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Mode-coupling analysis of atomic dynamics in liquid lead
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A detailed mode-coupling analysis of the atomic self-motion in liquid lead at 623 K is presented and
discussed. Time-correlation functions calculated in a large-scale molecular-dynamics simulation were
used to derive the relevant memory functions, which were compared with those calculated within the
framework of mode-coupling theory. The mode-coupling formalism for the memory function of the ve-

locity autocorrelation function has been extended to wave-vector-dependent memory functions. The de-
tailed analysis of the two sets of memory functions in terms of constituent coupling modes leads to the
conclusion that some assumptions incorporated in the present formulation of mode-coupling theory are
of limited validity. In particular, the phenomenological form for the memory function proposed by
Levesque and Verlet [Phys. Rev. A 14, 408 (1970)] for the Lennard-Jones liquid is found to be inadequate
in the case of liquid lead.

PACS number(s): 51.10.+y, 61.20.Ja, 61.25,Mv, 61.20.Ne

I. INTRODUCTION

Since the first observation of a distinct coupling effect
between the motion of a tagged particle in a liquid and its
environment [l], there has been intense discussion fo-
cused on the interpretation of the long-time tail displayed
by the velocity-autocorrelation function (VAF) of a mov-
ing particle. The leading mechanism of this phenomenon
was suggested [2] to be related to the shear modes that a
moving particle of a liquid generates in its environment;
these waves were assumed to interact, with a certain time
delay, with the particle motion.

In this paper a comprehensive analysis of the tagged-
particle dynamics in a classical simple liquid is presented.
The central issue addressed here is whether the mode-
coupling approach can give a satisfactory account of the
results obtained from direct computer simulation on a
realistic liquid model using the molecular-dynamics (MD)
technique. As a test case, we have chosen a MD model of
liquid lead close to its melting point which was extensive-
ly explored in our earlier studies [3]. A detailed analysis
of the atomic self-motion in that liquid made in terms of
the relevant memory functions is presented. The analysis
involves evaluation on a quantitative level, of the contri-
bution from particular coupling modes. To make this
analysis possible, the mode-coupling formalism for the
memory function of the velocity-autocorrelation function
[4—8] has been extended here to calculate the wave-
vector-dependent memory functions. A comparison of
the memory functions calculated within the framework of
that theoretical model with those directly derived from
the MD simulation is presented.

II. THEORY

The theoretical approach adopted in the memory-
function calculations presented here is based on the ob-
servation made by Levesque and Verlet (LV) [9] on the
Lennard-Jones (LJ) system. They found that the memory

function I (t) for the velocity-autocorrelation function
@(t)can be accurately accounted for by the expression

I (t) = A exp( at )+Bt—exp( bt) . —

The underlying assumption which legitimates the above
division of I (t) into two terms is that these terms
represent two distinct dynamical regimes in the atomic
dynamics in a liquid. The first term, rapidly decaying
with time, is supposed to represent the effect of a binary
collision between a moving tagged particle and a Quid
particle from its environment, whereas the second one in-
corporates a contribution from the collective processes
associated with multiple collisions. The latter gives rise
to the buildup of a backflow around a moving tagged par-
ticle which reacts, after a certain time delay, with the
particle motion. This leads to the conclusion that the
long-time behavior of I (t) should be controlled by the
long-wavelength transverse currents in the backAow.

In the Appendix we present, in explicit form, the equa-
tions for the memory function which were used in the
analysis performed here. The binary-collision termI' (Q, t) is represented by the Fokker-Planck collision
function with a Gaussian ansatz [8] [see Eqs. (A4) —(A7)].
The Q dependence of the relaxation time r& is given by
Eq. (A6). In the original study [5], ro entering that ex-
pression is determined by a short-time expansion ofI' (t) and application of the superposition approxima-
tion for the entering triplet distribution function
g3 ( r„r2, r3 ). Sjogren [5] found, however, that this form
could not adequately describe the width of the memory
function derived from the VAF's for argon and rubidium.
Therefore, he changed ~o to fit the memory function of
the VAF's. As the whole theoretical memory function
then agreed with the experimental functions, this pro-
cedure can be regarded as fitting the theoretical VAF's to
the measured diffusion coeScients. As this reAects the
difficulties of theory in describing I' (t) correctly, we de-
rived ~o directly from the VAF memory function which
has been simulated by MD. It is important to note that
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in the small-Q region the Fokker-Planck term converges
to the Gaussian ansatz. On the other hand, for large Q it
approaches the free-gas memory function with a charac-
teristic undershot which follows the rapidly decaying
part.

