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A proof of the validity of the Chialvo-Debenedetti conjecture [Phys. Rev. A 43, 4289 (1991)],the cru-
cial element to achieve an equivalence between the McQuarrie [Statistical Mechanics (Harper 8c Row,
New York, 1976)] and Helfand [Phys. Rev. 119, 1 (1960)] shear-viscosity equations, is presented here.
Some theoretical consequences of that validity are also discussed, such as the unification of most shear-
viscosity expressions into one given by Andrews for first-order transport coefficients [J. Chem. Phys. 47,
3161 (1967)]. The system-size dependence of the Mcguarrie shear-viscosity values is analyzed and an ex-

trapolation method is proposed and tested to determine the asymptotic values.

PACS number(s): 61.20.Ja, 61.20.Lc

INTRODUCTION

The theoretical equivalence between the Helfand [1]
and McQuarrie [2] expressions, and consequently be-
tween the McQuarrie and Green-Kubo [2] formalisms,
has been discussed recently by Chialvo and Debenedetti
[3]. These authors have shown that the validity of
McQuarrie's expression hinges upon "a plausible conjec-
ture" which is supported by simulation results; however,
Chialvo and Debenedetti were "not aware of a theoretical
proof of its validity. " The validity of the conjecture is
not only the key to reduce the shear-viscosity calculation
to a single-particle diffusionlike problem (as opposed to
the original multiparticle counterpart), but also to obtain
a unified expression whose form is neither purely mean-
squared displacement [4] nor Green-Kubo (GK) [5].

In this work we first prove the theoretical validity of
the conjecture (hereafter, not a conjecture), and then we
derive some theoretical expressions based on this result
which allow writing most shear-viscosity equations in a
unified general expression similar to that derived,
through a totally difFerent approach, by Andrews [6] for
first-order transport coefficients. Finally, we discuss the
system-size dependence associated with the numerical
determination of McQuarrie's shear viscosity owing to
the finite size of the simulation box.

THEORETICAL BACKGROUND

Recently Chialvo and Debenedetti [3] compared two
difT'erent methods of computing shear viscosity of a fluid
using Einstein-like expressions. They began with Eq.
(3.13) of Helfand's 1960 paper [1],namely,

lute temperature, volume, and Boltzmann constant, re-
spectively. The symbols p„; and z; indicate the x com-
ponent of the linear momentum and the z component of
the position corresponding to particle i, respectively.
They pointed out that McQuarrie [2] derived the follow-
ing expression for the viscosity:

1 d
i)M&= lim g [p„;(t)z;(t)—p„;(0)z;(0)]

~ 2kTV dt

(3)

In Eqs. (1)—(3) ( ) denotes an equilibrium average in a
zero momentum, g;p; =P=0 ensembl—e. The reason why
the total momentum must be zero is that if it is not zero,
the velocity of the center of mass of the ensemble must be
subtracted from the momenta appearing in Eqs. (1)—(3).
This is because the pressure tensor only involves sums of
peculiar momenta [7]. Since the required transport
coefficient is macroscopic, it is also understood that the
averages are to be taken in the thermodynamic limit. A
convenient ensemble to use is the zero-momentum canon-
ical ensemble, where

fB(l )exp[ —PH(I ) ]5(P)d I
(B)=

f exp[ PH ( I ) ]5(P)dI— (4)

Helfand [1]also derived a third expression for the viscosi-
ty, namely,

1 d= lim g [p„,(t)z,.(t) —p„,(0)z,.(0)]
~ 2kTV dt

where p= ilkT, H is the system's Hamiltonian, 5 ( ) is
the Dirac delta function, and I denotes phase-space vari-
ables.where g, t, T, V, and k denote shear viscosity, time, abso-

1 d N
0= )(zz X p„,(Z)p„, (0)( (t) —z((0)z]'), (().

~ 2kTV dt
l, J =1
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According to Ref. [3], the difference between the
second and third expressions for the viscosity can be writ-
ten as

1 d
r)Ir = t)Mo

—lim g [p„(t)z;(t)p„J (0)zi (0)]
I,J =
(iwj)

where f (t) is expected to be intensive in the thermo-
dynamic limit. Then gH =

qM& is achieved if
lim, df(t)/dt=0, which is the Chialvo-Debenedetti
conjecture. Here we prove that lim, „f(t)=0, which
ensures that lim, „df(r)/dt =0, thus proving the
Chialvo-Debenedetti conjecture. Then we check the
correctness of our proof by calculating f(0).

