y
C3

@TW
TC

1717.53
3.1103
0.0636
0.105

—0.027
—1.517

0.148
—1.5
9X 10

21.37
13.59
26.10

—0.1

1912.79
3.1231
6.466
0.106
2.004
0.293
0.147
0.071

—0.151
0.690
0.021
0.368

—0.5

3347.49
3 ~ 1704

19.45
0.104
5.89
0.956
0.143
0.319

—0.106
0.192

—0.013
0.029

+CTP

1758.26
3.0754
0.0460
0.186

—0.661
—6.059

0.152
0.26
0.135

49.97
18.54
94.34

qp TW
TC

1759.83
3.0753
0.1997
0.185

—0.101
—1.386

0.152
—1.25

—1x10 '
11.47
7.49

13.99

—0.1

1916.44
3.1210
4.7997
0.183
1.231
0.213
0.148

—0.006
—0.190

1.643
0.166
1.002

—0.5

2498.69
3.2643

12.85
0.192
3.023
0.897
0.142
0.296

—0.119
0.632
0.0047
0.288

Eqs. (l. la) and (l. lb) together with the critical values R„
k„and co, . For L =0.03, P=0.6 we have chosen the
codimension-2 point 0 CTp the tricritical point for travel-
ing waves 'Pzz, and two more negative values %'= —0. 1

and —0.5. For L =0.01, P = 10 the CTP at
VcTp= —3.526X10 lies outside our resolution for the
nonlinear coefficients (here cocTp 0.006 and numerical
problems arise), so the results are given only for three
values of +.

+ -12
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C. Discussion

From the calculations of the coefficients of the ampli-
tude equations (l. la) and (l. lb) we found the bifurcation
behavior and the locations of the tricritical points for the
SP, the TW's, and the SW's. A codimension-2 bifurca-
tion occurs for slightly negative %=%'cTp (0, separating
the stationary bifurcation (0') PcTp) from the Hopf bi-
furcation (4'( VcTp). At the CTP the TW's and the SW's
bifurcate supercritically whereas the SP bifurcates sub-
critically. In Fig. 9 we give the locations of the CTP
(solid lines) and of the tricritical points for the TW's VTC
(dashed lines) and for the SW's O'Tc (dot-dashed lines) as
functions of the material parameters. Figure 9(a) shows
the dependencies on L for fixed P=0.6, where we found
the proportionality 4„;,o- L for small L—. In Fig. 9(b)
the dependencies on P for fixed L =0.03 are plotted. All
three types of solutions, the SP, the T%"'s, and the SW's,
show a transition from supercritical to subcritical very
close to the CTP and we found PTC (O'Tcsw Tw

(% CTp (0 Tc (0. For Lewis number L —+0 they all tend
to zero as shown in Figs. 4 and 9(a). The TW's and SW's
bifurcate subcritically in most of the range where the
Hopf bifurcation comes first, while the SP shows a super-
critical bifurcation in most of the range where the sta-
tionary bifurcation comes first. The normal-fm. uid %'=0
becomes a highly singular point for L ~0 and for small
values of L one has a near degeneracy. Perhaps this
scenario can be resolved experimentally using gas mix-
tures where L is of the order O(l).

0
0.00 0.01 0.02 0.03 0.04

~ -4-
CL

e
C) -2

0
0 8 10

FIG. 9. Dependence of the codimension-2 point 4&» (solid
lines), the tricritical point for traveling waves +Tc (dashed
lines), and the tricritical point for standing waves O'Tc (dot-
dashed lines) on the material parameters: (a) as functions of L
for fixed P =0.6 and (b) as functions of P for fixed L =0.03.
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Our calculated value %T& for the tricritical point of
the TW's differ significantly (more than a factor of 10)
from the experimentally measured one [13]and also from
that obtained theoretically by a mode truncation analysis
[22]. The value following from the mode truncation
method is an approximation in itself, but additionally the
wave number was adjusted to its value at I.=0, which is
not the optimal one [22]. A recent independent numeri-
cal calculation confirms our results [60]. The discrepan-
cies with the experimental values for the tricritical point
for TW's as well as for the SP (see below) may be due to
several reasons. Near %'=0 the experimental determina-
tion of the actual value of the separation ratio 4 is rather
delicate for a He- He mixture [61]. Furthermore, we
have performed our calculation for an infinitely extended
system while the experiments are of course always done
in a finite container. For the tricritical point for the SP
we always found 0 Tc & 0, a fact that is in agreement with
very classical theoretical results predicting the bifurca-
tion to be supercritical at least for 4=0 [58]. This
remains true if non-Boussinesq effects favoring rolls are
included [23] and seems to be in conflict with some exper-'
iments in He- He mixtures, where +zc')0 was found
[13]. It was shown for 4=0, however, that asymmetries
caused, e.g. , by a state equation similar to Eq. (2.2), but
including in addition a quadratic expansion coefficient,
may result in a backward bifurcation to hexagons [62].
This is a possible explanation for the discrepancy. Unfor-
tunately the form of the convection pattern cannot be de-
duced from the experiments of Ref. [13].

Our perturbative determination of the weakly non-
linear behavior is in some sense complementary to full
numerical calculations [26] and to an expansion around
the limit of the normal fiuid [27]. The latter one is re-
stricted to the range 4« —I and therefore excludes
the interesting regime near the CTP. Also, with the full
numerical calculations, the location of the points 4~c,
0 CTp and O'Tc are presumably not resolvable due to the
limited accuracy of numerical methods. Our calculations
are restricted to a small region around threshold, so that
they are not applicable to fully developed nonlinear con-
vection, where the other methods show their power.
However, our results for the coefficients of Eqs. (l. la) and
(l. lb) allow us to make contact between difFerent investi-
gations of these amplitude equations and convection ex-
periments in binary Auids. Examples are the measure-
ments and calculations of Refs. [15] and [47] and the
quantitative agreement between the direct measurement
of the nonrescaleable coefficients of the amplitude equa-
tion [15] and our calculated values (see also Refs. [25,28]).

IU. CODIMKNSION-2 BIFURCATION

The thresholds for the SP and for the Hopf bifurcation
are equal for a slightly negative %', so the very interesting
case of a codimension-2 bifurcation arises (see Sec. III
and Refs. [24,25]). Near such a point, rich dynamical be-
havior can be expected [48], which is one of the reasons
why binary Quid convection has attracted great attention.
The dynamics in the vicinity of a CTP can be described
by a generalized amplitude equation, now second order in

1760

1759

1758

1757
-56 -55 -54 -53

10
FIG. 10. Enlargement of the stability diagram of Fig. 1 near

the codimension-2 point for I.=0.03, P=0.6. The solid lines
represent the stationary bifurcation, the dashed lines the Hopf
bifurcation. The lines for the critical Rayleigh numbers inter-
sect at PcTp= 5.4346X10 . The inset shows the critical
wave numbers, which are different here.

Near the CTP two eigenvalues of the linear problem
are near zero, so that the respective eigenmodes are only

time, which was first derived in Ref. [38] for the case of
free and permeable boundary conditions, where the criti-
cal wave numbers coincide at the CTP (k;"=k,""). For
realistic boundary conditions, however, the critical wave
numbers for the stationary and the oscillatory bifurcation
are not identical at the CTP [24,25]. Therefore one ex-
pects in the weakly nonlinear range near the CTP new
characteristics due to this wave-number difference [41].