There are four coupling terms which are believed to
provide the most significant contribution to the memory
function being discussed. These include the density-

density coupling R00, and two terms describing coupling
between the density fluctuations and the longitudinal
current, R0& and R», as well as the density-transversal-
current coupling term R zz. The Q and co dependences of
these coupling terms are described by Eqs. (A8) —(Al 1).
Finally, r», the second-order memory function of the
self part of the density correlation function F '(Q, co), may
be expressed as

f"„(Q,co)+R 00(g, co)+f'P(g, co)R 0,(g, co)

1 —R 0)(g, co) —f' P)(g, co)R )) (Q, co) —[O' P)+R 00(g, co)+ f' ))(R 0((g, co)]R 22(g, co)
(2)

Here the terms marked by the index s are related to the self part of the correlation function, while the terms expressing
the binary-collision part are denoted by the index 8. Using a reasonable approximation, the last equation can be rewrit-
ten in the following form:

f' '„(g,co) = f' P(g, co)+P 00(g, co)+2f' P(g, co)R o,(g, co)+ [f' '„(Q,co)] R;,(Q, co)

+f sB[l sB+R s (g ~)+f sBR s (g )]R s (g ~) f sB+f R+f R+f R+f R (3)

where the terms describing recollision events are marked
by the index R.

For the discussion that follows, it is worthwhile to
mention two important asymptotic relations describing
behavior of the Q-dependent memory functions in the
long-wavelength limit:

D(Q~O, co)~ VO4(co),

f' '„(g—&O, co)~f'(co),
(4)

(5)

where 4(co) and f'(co) are frequency spectra of the VAF
and its memory function, respectively, and Vo=kB Tlm,
m being the particle mass.

The coupling terms for Q =0 were calculated using
Eqs. (A17)—(A20), thus avoiding the singularities embed-
ded in Eqs. (A8) —(Al 1). This approach also provides an
opportunity to crosscheck the calculations of the Q-
dependent coupling terms which, in the long-wavelength
limit, have to converge to the values indicated in Eqs. (4)
and (5).

III. MOLECULAR-DYNAMICS SIMULATION

As can be seen from Eqs. (A8) —(A 1 1), the input infor-
mation required to calculate the coupling terms discussed
above involves several space-time correlation functions.
These include the density-correlation function F(g, t), its
self part F'(Q, t), and the longitudinal-current correlation
function C, (g, t) as well as the transversal-current corre-
lation function C, (g, t). Besides these dynamical charac-
teristics, adequate information on the structure of the
simulated liquid was needed in the form of its structure
factor S(g) and the corresponding pair-distribution func-
tion g(r). In this study, the above-listed functions were
derived from the MD simulation of liquid lead which was
carried out at T =623 K and the corresponding observ-
able density. The model was comprised of 16384 parti-
cles interacting via the effective pair interionic potential
[10]. This model has been extensively explored in our

Q' = —V,'y'dt'r'(g, t —t )D(g, t ) . (7)

The numerical differentiation involved imposes strict re-
quirements regarding the acceptable level of statistical
noise in the input MD-generated correlation functions.
In this respect, the use of a large MD system is also of
crucial advantage. The estimated level of statistical noise
in the simulated F'(Q, t) was found to be well below 1%.

IV. MEMORY FUNCTIONS

The general view of the memory function D(Q, t) de-
rived from the MD-simulated tagged-particle density-
correlation function F'(Q, t) using Eq. (6) and its frequen-

earlier studies of liquid lead [3]. Its structure and the
dynamical properties were found to agree, within the ex-
perimental accuracy limits, with those measured by neu-
tron scattering on the real liquid lead [11]. Therefore, the
analysis of the atomic dynamics in liquid lead reported
here using the above model should be regarded as an ex-
tension of the experimenta1 information on this system
available to the area that is inaccessible by existing exper-
imental methods.