Without loss of generality we can write f (t) as

~ W=1O8
'

W=256

~ w=soo

w=864
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N
f(t)= X [p„ (t)tz (t)tp„, ( )z0( t)]0) =. (z(t)) .

j%1
(6)

For systems that are mixing we can express the long-time
behavior of f(t) as [8]

FIG. 1. Time dependence of the conjecture function
f(t)b /(ppi o ) as defined by Eq. (6), parametric in N. Arrow
indicates the location of t,„.

((m f(t)=(p„t(t)zt(t)) Xpt(0)zt(0)l
f —+ oo j&1

=. .(p,„t(D)zt(0) ) X p t(0)zt(0)l =0,
j%1

since by station arity in an ensemble average

&p„,(t)z, (t) &
= &p„i(0)zi(0) &. Equation (7) is a state-

ment of the fact that the phase variable p, (t)z, (t), is not
a conserved quantity and is uncorrelated at sufficiently
long times with the sum g.p„(0)z (0) taken over the
other X—1 particles. Even though momentum is con-
served, both terms on the right-hand side of Eq. (7) are
zero since at equilibrium the momentum and coordinates
of a particle are independent, i.e.,

P
&p„,(0)z, (0) &

= &p„,(0) &&z, (0) &
= &z, (0) & =O, (S)

f(0)= g [p„i(0)z,(0)p J (0)zi (0)]
j@1
N= g &p, (0)p„.(0)&&z, (0)z (0) &

j+]
=(N 1)&p„,(0)p—„,(0) & &z, (0)z, (0) & .

%'e will now consider the two ensemble averages sepa-
rately. The momentum average can be written, taking
into account the zero total momentum and the law of
equipartition of energy, as

(p„t(0)p„t(0))= . X p„t(0)p„;(0)l
JWI

X p„,(0)p„,. (0))
j=I

N

g &p„,(O), (O) & =(X—1)&p„(O)&&z,(0) &

P„=(N 1)&z,(0) & =O . — (9) In the thermodynamic limit the coordinate average can

Thus Eqs. (7)—(9) guarantee the correctness of the
Chialvo-Debenedetti conjecture. Note that evidence for
the validity of the mixing assumption in Eq. (7) is provid-
ed by our simulations since the limiting behavior of the
conjecture function in Fig. I and Table I is consistent
with Eq. (7).

It is enlightening to consider the zero time values of
f(t) and df(t)/dt. Again, since by Eq. (4) at equilibri-
um, the coordinates and the momenta are independent,
we have

System
size

108
500
864

Simulation
value

—0.020 34
—0.244 26—0.611 32

Theoretical
value

—0.01922
—0.247 21
—0.615 13

TABLE I. Comparison between simulation results and
theoretical values of Xf(0)b, /(m2a~), where f(0) is the first
term of Eq. (15) and 6 is the dimensional time-step size, for a
Lennard-Jones Quid at kT/m=2. 75 and per'=0. 7
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be factorized as

(z, (0)z (0))=(z, ) (12)

where z, =N 'g, .z;(t), and by substituting Eqs. (11)
and (12) in (10) we find that

f(0}=—mkT(z, ) (13}

Equation (13) is an exact result derived from "first
principles" and from the condition that pip; =P—=O
Our derivation of (13) also relies on the fact that the
system's center of mass is at rest.

The latter is trivially satisfied by continuum systems.
In computer simulations employing periodic boundary
conditions (PBC's), there is an ambiguity in the definition
of the position of the center of mass. Under PBC's one
can compute z, =N 'g;z;(t) by performing the sum
over the N particles which lie, at any time t, in the prirni-
tive cell. This PBC convention is often referred to as the
imaged PBC convention (IPBC). Under IPBC's z, (t) is
not independent of time. One can also compute z, (t)
by using IPBC's at some time, say, t =0, and then follow-
ing the X particles as they diffuse towards infinity
throughout space. This convention is referred to as the
infinite checkerboard, or unfolded PBC (UPBC). Under
UPBC's z, (t) =z, (0) for all times t Finally. , one can
compute z, (0) by using IPBC's at t =0, and z, (t) in
which all X particles are inside the primitive cell at time
(t b, t}, but some —of them could have crossed the bound-
ary at time t (the configuration before applying PBC's).
This situation is referred to as the condition before apply-
ing PBC's (BPBC's). Under BPBC's, z, (t) is depen-
dent on time similarly to the IPBC case.