In this section all figures and numerical values corre-
spond to a Quid with Lewis number L =0.03 and Prandtl
number P =0.6. Figure 10 is an enlargement of Fig. 1 in
the neighborhood of the CTP. The solid and dashed lines
show the respective critical Rayleigh numbers R,""and
R,'"; in the inset we give the critical wave numbers k,""
and k;". In Fig. 11 the neutral curves Ro(k) are given
near the CTP for three different values of O'. Again, the
solid lines correspond to the SP [R o'"(k) ] and the dashed
lines to the Hopf bifurcation [Ro"(k)]. In Fig. 11(a) we
have 4 =+cTP = —5.4346 X 10, in Fig. 11(b)
4= —5.33X10 )+cTp, and in Fig. 11(c)
+= —5.54X10 &'PcTP. An important fact is that the
neutral curve for the Hopf bifurcation (dashed line)
ceases to exist when it reaches the neutral curve for the
SP (solid line). Here the two (imaginary) eigenvalues de-
generate to zero, and therefore also the frequency van-
ishes. Hence the Hopf frequency co, [i.e., the frequency
at the minimum of the curve Ro"(k)] is nonzero at the
CTP. From Fig. 11 one can also see that there is already
an overlap of the two neutral curves for
e=(R —R;")/R;"(10 . In this range the canonical
amplitude equations given in Eqs. (l. la) and (l. lb) are no
longer applicable, because the assumption that all eigen-
modes except the critical one are strongly damped is
violated (see Sec. IV A). Therefore the more general CTP
amplitude equation (1.2) has to be used here.

A. Degenerate CTP amplitude equation
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weakly damped or weakly growing, whereas all the other
eigenvalues are large and negative. Therefore in the vi-
cinity of the CTP the linear dynamics can be described
phenomenologically by a second-order characteristic po-
lynomial,

cr e—(R, k)cr —d(R, k }=0 . (4.1)

With the arguments following Eq. (2.15) the conditions
e =0 and d =0 give the neutral curves R 0"(k) and
Ro "(k), respectively. Expansions of e and d up to lead-
ing orders yield

e =PR"' C

R osc
C

—
$0 „,(k —k;") (4.2a)

R —R""
d =5R"" [1+g,go „„(k—k,"")]

C

(4.2b)

with positive constants p and 5 [41]. The generic normal

form that reflects this linear and also the weakly non-
linear behavior of this codimension-2 type and incorpo-
rates the invariance under space-time translations and
space reflections is given by Eq. (1.2) for appropriately
scaled time and space coordinates. The terms with g1,
g3 f4 and f5 have been kept in Eq. (1.2) to have con-
sistently all terms up to the order O(q ). These terms
have been neglected in Ref. [41] because they provide no
essential contribution in the limit g~O, but we shall see
below that they make corrections up to 5% in the present
system. Strictly speaking, Eq. (1.2) describes a
codimension-3 bifurcation with r, s, and q as control pa-
rameters. However, to apply, this equation to binary
fluid convection, g is Axed by the small finite wave-
number difference at the CTP (see below). As one conse-
quence, the interesting CTP features occur at finite values
of r and s in Eq. (1.2), and not in the limit r, s ~0

For identifying the generic structure of Eq. (1.2), it is
useful to keep only nonrescaleable parameters, as has
been done in Ref. [41]. After this form is found, howev-
er, it is more useful to transform back to the physical
coordinates to allow easier contact to the real system and
in our context to the amplitude equations given in Sec.
III. Equation (1.2) then reads

a 2 —pR" R —R'"
+g,'.„(a„—ip}' a, ~+—[(f,+f, }l~ l'a, ~+f, ~'a, ~*]

C

R stat
$2

C

$2—~, g.,„.,[f.l
~l'a. ~+f, ~ 'a„~']=0 . (4.3)

1/2

2 =Fe'~" " with F= e(R, q )
5f2

(4.4b)

' 1/2

e(R, q) [f, +go„„q(f4 fs)]—d(R,q)—5

2

In most of the known real systems showing a Hopf bifur-
cation, co decreases with increasing control parameter R.
This is the case only if f, +go „„q(f4 f5 ) (f2 [see—Eq.
(4.4b)). It is expected by the general analysis and will
turn out below that go„„q(f4 fs} is only a small—
correction to f, . Thus for decreasing co(R) only two pos-
sibilities are left near the CTP: a forward bifurcation of
the SP (f, )0) and f, (fz or a backward bifurcation of
the SP (f, (0). In binary fiuid convection the SP in fact
bifurcates backward at the CTP and co decreases with in-
creasing R, so this is consistent with the general argu-
ments. On the curve of vanishing frequency
[co(R,V)=0], the TW solution coincides with the SP
solution.

1/2

A =Fe'~" with F= d(R, q) 52f
(4.4a)

and the TW's

ik' x
The fast variation e ' is separated out, so that with
3 =Fe' +"", the SP is now given by q, =0 and the
Hopf bifurcation by q, =p. Equation (1.2) can be
recovered from Eq. (4.3) by introducing the
dimensionless parameters r = (p /ri 5)(R R,'"), —
s =(P Iri 5)(R,'" R,"") and P~ =—(p/g)[(P go „R,'")/
5]'~ with p=k;"—k,'"'. The time and space scaling is
given by t =(p/q5)T and x =( I/q)[(p go „,R, ")I
5]' X, respectively, and the other values are

coefficients of Eq. (4.3) are considered as independent of
the Rayleigh number and the separation ratio and are
determined in Sec. IV B below.

The simplest spatially periodic solutions of Eq. (4.3) are
the SP
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The stability of these solutions against inhomogeneous
perturbations U(x, t) and also the relative stability of the
simple SP, TW, and SW solutions have been investigated
to some extent in Ref. [41] by discussing the characteris-
tic fourth-order polynomial obtained from Eq. (4.3) after
linearization with respect to the perturbations.

B. Canonical amplitude equations and coe%cients
of the CTP amplitude equation

In Ref. [41] it was shown that the main stability prop-
erties of each simple solution against sideband perturba-
tions can be recovered by deriving from Eq. (4.3) the
respective canonical amplitude equations (first-order in
time) of the type of Eqs. (l. la) and (l. lb) and calculating
the stability with these simpler equations. The relative
stability of these simple solutions can also be calculated
by regarding coupled amplitude equations of similar
forms. Moreover, the derivation of the canonical ampli-
tude equations from Eq. (4.3) leads to relations between
the coefficients of Eqs. (l. la) and (l. lb) given in Sec. III
and the still unknown coefficients of Eq (4..3). From this
we also get a measure for the range of validity of these
equations near the CTP. Thus we derive in the following
diff'erent canonical amplitude equations from Eq. (4.3).