The correlation functions listed above were simulated
in the wave-vectors domain ranging from Q =0.07 to
6.0 A '. The crucial advantage of the large-size MD
system employed was that it allowed adequate explora-
tion of the important long-wavelength region. In order
to avoid unnecessary Fourier transformations, we derived
the memory function for the tagged-particle motion from
the corresponding source correlation function in the time
domain where the latter function was produced by the
MD simulation. This was done by solving numerically
[12] the integro-differential equations corresponding to
Eqs. (Al) and (A2):

BF,(Q, t)
dt' 2D, t —t' F,

0
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cy spectrum is shown in Fig. 1. In the long-wavelength
limit, D(Q, t) converges smoothly to a VAF (shown by
the dashed line) which is a direct result of the MD simu-
1atioa. This demonstrates agreement with the asymptotic
relation (4), and it may be regarded as an important test
of consistency in the memory-function calculation rou-
tine. An interesting feature of the function D (Q, t)
presented is that the time corresponding to its first
minimum is practically Q invariant; this time is about
0.26 ps. As Q grows, the minimum becomes less pro-
nounced, until it disappears at about Q =5 A '. The
first minimum is followed by oscillations which are well
developed at the lowest Q explored here; for higher
values of Q, the oscillations are considerably smeared out.

The normalized second-order memory function
I »( Q, t) and its spectrum I '»( Q, co), which are also
shown in Fig. 1, demonstrate general consistency with
the LV form [Eq. (1)]. This implies the presence of siz-
able mode coupling e8'ects. The function can be easily
decomposed into two parts: the rapidly decaying part of
Gaussian-like form and the one varying much more slow-
ly with time, which stretches out to 2 ps. The amplitude
of the latter component decreases with an increase in Q.
In the corresponding spectral presentation, that slowly
decaying component gives rise to a sharp low-frequency
peak which superimposes the Gaussian-like spectrum
produced by the rapidly decaying part of I'»(Q, t). The
distinct minimum separating the two parts of I ii(Q, t)
described becomes more pronounced with growing Q, ap-
parently converging to the free-gas memory-function lim-
it. Similar behavior is demonstrated by the VAF memory
function I (t), which is also shown in Fig. 1 by the dashed
curve. An interesting observation is that the memory
functions D(Q, t) and I '„(Q, t) demonstrate very small
variation with respect to Q within the Q range where the

0.10

0.05—

0.00 --:--,
1

I
I

/

1

0.0 0.5
I

1.0

relaxation time for F'(Q, t) varies by two orders of magni-
tude.

The two components of the memory functions de-
scribed are separated by a deep valleylike minimum.
This detail cannot be reproduced by the LV expression
(1). Figure 2 shows the best fit to I (t) obtained by vary-
ing the parameters entering (1). The fit clearly fails to
reproduce the minimum. We found that one possibility
to improve the agreement is to introduce an additional
term with a negative amplitude. This might be of physi-
cal significance and will be discussed later. The above-
described failure of the LV form for memory function
when tested against the MD results has a very important
consequence for the mode-coupling analysis.

FIG. 2. Open circles, the VAF memory function I (t); dashed
line, the best fit using the LV form [Eq. (1)] with the following
values of parameters: 3 = 109.2, a =73.4, B =3224, and
6=7.68. The solid line shows the best fit using Eq. (9) with pa-
rameters A =109.2, a =73.7, B=7313, b =8.9,
C = —1.5X10", c =84.2, and y=14; dotted line, the term in
Eq. (9) containing t; dash-dotted line, the additional negative
term in Eq. (9).

V. MODE-COUPLING ANALYSIS
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FIG. 1. Memory functions of the MD-simulated F'(Q, t): (a)
D(Q, t); (c) its frequency spectrum D(Q, co); (b) I '(Q, t); and (d)
its frequency spectrum I '(Q, col.