The change of the location of the center of mass at
time t under BPBC's or IPBC's is

THEGRKTICAL IMPLICATIGNS GF THE
CHIALVO- DEBENEDEI 1'I CONJECTURE (REF. [9])

According to Eq. (7) we can immediately recast
McQuarrie's shear-viscosity equation as

with

= 1' (X(t).X(0)),M~
f kTV dt

(16)

X(t)=(X,,X, . . . , X ), X;=p„;z;, (17)

where the centered dot denotes the scalar product of two
1V arrays. By solving the time derivative we obtain

gMo = lim (J( t) X(0)),
~ kTV

(18)

~X;~=(J J~ JN) ji g p ip +zopfdt

i.e., there is a net contribution due to the motion of the
system's center of mass.

For continuum (i.e., nonperiodic) systems and for
periodic systems under the UPBC convention, f(0) de-
pends on the location of the origin of coordinates. If the
origin is chosen at t=0 to coincide with the position of
the center of mass, then f(0)=f*(0)=0. If the sys-
tem's coordinates range from 0 to L =(N/p}'i, where p
is the number density, then z, ~ (0)=L /2 and

f(0)= —0.25mkT(N/p) . If the system's coordinates
range from —0.5L to 0.5L, z, ~ (0)=0 and f(0)=0.

With respect to df(t)/dt at t=0, it is easy to show
that this slope is also zero. We will come back to this
point in the discussion section.

b,z, (t)= Q I 6(——z, (t) —0.SL )
j

—6(z, (t) —0.5L)] (14)
where f„; is the force on molecule i in the x direction and
J is related to the xz component of the pressure tensor as
follows:

(with similar expressions for b,x, and by, ) where
6( ) denotes the Heaviside function [i.e., 6(x)=0 if x (0
and 6(x)=1 if x )0], L the size of the simulation box,
and N the number of particles. For the sake of simplicity
we locate the origin at the center of the (cubic} simulation
box. Thus under IPBC's, in order to satisfy simultane-
ously the conditions of zero linear momentum and center
of mass at rest for periodic systems, the time averages
given by Eqs. (1)—(12) must be taken over the molecular
trajectories relative to the system's instantaneous center
of mass (or to a fixed point in the relative-to-center of
mass axes) unless the microscopic quantities involved are
pairwise additive (certainly, not always the case). If an
asterisk denotes the use of coordinates relative to the
instantaneous center of mass, z'(t)=z(t) —z, (t),
then under IPBC's or BPBC's (z, (t) ) = (z(t) )—(z, (t) ) =0 at any time. In this case, after recalling
Eq. (12) and the definition of z (t), Eq. (13) reduces to

N

J,"'= g j;(t)= g X;(t) .
dt

(20)

Equation (18) is similar to a more general expression de-
rived by Andrews [6] for first-order transport coefficients.

Note that Eq. (7) makes it possible to express most
shear-viscosity equations whose forms are neither purely
mean-squared displacement nor Green-Kubo in the
unified form given by Eq. (18). For example, starting
from Erpenbeck's reworking of the Green-Kubo expres-
sion [4],

0= l(m J**(0)f J**(s)ds),
~ kTV 0

after invoking Eq. (20), we obtain

(21)

0= llm J**(0)X [P , (s)z, (s) P , (0„).z, (0)]) . —„.
kTV P J J J J

f*(0)= mkT[(z )'—(z, )—']=0, (15)
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Recalling the properties of correlation functions [10],

t t =0

and

At 0 = —AO t (23)

g= lim (X(t) X(0.) )
~ kTV dt

= lim (J(t) X(0)) .
kTV

(25)

Second, starting from Hoheisel and Vogelsang's mean-
squared-displacement integral expression [5],

where in principle A (t) should be a fiuctuation quantity
(see Appendix A for details), we obtain from Eq. (22)

N
0= lim y Js*(t) Z P„,(0)zt(0))~ kTV J=

1V N= )im Z p„(t)z, (t) Z p„.(0)z, (0))kTV dt J=

= lim X p„;(t)z;(t) X p„,(0)z, (0)), (24)
J=

and after invoking Eq. (7) we obtain

where

—(p„,(t)z [(t)p„,(0)z] (0)), (28)

pressure tensor —Eqs. (11)—(13) in Ref. [17]—because it
takes care implicitly of the periodic boundary conditions.
This is described more fully in Appendix B.