1756
2.9

(a)

l ' « I (

3 3.1 3.2 3.3

1. Stationary bifurcation

In the limit (R —R""(/R""«[R'"—R""[/R"" lt
makes sense to look at the stationary solution of the
linear part of Eq. (4.3), A =e'~" with q, =0. An expan-
sion of this solution around R, =R,"",q, =0 with the an-
satz

1760

l
I

'~

l

'I
'~
1

I
'I
1

\

\

A=a' B(X,T) with e=
R stat

C

(4.5)

1758

and the time and space scaling T=et, X=@' x leads
after insertion into Eq. (4.3) to a solvability condition at
order e ', which represents the amplitude equation (3.2)
for the stationary bifurcation

1756
3 3.1 3.2

I I I I i I I I I ( I I I I I I

3.3

R osc R osc R stat
p2 (kosc kstat)2
WOOSC C C R Sfgg

C C

BTB

1762

1760
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(c)

l
I
l
l
1

I

\

\
\

6=B+g„.,a'B f. . . , ~B~'B .— (4.6)
C

By comparison we get expressions for ~o'" and e"".

2. Hopfbifurcation

Here we look at the limit
~R —R;"~/R"'«~R'" —R""~/R,"" for a linear solu-
tion of Eq. (4.3) of the form A=e' '+q 'with q, =pand
co=co, (see below). Again we make an expansion around
R, =R,"', q, =p with the ansatz

A=a' [C (X T T, )e '+Cz(X T, Ti)e ']e
1756

2.9 3 3.1 3.2 3.3
R —R'"

with e=
R osc

C

(4.7)

FIG. 11. Neutral curves for the stationary bifurcation (solid
lines) and for the Hopf bifurcation (dashed lines) near the
codimension-2 point for I- =0.03 and P =0.6. (a)
0 = —5.4346x10-'=%~„, (b) % = —5.33x10-'&4„„{c)
0 = —5.54X10 '(%cTp.

We have introduced the two times T=et and T, =e' t
and for the space scaling X=e'~ x. Inserting this into
Eq. (4.3) leads at order e to an expression for the group
velocity U and at order e to the coupled amplitude
equations for the Hopfbifurcation, Eqs. (l. la) and (l.lb).
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3. Coefficients of the CTP amplitude equation
and consistency relations

Now comparing Eq. (4.6) with Eq. (3.2) and the cou-
pled equations following from the expansion (4.7) with
Eq. (l. la) and (l. lb), we obtain the following general ex-
pressions for the linear values (p =k;"—k,""):

pR osc ~ stat g osc
stat c

~2 2 (4.8a)
gg stat

C g OSC
C

oi, =5RC'" go „,tp (I+g3$0 st tp)

g osc g stat

g stat
(1+ g )g 1 ~0, statP

C

(4.8b)

Ug 4 ost tako, statp( + 2g340, statP
C

g osc g stat
C C

g stat
C

(4.8c)

OSC-
Vo

OSC
C

(4.8d)

5
co = — (1+gi40,.t.r»pic

(4.8e)

&R s™ko,.t.t
ci =

PR:"ko,.s.~, &R,""ko,st.t

3g 3 ko, statP

(4.8fl

and for the nonlinear coe%cients

stat 5
p2R stat

OSC— 6
p2R oscf

(4.9a)

(4.9b)

$2
Ift+ko, ,t.x f4 f5]-

R co
(4.9c)

25
2R oscf 3

C

25
C3 3 [f1+(0, t.tp(f4 —f5)]=2 2p3R osc~

(4.9d)

(4.9e)

%Pith these relations, together with the numerical values
given in Tables I and II, we are able to calculate the new
coefficients except one of Eq. (4.3). Due to the fact that
we have more equations than unknown quantities, some

connections between the coeScients of the amplitude
equation for the stationary bifurcation and those for the
Hopf bifurcation have to be fulfilled at the CTP. As we
have described in Sec. II, these amplitude equations (3.2)
and (3.3) have been obtained by independent perturbation
expansions starting from -the basic equations. Therefore
such consistency relations allow further checks for our
numerical calculations of Sec. III.

For the linear values we have the six relations
(4.8a) —(4.8f) for the four unknown coefficients p, 5, gi,
and g3, so due to this multiplicity two consistency checks
are left. The general expressions of Eqs. (4.8a) —(4.8f) be-
come simpler when being calculated at the CTP, where
R;"=R,""=RCTP. From Eqs. (4.8a) and (4.8d) we get P
and 5, and from Eqs. (4.8b) and (4.8e) we get g, and g3
(the coefficients gi and g3 describing the asymmetry of
the neutral curve are given for the case of a simple fIuid
with free boundaries in Ref. [36]). With these values we
first see that the correction due to g, in Eq. (4.8e) is about
5% and the corrections due to g3 are 3% in Eq. (4.8b)
and 4.5% in Eq. (4.8c). If we now calculate Ug according
to Eq. (4.8c), we get U = —0.665 instead of the numerical
value —0.661 given in Table II, which is a discrepancy of
about 0.6%. The value of c, =0. 194 from Eq. (4.8fl
seems to deviate too much from 0.26 (see Table II), but
here we have to keep in mind that c

&
varies strongly near

the CTP (see Fig. 5) and that without the g3 correction
Eq. (4.8f) would give c, =0. So the CTP amplitude equa-
tion (4.3) forces a behavior of c, , which is unexpected
from earlier work [25,28], but was found by our improved
numerics discussed in Sec. III.

The five equations (4.9a) —(4.9e) for the nonlinear
values yield the four coefficients f„f2, f3, and (f4 f, ), —
so one consistency check is left, namely, c3 =2c2 [see Eq.
(4.9e)], which is fulfilled to about 5%. With the equa-
tions discussed we cannot derive f4 and f3 independent-
ly. The correction due to (f4 —f5) is about 1.6%%uo. In
Table III we give all the coefficients of Eq. (4.3) for
L =0.03 and P =0.6 at the CTP.

4. Zero group velocity near the codimension-2 point

From the calculation of the threshold behavior we
know that the group velocity v is positive over most of
the tP range [see also Ref. [25]). However, it changes sign
at 4= —1.25 X 10 and is negative at the CTP. This is
consistent with the general behavior following from Eq.
(4.3) [see Eq. (4.8c) and the discussion in the preceding
paragraph]. From Eq. (4.8c), we can calculate the zero of
the analytical expression valid for vg near the CTP, yield-
ing

TABLE III. CoeScients of the eodimension-2 amplitude equation (4.3) for I.=0.03, P=0.6 at
= —5.4346 X 10

RcTp = 1758.26
p = —0.0681
gtt „,=0.152
go „„=0.149

P= 0.006 12
6 =0.0018

g t go, t tp = —0.05 1

f, = —291.04
f, =4.94

f, =339.37
(f4 fs )ko, .t.Z =4 ~36-
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g osc g stat
C C

g stat
C

(k stat kosc)

X [1 sg g (kstat kosc)] (4.10)

ro"(t3t —
ugly)„)8 =eo(1+ico)8+go „,(1+ic, )t)28

(a—'"+icz)l8l 8 —(y3+ic, )lDl28 .