Since the rapidly decaying part of I'»(Q, t) can be ap-
proximated by a Gaussian, it is convenient to describe its
time decay in terms of the relaxation time ~&, defined as

In Fig. 3, w& for the memory function I ii(Q, t) directly
derived from the MD results is compared with that ob-
tained from mode-coupling analysis and the one used in
the Gaussian ansatz [see Eq. (A6)]. The three sets of data
seem to be in good agreement. The small discrepancy be-
tween the MD results and those calculated using the
mode-coupling approach, which looks like a parallel
shift, can be easily accounted for by the uncertainty ori-
ginated from the finite time step used in the MD simula-
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FIG. 3. Relaxation time for I"„(Q,t) as a function of Q. Dot-
ted line, MD-simulated results; solid line, mode-coupling calcu-
lation; dash-dotted line, Gaussian ansatz M (Q, t) as given in

Eq. (A6).
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FIG. 4. Recollision terms of I'»(Q, t) calculated according to
mode-coupling theory [Eq. (3)]. The dashed lines at Q =0
represent the corresponding calculation for the VAF memory
function using Eqs. {A17)—{A20).

tion. However, this agreement does not constitute any
proof that the mode-coupling theory is correct. It
confirms only that the approximation concerning the
binary part of the self-correlation functions up to t values
close to r& is reasonable. Figure 3 also shows that the
Gaussian ansatz M'(Q, t) in Eq. (A6) describes the MD
results very well for the Q values below 4 A '. For the
larger wave vectors, in the region where free-particle be-
havior begins to dominate, the MD curve is converging
to that predicted by the mode-coupling model.

The coupling terms I 00, I z, , I » and I z; calculated us-

ing Eq. (A7) —(All) are presented in Fig. 4. In the long-
wavelength limit, these terms converge smoothly to those
derived from the VAF memory function, which are
shown by the dashed line at Q =0. The latter were calcu-

lated using Eqs. (A17)—(A20), as mentioned above. This
asymptotic behavior is an important consistency test for
the numerical procedure we employed here. In Fig. 5 we
compare the mode-coupling-theory results on I ' with
those derived from the MD-simulated F'(Q, t). In the in-
sets, the difference between these two memory functions
is presented, compared with contributions from the above
coupling terms. The curves shown for Q =0 correspond
to the VAF memory function. All four of these VAF
coupling terms look similar to those obtained for the LJ
liquid [8]. The comparison of the two memory functions
presented demonstrates that there is a considerable
discrepancy between the MD results and those calculated
within the framework of mode-coupling theory. The im-
portant observation here is that mode-coupling theory
overestimates the coupling effect by approximately a fac-
tor of 2 within the Q range below 6 A '. Moreover, the
dip separating the binary part and the mode-coupling
part in the low-Q limit is irreproducible by the theory.
As we suggested above, this particular feature of the
memory function seems to be inherited from the LV as-
sumption [Eq. (1)].

A similar comparison for the memory function D (Q, t)
presented in Fig. 6 also demonstrates a perceptible
discrepancy between the two sets of results. The mode-
coupling theory curves, as compared with those derived
from MD, overestimate the negative part of this memory
function for Q =0 and underestimate this part for large-
Q values. For Q =2.25, which corresponds to the posi-
tion of the main peak of S(Q), the mode-coupling-theory
curve exhibits an unstructured negative long-time tail de-
viating significantly from the corresponding MD curve.
It is important to note that in order to calculate D (Q, t),
only the first derivative of the MD-simulated correlation
function F'(Q, t) is needed, as compared with the third
derivative required to calculate F»(Q, t) [13]. Therefore,
the latter is expected to contain a much higher level of
noise. At the same time, both of these memory functions
derived from the MD data exhibit approximately the
same level of noise, as can be estimated from the curves
presented. This indicates that the level of noise intro-
duced by the numerical routine employed to derive the
memory functions is very small compared with that
which results from the statistical uncertainty in the origi-
nal MD-simulated F'(Q, t)

Traditionally, self-motion of particles in a liquid used
to be analyzed in terms of reduced half-width of S'(Q, co),
&(Q)=cot ~2( Q) /DQ, D being the self-diffusion
coeScient, and the reduced amplitude of its peak

X(Q)=m.DQ S'(Q, co=0) .