The accuracy of our simulation results was tested by
comparing the theoretical values off(0) given by the first
term of Eq. (15) with the corresponding simulation values
for 108 ~N ~864, as shown in Table I. The time evolu-
tion of the conjecture function f (t) obtained under
the BPBC convention for the four system sizes is
given in Fig. 1. The common feature of these curves is
that f (t) shows a narrow correlation zone, where
df Idt =const & 0, followed by a wider decorrelation zone
where df Idt =const (0. For a fixed number of indepen-
dent experiments (rz), the size of the correlation and the
width of the decorrelation zones increase with N. Note
that while f (t) =0 and df /dt =0 for N ~ 108 in the in-
terval 0 ~ t ~ 2. 5cr&m /s, for N ~ 500 these functions do
not totally decorrelate even at t =2.5o &m/s (cr and E

are the Lennard-Jones size and energy parameters, and m
is the mass of an atom).

The above behavior is consistent with the fact that f (t)
is just a difference of two time correlation functions, i.e.,

N N

f(t) N' Z =p„(t)z;(l) X p„t(0)zt(0))
i =1 j=1

0 = lim f j**(s)ds ),1 d
~2VkT dt . 0 ~ (26) f(0)=0, (t) =0,

dt

we obtain, upon carrying out the differentiation,
N

0 lim Js**=(t) Z [P„,(t)z, (t)—P„,(0)z, (0)]),~ kTV

lim f(t)=0, lim =0 .
d (t)

f~oo dt

Note also that f (t) shows a maximum

(29)

(27)

which, upon invoking the first identity in (23), reduces
identically to Eq. (18).

NUMERICAL COMPUTATION OF Nf (t}

df (t)
p &tp, It+ „&tz& t

s

X Zp„, (0)zt(0)
)
=0,

J%1
(30)

To study the numerical behavior of the conjecture
function f ( t ) we performed molecular-dynamics N VT
MD simulations of truncated Lennard-Jones (LJ) spheres
(cutoff' radius r, =2.38cr) at the state condition of
kT/a=2. 75 and po. =0.7 for N=108, 256, 500, and 864
particles. The calculation of the ensemble average indi-
cated in Eq. (6) was performed over ~ independent time
origins (t =0) to avoid any correlation of time origin, and
over the six permutations of r~&& (a,P=x,y, z) to im-

prove the statistics. In fact, each simulation was divided
into ra=100 independent subruns, i.e., each experiment
was obtained from a portion of phase-space trajectory
generated in the simulation with no overlapping among
those portions. The displacement of r~t[~ (a,P=x,y, z)
was determined by taking the periodic boundary condi-
tions into account correctly using what we referred to as
the BPBC approach in Appendix B. The time average of
the time derivative of the r~& displacement in the BPBC
convention gives directly the correct expression for the

where in deriving Eq. (30) we have recalled Eq. (23). Al-
though the value off(t~,„)is a strong function of N, t
is independent of ¹ This is suggested by Eq. (30) and
confirmed by the simulation results of Fig. 1, wheret,„=0.2o m IE.

DISCUSSION AND CONCLUSIONS

The behavior shown by f (t) in Fig. 1 suggests that the
time at which we can assume f (t) =0 and df Idt =0 at
Axed rz depends strongly on the system size N. This can
be interpreted by analyzing the variance in f(t)r [11],

(31)

where the subscript T indicates the coarse-grain average
over the interval T, n =T,„„/T is the number of experi-
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ments (time origins), and rf is the characteristic decay
time of the fiuctuations in c(t),

rf =2(5fT'(0) ) ' f (5fT(t)5fT(0) }dt . (32)
0

Now, according to the definition of f(t) the exact value
of the time correlation function involved in Eq. (31) has
the N dependence

NO. 5

rl~(N) r—lMQ(N)- (5fr'(0) ) '

Thus, according to Eqs. (5) and (34), we have that

lim rlH(N) = lim rlMQ(N) with reT=const
N~O N~O

(38)