(4.12b)

Inserting the values of Table III and translating the
threshold difference into the separation ratio, we get
%(us=0)= —1.06X10 . This is somewhat larger than
that calculated directly in Sec. III, but still in reasonable
agreement (note that on the tIt scale this point is already
about one order of magnitude away from the CTP, we
had 0 cTp= 5.4346 X 10 ). This result gives us an esti-
mate for the validity range of Eq. (4.3), i.e., down to
which value of + & OcTp the second time derivative of
Eq. (4.3) is relevant. Obviously the tricritical point for
TW's, +TC = —7.850X 10, is also included. An ampli-
tude equation describing this tricritical point and that for
the SP, in addition to the CTP, is given in Appendix A.

The zero of Uz is a general feature of the CTP equation
(4.3), as can be seen from Eq. (4.8c). To occur, however,
inside the range of existence for the Hopf bifurcation, the
inequality p /g, & 0 has to hold, which is in fact the case
for binary fluid convection.

5. Interaction between traveling waves
and stationary pattern

5ye=, „., l. 2f i+go ..g(fs 2fs)]-,
C

(4.13a)

COc

4 re stat
C

(4.13b)

C

$2
5 3 osc f 1 Co, statPf 4R osc~

(4.13c)

(4.13d)

If we had derived Eqs. (4.12a) and (4.12b) directly from
the basic equations as was done in Sec. II for Eqs. (l. la)
and (l. lb), the coefficients y2 3 and c4 5 would be known.
So we could in principle calculate fs, and f5 independent-
ly and three more consistency checks would be left.

C. Traveling-wave stability near the CTP

The coefticients 7p 7p Ug cp c&, u"", a'", and c2 are
given in Eqs. (4.8a) —(4.8$ and (4.9a) —(4.9e) and the new
coupling coefficients are

In the limit

s™l

g osc ' g stat
C C

2 2&~ kO, statP

R —R"
C

g OSC
C

and e, = g stat
C

g stat
C

(4.11b)

with the different time and space scaling Tp =E'pt,

T, =ep t, T, =e, t and Xp=E'p x X =E' x, but with ep
and e, of the same order. So we get at order ep, solvabil-
ity conditions in the form of coupled equations for 8 and
D, which read, after rescaling back to the physical units,

v~"'d, D =e,D+go „„t)„D a""lDl D (y2+—ic~)l8l D—,

(4.12a)

when the difference between the thresholds of the SP and
of the TW is small compared to the wave-number
difference, the interaction between the two TW solutions
and the SP can be investigated in terms of three coupled
canonical amplitude equations, which are derivable from
Eq. (4.3). For this purpose we now expand simultaneous-
ly around the linear solutions of Eq. (4.3) for the SP,
A""=e'~ with ""=0and for the TW A'"=e' '+

'1C

with q,'"=p and co=co, . For simplicity we only study
the interaction of one TW solution with the SP, so we
formally make the ansatz

A =eo~ 8(To, T, ,Xo)e ' +e,'~ D(T„X,), (4.11a)

with

C(C2
TW &

CX

(4.14)

with c „c2 given by Eqs. (4.8f) and (4.9c) and a
is a " of Eq. (4.9b). Using the equality in Eq. (4.14) to
get the boundaries of the unstable interval, we can
rewrite this into a second-order polynomial for
s=(R;"—R,"")/R,"". It turns out that one solution,
s;„,is negative and O(1), while the other one can be ex-
panded in powers of go „,g, leading to

3 3 4
g300, t tP +O(ko, t tP (4.15)

With the values of Table III we obtains,„=—2. 1 X 10 which corresponds after translating
into the separation ratio to 4'= —5.4388X10 . For 4'
below this value the TW's are Benjamin-Feir unstable
and this value agrees very well with that obtained directly

In Ref. [41] it was predicted on a phenomenological
level that the supercritically bifurcating TW's become
Benjamin-Feir unstable in some neighborhood of the
CTP. It was shown that this phenomenon is induced
only by the characteristics at the CTP: supercritically bi-
furcating TW s, subcritically bifurcating SP, and finite
wave-number difference, which is all fulfilled in binary
Auid convection (see Sec. III). Since the coefficients of
Eq. (4.3) have been determined, we can now repeat quan-
titatively the arguments of Ref. [41] and we can compare
with the direct calculation of the Benjamin-Feir instabili-
ty described in Sec. III.

The criterion for Benjamin-Feir instability of the TW
solution (4.4b) calculated in the framework of the full
CTP equation (4.3) is equivalent with [31,39,41]
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in Sec. III. On the other hand, it was shown in Sec. III
that the boundary for Benjamin-Feir instability is essen-
tially given by the zero of c&, due to the steepness of c

&

near this point. If we calculate this zero from Eq. (4.8f),
we get in lowest order of go „,g the same expansion as
given in Eq. (4.15), so this is also consistent with our nu-
merical result. Via the analysis described here it becomes
clear now that the origin of the Benjamin-Feir stable
range for the TW's is induced by the finite wave-number
difference k;"—k,"".

To investigate the question up to which value of the re-
duced Rayleigh number @0=(R —R;")/R;" the TW
solution exists stably inside the interval [s,„, s =0], one
has to remember that the frequency co, decreases near the
CTP with increasing e [see Eq. (4.4b)]. Neglecting the
small correction terms g, and g3, we find from Eq. (4.4b)
together with Eqs. (4.2a) and (4.2b) and q =p the curve
where the frequency vanishes:

R stat

(4.16)

Near the CTP, the relative distance s of the two thresh-
olds is proportional to (q' —VcTp). Due to the finite Hopf
frequency at the CTP, eH is finite, too, and from Table
III we find e& = 1. 1 5 X 10 . The slope of the curve
(4.16) inside the e splane -is given by
B&H/Bs= foal(f i f2)= —0.0167—. As indicated in Ref.
[41], however, the TW's become unstable against side-
band perturbations already before reaching the curve
co(R, q)=0. This is due to the finite wave-number
difference between the SP and the Hopf bifurcation near
the CTP. The instability of the TW can in principle be
calculated from Eq. (4.3), but more simply by taking first
the limits leading to Eqs. (4.12a) and (4.12b). Investigat-
ing then the stability of the equilibrium TW solution
~B~ =so/a'" of Eq. (4.12a) at the band center, we find
that small perturbations ~D~«(e, /a"'")' grow for
eo&e,,:=sf,/(fz —2f, ). At the CTP we have e,=O
and because of f2« f, the slope of e, with s has
roughly half the value as the slope of eH, more definitely
BE /Bs=f /(2f, f )= —0.008—4.

So the TW's become unstable against a stationary roll
pattern for very small e- 10 and the range of stable
TW's near the CTP seems to be unmeasurably small for
Quid mixtures. Perhaps gas mixtures would allow the in-
vestigation of the discussed effects.