(39)

( 5f2(0) ) N7/3 (33)
and

lim rlH(N)= lim rlMQ(N) with nT-N
N~ oo N~~

(40)

so that

N7/3

(5f,'(t) )— (34)

Equation (34) reveals that the accuracy of the simulat-
ed values of Nf (t) at constant T is inversely proportional
to N ~ lrz, i.e., the root-mean-square error of Nf (t) de-
creases asymptotically either with decreasing N or in-
creasing ~. For example, if we need ~ =100 to achieve a
required accuracy in Nf (t) when N= 108, the same accu-
racy will be obtained with ~ = 102400 when N =864, i.e.,
a prohibitively long simulation. Equation (34) also sug-
gests that the leading N dependence of qM& at fixed ~ and
T is given by the N dependence of the conjecture function
Nf (t)

It is reasonable to require that T & T„, the sound
traversal time of the simulation, which corresponds to
the time taken for a sound wave to travel across the simu-
lation box. This implies that T is limited by the size of
the simulation box. Thus in practice we can decrease
(5fT(t) ) more efficiently by reducing N. In fact, at con-
stant ~, T, and rf, the smallest deviation from f (t) =0
and df /dt =0 is attained in the N =0 limit,

However, the extrapolation of rlMQ(N) given by Eq. (40)
is impractical because the strong N dependence of ~T
[see Eq. (38)] makes the simulations prohibitively expen-
sive. [A third alternative could be the analysis of the N
dependence for each term of Eq. (38), but this is beyond
the scope of this paper. ]

Results for 71MQ(N) and the extrapolation given by Eq.
(37) are shown in Fig. 2 at two state conditions. Interest-
ingly, the extrapolated gM& values agree within 8—16%
with the corresponding nonequilibriurn molecular-
dynamics (NEMD) results [12].

The unification of the shear viscosity expressions as
given by Eq. (18) hinges upon the condition of thermo-
dynamic limit as well as the requirement that the limiting
time t must be much greater than the time required for
the ensemble average of the corresponding autocorrela-
tions to decay su%ciently to zero. Those conditions can-
not be taken for granted in equilibrium computer simula-
tion owing to the finite system size, which imposes the
use of periodic boundary conditions, and consequently
that the limiting time t must be smaller than the "sound
traversal time" [11]. In summary, although theoretically
correct, the "computer-simulation" equivalence of the
shear-viscosity expressions that reduces to the Andrews

(smallest deviation) lim (5fT(0) ),
N~O

(35)

5.0
where denotes implication, so that by recalling Eq.
(5) we have

NO. 5

rlH(N) rlMQ(N) - (—5fT(0) )
4.0

and consequently,

for (rz, T ) =const

= lim tlMQ(N)„z.
N~O

lim rlH(N )„T= lim rlMQ(N) TN~O N~O

(36) 3.0
0
M

2.0

UJ

~.0

NO. 5

+ (5f'(0)}" (37)
V

which indicates that the calculated Mcguarrie shear
viscosity of a system at fixed ~ and T is equal to
Helfand's value in the N=O limit. Note that in order to
apply the thermodynamic limit to Eq. (5) we must consid-
er ~ and T as functions of the system size N (see Fig. 1),
i.e.,

0.0
I

20
I

40

g2/3

I

60
I

80 t00

FIG. 2. System-size dependence of Mcguarrie's shear-
viscosity (ger /&m e) results for a LJ Quid at two state condi-
tions: kT/a=2. 75, po. =0.7 (r, /o =2.38), and kT/@=1.316,
po =0.488 (r, /o. =2.50).
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form [Eq. (18)] is mostly unknown and definitely deserves
additional study.
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=0, (A5)

&a(t)a(t) & =& [3(t)—& A(t) &][i(t)—&i (t}&] &

=0
=& &(t)&(t) &

—
& ~(t) && &(t) &

APPENDIX A
& &(t)&(t)&=& &(t)&&&(t)&=0. (A6)

a(t)= A(t) —
& A(t) &, (A 1)

where the angular brackets indicate time (ensemble) aver-
age. The fiuctuation a(t) has the property [10]

d
&a(t }a(t +s) & =0,

dt
(A2)