D. Discussion and outlook

By extracting from the degenerate amplitude equation
(4.3) valid near the CTP the limits of the SP and the Hopf
bifurcation, we have determined all the coefficients except
one of this new equation from the already known ones of
Eqs. (l. la) and (l.lb). In this way we found very helpful
consistency relations and could identify some special
features of the TW's as intrinsic CTP properties. So the
sign change of the group velocity vg and the Benjamin-
Feir instability can be interpreted as typical CTP phe-
nomena. Also, a minimal range of validity for the CTP
equation (4.3), at least with respect to its linear properties

is given by the point %(v =0).
For small values of L one finds (k;"—k,"")=:p~L

and co, ~L at the CTP (see also Ref. [25]), %crp, Vrc,
and 4Tc ~ L and 4&c' ~L, an observation which has
various consequences for the ranges of validity of the
different analytical descriptions in the vicinity of the
CTP. When using the canonical amplitude equations
(l. la) and (l. lb), the dynamics of the amplitudes 3 and B
have to be slow on the scale of the inverse Hopf frequen-
cy 1 /co„which imposes near the CTP the restriction
e, ~

A
~ «co, ~L. Also, the overlap region of the neutral

curves shown in Figs. 11(a)—11(c), and therefore the pa-
rameter range where co(R, q ) =0, must be avoided. Due
to this, the even stronger restriction e,

~
A

~
&&p ~L

must be respected when using Eqs. (l.la) and (l. lb) near
the CTP. To cover also the overlap region of the neutral
curves, the more general equation (4.3) may be used in
the larger range (R —R, )/R, =p ~ L, which represents
a circle with radius O(L ) around the crossover of the
two threshold curves of Fig. 10. This region, however,
also includes the tricritical points 4T& and 4&c', and then
the validity of Eq. (4.3) over the full regime becomes
questionable, because near a tricritical point, fifth-order
terms have to be included [44—46]. To include both the
tricritical behavior and the full dynamics of the CTP, an
extension of Eq. (1.2) up to quintic order in the amplitude
must be done. This is briefly sketched in Appendix A,
where the new equation is derived by symmetry argu-
ments (see also [29,41,40]). This rather complicated
equation (Al) should then cover situations where p ~L

lqTC""' —0'CTp~~L, and is valid for (R —R, )/
R, ~L2.

One assumption for the derivation of the amplitude
equations is the fact that all modes of the linear part of
the Eqs. (2.5b) —(2.5d), except the critical one given by
Eq. (2.16), are damped on a sufficiently short time scale so
that they can be adiabatically eliminated. In our case an
x-independent solution uh, =(O, gh, (z, t), 0) of the
linear part of Eqs. (2.5b) —(2.5d) exists and has a damping
rate L, so its typical time scale is 1/L. Comparing away
from the CTP the time scale 1 /e for the mode

i(, k x+co t)
Ae ' ' and 1 /L for uh, , we can now distinguish
three regimes for increasing e (e «1): e «L (regime I),
e=O(L ) (regime II), and e=O(L) (regime III). Obvi-
ously, in regime I the dynamics of uh, are much faster
than those of mode A and can thus be adiabatically elim-
inated. This regime mainly gives the range of validity for
our canonical amplitude equations.

In the limit of large Prandtl numbers the mode
uh, (z)=(0,f(z), 0) is antisymmetric with respect to the
middle of the fiuid layer (z= —,') and for free boundary
conditions one has explicitly uh, (z)=(0,sin(2mz}, 0)
[63]. Choosing e=O(L) and adding now Cuh, (z) to the
ansatz (2.16},one can derive the coupled amplitude equa-
tions

r (B, —(v +v C)B, )A =[@(l+ic )+g (1+ic, )B„

+d, C+d C +d B„C
—(a+ ic, ) I a l ]3 (4.17a)
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—V.q (5.1)

+e3AB (4.17b) Here q, i, and s; are stochastic terms with the autocorre-
lation functions

Again, both amplitudes A and C vary slowly on the
scales of the wavelength 2n. /k, and of the inverse Hopf
frequency 2~/co, of the pattern. The structure of these
equations has been described for free and permeable
boundary conditions in Refs. [63], where the terms d2,
d3, and U& were omitted. The additional terms b; and U&

for the Hopf bifurcation are usually complex, while ~c,
d;, e; are real and al ~ I. are real constants. By construc-
tion, Eqs. (4.17a) and (4.17b) hold in regime III. In re-
gime II the scaling e~L leads to a similar set of equa-
tions, now with vanishing coupling coefficients
b =b =e =e =0

1 2 2 3

To include the behavior near a tricritical point, an ex-
tension of the canonical amplitude equations up to quin-
tic order, as discussed ab'ove, would be sufficient in re-
gime I. When proceeding near the tricritical point to re-
gime II, one violates the above-described restrictions
e, l

A
l

((L for the canonical amplitude equations.
Therefore the homogeneous mode couples to the general-
ized equation given in Appendix A, and not to a canoni-
cal amplitude equation up to quintic order. So the cou-
pling of uh, (t) to one of the amplitude equations (l. la)
or (1.1b) seems relevant only in the strongly subcritical
range of the TW, where calculations on the dispersive
chaos [15] were done with an amplitude equation up to
cubic order [43,47]. Still existing quantitative differences
between theory [43,47] and experiment [15] may origi-
nate from the fact that the calculations are done in re-
gime I, while the experiments mostly correspond to re-
gime II or III.

V. INFLUENCE OF THERMAL NOISE

A. Modified basic equations

In principle thermal noise is always present in convec-
tion experiments, but is negligible in most situations.
Nevertheless, noise may actually trigger the convection
above onset, which without any disturbances would not
be manifested. Near the convection onset the system is
most sensitive to thermal Auctuations and their inAuence
have been directly detected in two recent experiments
[18,55]. To consider a stochastic inhuence theoretically,
the basic equations (2.1b)—(2.1d) have to be generalized
by including the respective fiuctuating terms. In the case
of thermal noise in simple Quid convection, these terms
have been given by Landau and Lifshitz [56] for the ve-
locity and the temperature fiuctuations. We have in addi-
tion calculated the term describing the concentration
fluctuations along the lines of their derivation [64] (see
also Ref. [65]). With the dimensionless scaling from Sec.
IIA we again get the equations for the deviations from
the heat conduction state (2.5a) —(2.5d), now with the fol-
lowing additional terms on their rhs's (for a more detailed
discussion see Ref. [52]; summation over doubly occur-
ring indices is assumed):

( q;(r, t )q (r', t') ) =2Q, 5, 5(r —r')5(t t')—,

(s; (r, t)si (r', t')) =2Q 2(5, 15 +5; 5 I)

X 5(r —r')5(t t'), —

(i, (r, t)i (r'. , t')) =2Q35; 5(r —r')5(t —t'),

(5.2a)

(5.2b)

(5.2c)

and no cross correlations. The Q,. are the strengths of the
respective thermal fluctuations [64,65]:

g 2(y 2d 3
V

Q, =k~TO, Q2=k~TO
v Ic ppcp dK pp

(5.3)

B. Amplitude expansion

Following Graham [52,66], one can derive an amp]j-
tude equation similar to Eq. (3.3) with an additional term
describing the noise. We have generalized this derivation
to the case of binary Auids and we here briefly outline the
differences to Grahams's results. Our Eq. (2.18) now be-
comes

(WB, +X)u=N(u, u)+I, (5.4)

with I being the vector of the new terms (5.1). We again
insert the expansion u = e'' up+ eu, +e u2 with
e=(R —R, )/R, and formally also the slow variables
X=@' x and T=et. In the stochastic terms the fast
variation is separated out (variations in the y direction
are again omitted, due to the quasi-one-dimensional situ-
ation under consideration):

t(k, x+co t)
q;(x, z, t)=q, (X,z, T)e ' ' +c.c.

i(k x+m t)
i, (x,z, t)=i, (X,z, T)e ' ' +c.c. ,

i(k x+~ t)
s, (x,z, t)=s,"(X,z, T)e ' ' +c.c. ,

(5.5a)

(5.5b)

(5.5c)

with (q, , q ) =(i, ,i ) =(s,",s& ) =0. Here the terms
with Q,. , i, , and s," describe the noise at positive wave
numbers and frequencies only [66], so that the resulting
correlations are

The new parameters are the Boltzmann constant kz, the
heat capacity c, and the chemical potential p. c is the
concentration in the original scaling, so Bp/Bc is a pa-
rameter in original units. Tp is the absolute working
temperature.

Due to the Soret effect and the Dufour effect one would
in principle also have fluctuating terms with nonvanish-
ing cross correlations. These have been neglected for
simplicity, and it will turn out later that the main contri-
bution comes from the velocity Iluctuations given by Q2,
while the other contributions are at least three orders of
magnitude smaller.
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(q,*(X,z, T)q (X',z', T')) =2Q, 5, 5(X —X')5(z —z')5(T T—'), (5.6a)

(s,'. (X,z, T)s& (X',z', T'})=2Q2(5, &5 +5, 5 I )5(X—X')5(z —z')5(T T—'),
(i,*(X,z, T)i~(X', z', T') ) =2Q35~5(X —X')5(z —z')5(T T—') .

(5.6b)

(5.6c)

These fluctuating terms are considered small. Therefore,
with the same arguments as in Ref. [52], I contributes
only at highest order e (if Q&, Qz, Q3 (e r

) Sin.ce the
linear coefficients except Q of Eq. (1.3) are already known
from Sec. III, we need to consider only the fast variables
x and t for the actual amplitude expansion. This is analo-
gous to Sec. II C 3 in order to get the simplified deriva-
tion of the amplitude equation. So we again end up with
Eqs. (2.26a) and (2.26b), while Eq. (2.26c) is replaced by

I2 20=(1+ico)AO+(1+ico) ~AO~ Ao
I1

1+lcp+ Up Z I Z dZ
I1 0

(5.9)

the projection of Eq. (5.7) on u 0 yields a solvability con-
dition similar to Eq. (2.27):

(AtB, +%0)u2=N2(uo, u, ) —Xzuo+I (e ) .

Up to this order one has

(5 7) where I, and I2 are defined in Eq. (2.27) and

i(k x+co t)I=e
—ik,L —B,q,
—ik, i —8,&',

I(z) =
—ik, q, —B,Q,

—ik, i —B,i, (5.10)

+C.C. (5 8)

With the ansatz

uz(x, z, t ) = A2

&p(z)

gp(z)

I
@2(z)

ik,

i(k X+CO t)
e

Defining now &QF:=[(1+ico)/I&]J auo* Idz, we re-
cover Eq. (1.3) from Eq. (5.9) after considering again the
slow variables. The integral J Ou o" Idz can be evaluated
by integrating by parts. Following again Graham's cal-
culation [52,66], we eventually get for the noise term in
Eq. (1.3)

21+lcp
Q, f [B,8 *B,8 +k'6 *6 ]dz+Q, f [k'O'C *d'@ 2k, @ *8'—4 +k'C *4 ]dz

0

+ Q, f '[a, Z', *a,Z,'+k,'Z,'*Z,']dz
0

(5.11a)

with the correlation C. Strength of the noise term

(F*(x,t }F(x',t') ) =5(x —x')5(t t')—(5.11b) 1. Free, pervious boundary conditions

and

(F(x, t)F(x', t')) =0 .

This result is quite general and yields the strength of the
noise term for realistic (rigid and impervious) as well as
for unrealistic (free and pervious) boundary conditions
for the stationary and for the Hopf bifurcation by
evaluating Eq. (5.11a) with the respective eigenfunctions.
This will be done in the following subsection.

For unrealistic boundaries, analytic linear solutions are
known [9,38], and Q according to Eq. (5.11a) can in prin-
ciple be calculated analytically. For the stationary bifur-
cation the relevant linear solutions are @0(z)=&2 sinmz,
Bz(z}=(P/3)(1+4)sinvrz, rto(z)=(PV/3L)sinnz, +0(z)=sinvrz, which yield for I

&
from Eq. (2.27)

I
&

= (9+2/8 )vr P. Inserting these expressions into
Eq. (5.1 la) eventually gives the noise term for the
stationary bifurcation [with k, =m. /2, R, =—", m. a,
a = 1/(1+ 4+4/L ) ]:
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4Pa (1++)
9~' ' RP ' P'a (5.12)

With typical parameters one gets for a water-alcohol
mixture Q, /(R, P)=7X10 ', Qz/P =5X10 ', and

Q3+ /(L R,P)=3X10 ' and for He- He Q, /(R, P)
=2X10 ", Qz/P =63X10, and Q3+ /(L RP)
=9 X 10 ' (we have chosen +=0). In both cases the
most relevant contribution comes from the term with Qz
and we can write

2. Rigid, impervious boundary conditions

(5.16b)

and for L =0.03, P=0.6

Here the integrals in Eq. (5.11a) have to be evaluated
numerically and we give only the results. Again, it is
suflicient to consider the term with Qz. In the stationary
case we find for L =0.01, P =10

2. 3X10 Qz for 4=0
2.2X10 Qz for 4=0.04,

4Q=, , Qz
6.5X10 Qz for 4=0
1.6X10 Qz for 4=0. 13 .

(5.17a)

(5.17b)
5 X 10 ( water-alcohol )

1.4X10 ( He- He) .
(5.13a)

(5.13b)

Q does not depend on %. Taking into account the
different scaling, our result coincides with that derived
previously by Graham for the case of a simple Quid
(4=0) [52], when a factor of 2 is included [66]. The
noise term was also derived by a different method [53,54].
After accounting there for a factor of —,

' [67] one has
agreement with the above result.

For the Hopf bifurcation the linear solutions are also
known analytically, but due to the complexity of the in-
volved integrals we give the numerical results. Q be-
comes complex here, but for the correlation function (see
below) only ~Q~ is important. Again, the largest contri-
bution comes from the term with Qz. For L =0.01,
P = 10 (water-alcohol) we obtain

and for L =0.03, P=0.6

(9.3 —0.44i)X10 Qz for 4= —0.5

(
—2.4+5.9i ) X 10 Qz for ql= —0.05 .

(5.19a)

(5.19b)

Besides %'=0 we have chosen a value near O' . We re-
mind the reader that for positive %' there are qualitative
differences between realistic and unrealistic boundaries
also with respect to other quantities (e.g., the behavior of
the critical wave number k„ the coherence length go, or
the relaxation time ro). The strong variation of Q with 4
may be due to the same origin that leads to the diver-
gence of the critical wavelength at +=4

For the Hopf bifurcation we have for L =0.01, P = 10

(2.7 —3.6i) X 10 "Qz for ql= —0.5 (5.18a)

(1.9+ l. si ) X 10 Qz for q'= —0.05, (5.18b)

(2.2+7.9i)X10 Qz for 4= —0.5

(4.4+1.4i ) X 10 Qz for 4= —0.05,

and for L =0.03, P =0.6 ( He- He)

(15+3.2i)X10 Q, for ql= —0.5

(11—3.7i )X10 Qz for 4= —0.05 .