Given a dynamical property A (t), we can define its
Auctuation as

In summary, the condition & A (t) & =0 constrains the
dynamic behavior of a(t) so that properties (A2) —(A4)
apply also to the behavior of A (t). This is an important
result, as we will illustrate below. For instance, for
3 (t) = g, z, (t)p~, (t) we have that

( i(() ) =(g [*;(()f„(z)~p„(z)p„;(z)/m ])
I

0 if zAy
—,'I'V if z =y, (A7)

so that

& a(t)a(0) &
= —

& a(0)a(t) &,

and then

(A3)

with f; =dp;/dt, provided that g; p;(t) =0 (a=x,y, z)

[9], i.e., the system should also be at rest. Then the auto-
correlation expression associate with the GK shear-
viscosity equation is

(/z(z)/i(0))=(. Qz, (z)f„,((leap„(z)p„, (z)/m -—.(gz;(z)f„(z)+p„(z)p„(z)/m)
I I

z

X gz;( )f0; ( )+0p„( )p0„;( ) 0/m—gz;(0)fz;(0)+p„(0)pz, (0)/m) )I

g z, (t)f„(t)+p„(t)p„(t)/m
I

gz;(0)fz, (0)+p„(0)pz;(0)/m )

APPENDIX B

N
G(t)—:g r;(t)v;(t), (Bl)

Here we present details on the calculation of the
shear-viscosity generalized displacement in a simulation
box centered at (0,0,0), and subject to periodic boundary
conditions as well as minimum image criterion. The dy-
namic microscopic properties associated with the shear
viscosity are the off-diagonal elements of the tensorial
quantity

molecular simulations, some confusion arises about what
is the appropriate quantity r;(t) to be used in Eq. (81).
There are three possibilities. Computationally, we calcu-
late G(t+b, t) from the relationship

G(t+ht ) =G(t)+ KG, (82)

where the displacement b,G of G(t) between time steps t
and (t+ At) is given by

N N
bG= g r, (t+bt)v;(t+bt) —g r;(t)v, (t) . (83).

where r; and v; are the position and velocity of particle i,
respectively. For a finite, periodic system as is used in

Three definitions for G(t) are possible depending on
the choice of r;(t): G "(t), corresponding to the use of the
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unfolded (UP BC) positions r,"(t + b t) and r,"(t ) [13];
G (t), corresponding to the use of r; (t+b, t) andPBC

r; (t) in Eq. (83) (IPBC), where r, .(t) is the image of
molecule i determined by periodic boundary conditions
and located inside the central simulation cell; and
G (t), corresponding to the use of r; (t+b, t) and
r. (t) in Eq. (83) (BPBC). These three cases are depict-
ed in Figs. 4—6, respectively.

In the remainder of this appendix, we argue that the
correct definition for G(t) to be used in the simulation of
finite-sized periodic system is G (t). We do so by
showing that only the time derivative of G (t) yieldsBPBC

the correct virial theorem and that the time derivatives of
G "(t) and G (t) are both zero at large times. One prac-
tical computational consequence is that G "(t) and

BPBCG (t) asymptote to constants as tabac while G (t)
is linear in t as t ~~. Numerical computations are used
to confirm this behavior (see Fig. 3).

Let us begin by considering G "(t),

r; (t)=r,"(t)—n;(t)L, (86)

PBc(t)—rBPBc(t) Ly (t)

where, for a central simulation cell centered at (0,0,0),

y,„(t)=6(x, (t) —0.SI. ) —6( x, (t—) 0.5I—.),
$~(t)=6(y;(t) 0.5L—}—6{—

y, (t) —0.5L },
P,,(t) =6(z;(t)—0.5L )—6( —z,.(t) —0.5L ) .

In Eqs. (88), 6(a) is the Heaviside function,

0 a&0
6(a)= '1

(87)

(88)

(89)

where n;(t) is a simple cubic lattice vector whose ele-
BPBCments are integers. The relationship between r, (t)

and r .(t), the positions of particle i before and after ap-
plying periodic boundary conditions, is given in terms of
the "crossing function" P; (t), viz. ,

N
G"(t)—= g r,"(t)v;(t) . (84) Then, by using (86) and (87), G "(t) can be written, in ad-

dition to (84), in the two equivalent forms

n,.(0)=0=(0,0,0) . (85)

We will assume, without loss of generality, that all the
molecules in the summation in Eq. (84) are located in the
central simulation cell at time t =0. That is, if n, (t) is the
simulation cell in which molecule i is located at time t,
then

N
G"(t)= g [rBPBC(t)+[n, (t)—P, (t)]LIv, (t)

N
G"(t)= g Ir, (t)+n, (t)LIv, (t) .

(810)

(811)

At any time the unfolded position r,"(t) of particle i is re-
lated to the position r; (t) of the image of particle i in-

side the central simulation cell by

Using similar arguments used in the derivation of the
virial theorem [14,15], the time average of the time

derivative of G "(t), G"(t), is zero,

G"(t)=GPBC(t)+L g n, (t)v, (t)=0.
N

(812)

O
UJ
N

CL"

UJ
K
UJ
U

0.40

0.35-

0.30-

0.25-

0.20-

0.15

0.10-

BPBC approach

lPBC approach

UPBC approach

This can be seen by writing explicitly

~„.1 TG"(t)= lim —g J d(r,". v;)
T—+oo T .

1
0

(813)

The velocities of the molecules are finite because the
system's kinetic energy is bounded, i.e.,

lv;(t) I

~ (2' ym )" (814)

lr,"(t)l-t" . (815)

where X is the total kinetic energy and the time depen-
dence of the positional displacement is

0.00 &
0 ' 0 1.0 2.0 3 ' 0 Consequently,

TIME

FICx. 3. Time dependence of McQuarrie's shear-viscosity
generalized displacement [in 6 /(m o ) units] for a LJ fiuid at
the state conditions kT/c. =2.75, po. =0.7 (r, /o. =2.38). The
curves correspond to the displacement of the off-diagona l

elements of the tensor G "(t)= g, , r&(t)v;(t), G (t)
, r; (t)v;(t), and G (t)= g, =, r; (t)v;(t).

lim —[r,". v;(T) —r,"v;(0)]((2E/m )
' lim T =0 .1 0.5 - —1/2

T~co T T~ oo

(816)

The first term on the right-hand side (rhs) of the (812)
is also zero because, in addition to (814), lr,. l

~ +0.5L, so
that the argument leading to Eq. (816) will apply with
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GpBC(t) = L —g n,.(t)v, (t) =0 .
dt, .

(817)

Then, by taking the time derivative of (810) and recalling
(811), (812), and (817), we obtain

the only change being that the T ' will be replaced by
T '. Thus we obtain

BPBC 4j
r, (t) =

j r,"(t)—L [n, (t) —P, (t)]]
Q=r;(t)=v;, (820)

since n, (t)=P, (t).
The rhs of (818) requires some additional analysis and,

for the sake of clarity, we will study the xy element of
that tensor, i.e.,

G (t) =L g P, (t)v, (t),di, .
(818) N N

G„, (t)=L g P,„(t)u„(t)+L g P,„(t)f„,(t)/m .

which is the tensorial form of the virial theorem for a
periodic system, as we demonstrate below.

According to (88), the left-hand side of (818) can be
written as

5(s —a) —5( —s —a)=2~a~5(s —a ),
we obtain

(822)

(821)

According to the definition of the "crossing function"
and the identity for the Dirac 5 function [16],

N
G (t)= g r; (t)v, (t)

dt P;„=5(x;—0.25L )Lu„; . (823)

with

N= g [v;(t)v;(t)+r, (t)f, (t)/m], (819)
(824)

the first term on the rhs of (821) becomes

Then, invoking another identity for the 5 function [16],

d 2

5(x 0.25L ) =5(t tpBC )
t tPBC

N L2 T N 5(t tpBC)L P v~;u„;5[x; 0 25L—].= lim J P v& u '~
~

dt
i=1

= lim — g u~;sgn(v„;)5[t tpBC]dt
T moo T 0

N= lim —g g u;sgn[n„;(tpBC)]=0,T~ oo
PBC

(825)

where sgn() denotes the sign function. Likewise, the
second term on the rhs of (821) becomes

N
L g [e(x;—0.5L ) —e( —x; —0.5L ) jf; (t) &I(t) tI (i)

=PI. v .v dA =PV5 „, B26
XZ

with A the area of a face of the simulation box, V the sys-
tem volume, P the system pressure, 5 the Kronecker
delta, and v a unit vector in the a direction. Note that
the rhs of (826) represents an alternative expression [to
the rhs of (819)] to determine the pressure tensor. Com-
bining (826) and (821) then leads to