(5.14a)

(5.14b)

(S.ISa)

(5.15b)

Here the values are of the same order as for free, pervious
boundary conditions.

D. Noise-induced amplitude

1. Correlation functions

~Q~ depends weakly on 4 and is similar to the value for
the stationary case.

Although one cannot solve Eq. (1.3) for the amplitude
A(x, t), it is nevertheless possible to discuss the space-
time correlation function de6ned as

f„„(A,hx, bt):=(A*(x,t)A(x+hx, t+ht))= f f A*(x, t)A(x+Ax, t+ht)dxdt .
(2m)

(5.20)

(5.21)

For the case of a simple fluid (4=0), this has been done
in detail in Ref. [52], starting from the full Eq. (1.3). In
the subcritical regime (e(0), where one expects very
small noise-induced amplitudes, it seems reasonable to
neglect in a first approximation the nonlinear term in Eq.
(1.3). In this case the correlation function (5.20) can be
written down analytically (see Appendix B and Sec. V E;
for the case c, =0 see Refs. [18,55]). One gets for the
zero-lag amplitude correlation (hx =b t =0)

f,.„(W,0,0):=W '=
4rogo& —e

This function would diverge at threshold (e =0) like
I /& —e, but here one has to remember that the above
amplitude expansion is va1id only for e( —10 . More-
over, with increasing 2 the nonlinearities become impor-
tant.

To get the correlation functions of the physical quanti-
ties, one has to start from the full linear solution (2.16).
Within the approximation leading to the amplitude equa-
tion (1.3), i.e., the assumption that the amplitude A (x, t)
varies on a much slower scale than the critical mode

i(k x+co t)
e ' ', wehave
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f,.„(f,bx, b r ) =21f...„(~,bx, «) I

X
i f (z)i cos(k, Ax+co, b t ),

with f being one of the functions t), rj, or N.

(5.22)

2. Relevant experimental quantities

ATT:=f„„(T0 0)= i8 i
2 (5.23)

where 8 =8p(z=z } with 8p being the linear solution
of Eq. (2.9) and z the position where the temperature
variation is measured.

So the relevant quantities are not given only by the
noise strength ~Q~, but through the complete expressions
(5.23). Inserting for

~ Q~ the respective parts of Eq.
(5.1 la), this yields together with Q2 from Eq. (5.3) and
the Rayleigh number R from (2.8)

In a thermal convection experiment the temperature
variation is probably the quantity most easily measurable.
For comparison of the measured temperature correlation
function with our result (5.22) one has to insert 8 for f
and then scale back to the original units (see Sec. II).
This yields for the zero-lag temperature correlation

twice as large as for free, impermeable boundary condi-
tions.

For the Hopf bifurcation, GT increases strongly near
the CTP, This fact has similar reasons as the increase of
quantities such as, e.g. , co or c2 here, and is probably in-
duced by the competition between the stationary and the
oscillatory bifurcation. More details of this amplification
of thermal fluctuations near the CTP will be discussed
elsewhere.

E. Discussion

In this section we have addressed the question of
thermal noise influencing the bifurcation and have there-
fore derived the respective amplitude equations (1.3) for
the Hopf bifurcation and the SP, now generalized by in-
troducing a stochastic term. The only relevant contribu-
tion to this term comes from the velocity fluctuations,
while the other fluctuating forces are at least three orders
of magnitude smaller for realistic fluid parameters. For
the Hopf bifurcation, the noise strength does not vary
much with the separation ratio (except for the vicinity of
the CTP); however, for the SP it decreases over several
orders of magnitude with increasing 4'.

T
~Tg d Imp 2+p~p

k~ Tov
GT(+) .

PTg d a.pp
(5.24} 0

Here V is the important part of Q from Eq. (5.11a), but
without Q2. Q2 has been drawn into the prefactor, which
consists of pure material parameters. GT is defined by
Eq. (5.24) and depends on 4 through 8, 9', rp, and gp.
For typical material parameters, one gets in the experi-
mentally best realizable case (e = —10 ) T= 9 X 10 K
for water-alcohol and f'=2X10 K for He- He, which
both should be inside the measurable range (these values
are for 4= —0.2). Analo ous calculations yield for the
concentration variation ~ 10 and for the velocity
variation u, ~0. 1 pm/s, which both seem to be un-
measurably small.

In Fig. 12 we have plotted GT as a function of 4 at
z= —,

' for the special water-alcohol mixture used in Ref.
[18] (L =0.009, P =15.5). In the case of the stationary
bifurcation, this value varies strongly, therefore in Fig.
12(a) we show 1nGT. For 4=0 one has GT =38 and GT
decreases over several orders of magnitude with increas-
ing + until 0' is reached. This variation is mostly in-
duced by ~0, which becomes zero near the codimension-2
point and diverges for %=% [see Fig. 2(b}]. As a conse-
quence the influence of thermal fluctuations is amplified
by the divergence inside the interval [VcTp, 0]. For

& % CTp the Hopf bifurcation has to be considered. Not
too near to the codimension-2 point GT shows a much
weaker dependence on 4 [see Fig. 12(b)] and is of the
same order as for the stationary bifurcation at 4=0. The
values given here for realistic boundaries are in general
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FIG. 12. 6T from Eq. (5.24), which is the relevant quantity
for the noise-induced temperature variation 1' for L =0.009,
I'=15.5. (a) lnaT for the stationary bifurcation. (b) 6T for the
Hopf bifurcation.
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In Appendix 8 we have derived an analytical expres-
sion for the space-time correlation function of the ampli-
tude by neglecting the nonlinear term in Eq. (1.3) which
is valid in the subcritical regime (@&0). To discuss the

result, we rewrite Eq. (Bl 1) in a slightly difFerent form by
introducing the intensity 2 =

I Ql /(4rogo+Z),
the length xo=go/(Z)'~, and the times to=ra/8 and

r, =go/(Us+@) (I= —e, c, =1+ic, ):

Ax At

xo t&

r

hx At

xo t&

1/2

erfc, c,
to

1/2
b, t

erfc . c&
tp

2+c,

+ 1

2&c,

Ax /xo toAt
1/2

+
(At/r )ii~

1 /2Ax /xo tob, t
+

(b, t It() )' t,

(5.25)

This correlation function shows some very interesting
features. First of all one gets a nonexponential decay
when including spatial degrees of freedom, even in the
case of a stationary bifurcation where c, =U =0. This is
in contrast to Ref. [52], where an exponential decay was
predicted [66] by mistake. A naive single-mode model
[Eq. (B1) without spatial derivatives] would give the—ht/to
correlation function f, „,( A, b, t ) =(

I Ql /2&+)e
Here one has an exponential decay and moreover the in-

tensity goes like 1/Z rather than 1/')/Z in Eq. (5.25). It
has been shown, however, that this is not compatible with
measurements, whereas Eq. (5.25) fits the experimental
data quite well [18,55].

Another striking property is that two correlation times
to and t, occur naturally. to measures the decay of a spa-
tially periodic state Ae' + " with A =const, while t,
corresponds to the spatial decay of a modulated state
passing the observer with the group velocity U . Due to
the different scaling laws, these two times can be extract-
ed from the experimental data independently. Because of
the linear approximation of Eq. (Bl), these correlation
times together with the correlation length xo and the in-
tensity A diverge at the bifurcation point (Z=O), a be-
havior that is quite analogous to phase transitions in
equilibrium thermodynamics. These divergences are of
course not real, but a strong increase of the respective
values near @=0 is still present even with saturating non-
linear terms.

In a recent experiment on binary fluid convection [18],
good agreement with the theoretical values of the correla-
tion times yielding different orders of magnitude for to
and t, and especially the correct sca1ing laws were found.
The noise strength was compared with the analog of Eq.
(5.24) for free, pervious boundary conditions. As we
mentioned in Sec. VD, however, this strength does not
change drastically for realistic boundaries and within the

I

experimental uncertainties the agreement ho1ds for realis-
tic boundaries, also.
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APPENDIX A: AMPLITUDE EQUATION COVERING
THE CTP AND THE TRICRITICAL POiNTS

Our numerical results and some scaling considerations
given in Sec. IV have shown that the tricritical points for
the TW's as well as for the SP still lie inside the validity
range of at least the linear part of the CTP amplitude
equation (4.3). As a consequence this equation cannot be
applied to the full range including these points, where
different scaling laws have to be taken into account. In a
small vicinity of the tricritical points of the order

an amplitude equation including also
fifth-order terms may cover the fuH nonlinear behavior.
Such equations describing the transition regime from su-
percritical to subcritical behavior are well known and
considerably investigated away from the CTP (see
[44—46] and references therein). To include now the tri-
critical points into the generalized CTI amplitude equa-
tion (4.3), we extend the calculations presented in the Ap-
pendix of Ref. [29], where spatial derivatives and the
wave-number difference between the stationary and the
Hopf bifurcation have been omitted.

The generic normal form, which reflects the linear be-
havior of the CTP neighborhood, and which incorporates
the invariance under space-time translation and space
reflection, and which moreover includes the tricritical
points of the TW's and of the SP, is then given by

~', & —g[ +(d —& )']&,&+(gf +f )I&l'&, &+f,& '~, & *+qf I& I'~ &+of, l&l'& '&, & "+gf, ld &I'&

—g(f I&I'"r) +f o~ *d ~+f i~~ ~')(~» —~1, )~ —g(f ~d ~+f 3~'r) )(~ + ~k)~*

[(1'+s )( 1 l 7', d )+ad' i'rig, d' J, I
& I' f,4 I

& I' r—if »—I & I']~—
(f. l

~ I'~ ~+f, ~'~ ~ *+—gf „I~ I'~ ~+qf „I~ I'~ 'a ~ *)=o . (A 1)
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Here the fast variation e'"" (with k =k,""at the CTP) is
separated out. The amplitude of the physical quantities
A ~ v'r)A and the coefficients f, z are assumed to be
small near the tricritical points for the TW's and for the
SP. Therefore we have introduced the new coefficients
f, z with f, 2

= rtf ) 2. Space and time coordinates as well
as the control parameter g and the wave number
difference Fk are scaled as in Sec. IV. The term f» must
be included to have the terms at order g completely.

APPENDIX B: SPACE-TIME CORRELATION
OF THE NOISE-INDUCED AMPLITUDE

We want to derive an analytical expression for the
correlation function (5.20) of the convection amplitude in
the subcritical regime starting from Eq. (1.3). Here e &0
and for the expected very small amplitudes it is possible

with the complex prefactor Q of the noise term and the
space-time correlation

(F"(x, t)F(x +Ax, t+ b t ) ) =5(bx )5(b t ),
(F(x, t)F(x+bX, t+ht) ) =0 .

(82}

Using Fourier techniques we can calculate the space-time
correlation function

to neglect the nonlinear terms. The coefficient co is
transformed away by a time-dependent phase factor and
for further convenience we set Z= —e&0. So we regard
the linear equation

r, (a, —
U, a, ) A = —ZA+ g(1+ic, )a,' A+&QF(x, t),

(81)

f„„,(A, bx, bt):=( A "(x,t)A(x+Ax, t+ht))

f f A*(x, t)A(x+bx, t+bt)dx dt .(2') (83)

For this purpose we introduce the pair of Fourier trans-
forms in space and time

g(x, t)= f f g(k, co)e'""+""dk dco, (84a)

g(k, co)=,f f g(x, t )e "" + "dx dt,
(2~)

&Q F(k, co)

[F+g()k (1+ic, )]+i(co Uk)r—o

(87)

Now inserting the Fourier transforms (84a) into Eq. (81)
yields

(84b) so we have

where the overbar denotes the Fourier transform of the
respective function. The Fourier transform of the corre-
lation function (with respect to bx and b, t) is simply
given by the product of the Fourier transforms of the sin-
gle functions:

f„„(A, hx, bt }=( A *(x,t) A(x +Ax, t+bt ) )

A '(k, co)A(k, co)

lQI

(2~) (Z+ /ok ) + [/ok c, + (co —
v~ k )ro]

Now we can transform back into the physical space

(88)

= A '(k, co)A(k, co),

so we first get from Eq. (82)

(85) f„„„(A,bx, bt)
= f f A "(k,co)A(k, co)e'" "e' 'dk dco,

(,F*(x,t)F(x+6,x, t+ht) ) =F *(k,co)F(k, co)= l

(2m )

(86) which gives after some substitutions for co

(89)

l Ql + ik(hx+v hi) —i(c) /~0)/ok t)i + e

(2') ro (e+g()k ) +co
(810)

The second integral can be evaluated by help of the residium theorem yielding [el(8+@k )]exp[ (e+gok )(bt leo)]. —
So we get from Eq. (810)
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+„cos[k(bx+v bt)]
0 I 0 Odk

k +(z/g())
IQI,

2)rrog()

IQI inc)(atlv'0) —(Fle&) (ax+v at)
e '

~ e g erfc
«ohio+

[Zc, (b, t /ro) ]'

ik(Ax+ v ht )

IQI —(el 0)at + e s —()+ic()/ok (at/ro)

4mrog() — k +(e/go)

b,x+vg At

2[c,g (()b, t leo)]'

+(ale&) (Ax+u b, t)
1/2

+e erfc Zc
&

70

Ax+u At
+

2[c,g()(i( t /ro)]'
(811)

[see e.g. , Ref. [68]; here erfc(x)=1 —erf(x), where erf(x) is the usual error function]. We have set c =1+ic, . The re-
sult for c, =0 (c( = 1) and Q real has been given in Refs. [18,55].

The zero-lag correlation follows by evaluating the integrals in Eq. (B10) with b, t =b,x =0 leading to the result of Eq.
(5.21),

f„„,( A, O, O) = ( I A(x, t)I2) IQI

4v.og'o'1/F
(812)
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