Integrate equations of motion to obtain

(t+ h,t), y, ;(t+ ht)

t,"(t+~t)=r", (i)+tb'~(i+at)-P (i)

~(L''g) pbt: = &'. (t + ~t)&J(t + ~t) &'"(t)&'(t)

GBPBc( t ) Py5xy xy

so that

(827) Apply periodic boundary conditions to obtain

(t+ ht), x;(t+ At)

P = (1/3 V)TrG (t), (828)

where Tr denotes trace of the tensor. Thus the only
FIG. 4. Standard molecular-dynamics loop for one time step

when using UPBC.
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position-velocity tensor expression suitable to define the
correct pressure tensor of a periodic system is the one in-
volving the BPBC convention. In such a situation, the
impulsive contribution of linear momentum due to the
application of periodic boundary conditions plays the
role of "external field" (what the rigid walls do in

Clausius's virial theorem [14]). Note that the infinite
checkerboard (UPBC) case corresponds to a zero "exter-
nal field" situation [Eq. (B12)].

In summary, the displacements of the tensor G( t) [Eqs.
(Bl)] in the three conventions are related to one another
as follows (Fig. 4):

(br, v, )UpBc=r,"(t+bt )v;(t +At) —r,"(t)v;(t)

= [r, (t+ b t )+Ln,.(t +6 t )]v, (t+b t )
—[r, (t)+Ln, (t)]v,.(t)

=(br, v,. )ipBc+L [n, (t+b t )v,.(t +6 t )
—n;(t)v;(t)], (B29)

where (Fig. 5)

(br, v, ),pBc=r, (t+bt)v;(t+bt) —r; (t)v;(t) .

If particle i does not leave the current cell, n;(t + b t ) =n;(t), so that (B29) becomes

(br, v; )UpBc=(hr;v, ),pBc+Ln;(t+ b t )[v;(t+ ht ) —v;(t) ]

Otherwise, n;(t)=n;(t+ht)+n', ' with n™g=In„,n, n, ] and n =0, +1 (a=x,y, z), so that (829) now reads

(br;v;)UpBc=(br;v;), pBc+Ln;(t+At)v;(t+ht) L[n;(t+—bt)+n' 'g(t)]v;(t)

=(br;v, )BpBC+Ln;(t+b t)[v;(t+bt) —v;(t)]

(B30)

(B31)

(B32)

with (Fig. 6)

(~rivi )BpBc (priv; )ipBc Ln' ( t)v; ( t) (B33)

W(t)= gr. v; (B34)

Note that n' 'g in (B33) is simply —p; [compare Eqs. (B7)
and (B33)].

Recently, Ladd [17] defined the displacement function
W(t) [his Eq. (11)with m =1]as

for all particles in the simulation box. Equation (B34) is
then identical to the trace of G (t), i.e., it is under
IPBC convention. Consequently, the time average of
W'(t), i.e., W, is [cf. Eqs. (B17)and (12) of Ref. [17]]

L (t) ~(t)

Integrate equations of rnot!on to obtain

g;b~~(t+ At), y, ;(t+ ht)

Integrate equations of motion to obtain

(t+ h,t), q;(t+ at)

Apply periodic boundary conditions to obtain

(t+ At), it;(t+ At)

A(tiki)bpbc ~i (t+ Ai)&i(t+ At) ti (i)&i(i)

A(g y.;);&b ——g (t+ ht)y;(t+ ht) —
p, (t)y„(t)

Apply periodic boundary conditions to obtain

(t+ At), Y;(t+ At)

FIG. 5. Standard molecular-dynamics loop for one time step
when using IPBC.

FIG. 6. Standard molecular-dynamics loop for one time step
when using BPBC.
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W= TrG =0 (B35)

At this point Ladd introduced ad hoc the imaging func-
tion L—nF; (where n is a unit vector outward normal to
the face of the simulation box) to account for the flux of
momentum crossing the boundaries due to the applica-

tion of the PBC. The time average of the imaging func-
tion is just —3PV. By using the BPBC approach [see
(B33)] not only do we derive rigorously Ladd's imaging
function [(B16)—(B26)], where his vector n is our crossing
function P;, but also take care implicitly of the periodic
boundary conditions in the calculation of the shear-
viscosity generalized displacement.
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