In our MD model, D =1.82X10 cm /s [10], which is
in good agreement with the experimental value. In Fig. 7
the results on b, (Q) and X(Q) calculated for the MD-
simulated F'(Q, t) are compared with those calculated us-

ing the mode-coupling approach. In the same figure, we
also present the results for the binary part F' . The com-
parison of these results clearly demonstrates that the
mode-coupling theory limited to the four coupling terms
as described above fails to reproduce the MD results.
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here, Eq. (1) fails to describe the MD-simulated VAF
memory function I (t). In order to improve the fit, we
tried to modify the LV expression (1) by introducing an
additional negative term:

I (t)= 2 exp( —at )+Bt exp( bt)—Ctr—exp( c—t ) .

(9)

A fit to the simulated memory function using this func-
tional form is shown in Fig. 2. The first term in this fit
has not changed and the second term has only increased
the amplitude as compared with the previous fit using
form (1). At the same time, addition of a negative term
with y = 14 provides a very good description of the deep
minimum separating the two parts of the memory func-
tion. It should be noted that the additional negative corn-
ponent in question occurs in the time window which part-
ly covers both the Gaussian-like part and the long-time
tail of the memory function. The existence of this corn-
ponent suggests several conclusions which might have the
following serious implications regarding some basic
points of mode-coupling theory in its present form.

(i) If added to the first term in the LV form, this would
mean that the so-called binary-collision term has to be
thoroughly reformulated. This suggestion does not seem
unreasonable; indeed, in the case of continuous long-
range potential, the short-time interaction of a particle
with its neighbors is a many-body process which cannot
be universally and adequately described in terms of
binary collisions.

(ii) Among the mode-coupling terms discussed above, it
is I 00(Q, t) describing coupling between density fiuctua-
tions and self-motion which starts as t . This is the lead-
ing constructural element in the present formulation of
the theory aimed at forcing the recollision term of I (t) to
start as t in agreement with the LV empirical form (1).
This may not be a valid argument in the case of liquid
lead.

(iii) The time window where the new term introduced
in Eq. (9) gives a considerable contribution to the
memory function overlaps with both the "binary"-
collision part and the recollision part as formulated by
the present theory (see Fig. 2). This might be regarded as
an indication that a coupling between these two domains
cannot be neglected, at least in the case of liquid lead.

The present formulation of the theory is based upon
the subtraction of the free-gas function F (Q, t) from
F'(Q, t) in the calculation of the coupling terms aimed at
getting rid of the t expansion term which instead appear
in the Gaussian term. This construction worked reason-
ably well for the LJ liquid and for liquid rubidium. How-
ever, even in those cases, the half-width of the binary
component had to be adjusted in order to obtain the
correct value of the diffusion constant [5]. For liquid
lead, comparison of half-widths and peak values of the
simulated S (Q, co) with those predicted by the Sjogren-
Sjolander formulation of the theory, as well as by the
Gotze-Zipellius-Lorenz formulation [14] (Fig. 7), shows
that both formulations fail to quantitatively describe the
simulation results.

In order to see why the short-time-scale atomic dynam-
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FIG. 8. Pair potential for liquid lead applied in this study
(solid line) compared with the Lennard-Jones potential (dashed
line). The unit of d'istance is the effective atomic diameter, that
is, the position of the first peak of g(r) in the corresponding
liquid.

ics in liquid lead is significantly different from that in the
LJ liquid, we have to compare the corresponding pair po-
tentials in these two liquids (see Fig. 8). The fundamental
distinction between the two is that while the LJ potential
has a pronounced minimum at the position of the first
neighbor, the pair potential in liquid lead is positive and
strongly repulsive at that distance. Therefore, the atomic
dynamics in the LJ liquid might be expected to have a
short-time component corresponding to the free particle
behavior, whereas in liquid lead a single-particle motion
is coupled with the motions of its neighbors at any time
scale. This argumentation is consistent with the fact that
the theory in its present formulation was successful in
describing the memory function in liquid rubidium where
the pair potential also has a minimum at the nearest-
neighbor distance. The analysis presented suggests that
in the case of liquid lead the binary-collision approach to
the description of the short-time part of the memory
function has to be reformulated. Also, the idea of sub-
tracting the free-gas term from F'(Q, t) we discussed
above becomes dubious in this case.

VII. CONCLUDING REMARKS

In summary, we presented a detailed mode-coupling
analysis of atomic self-motion in a realistic MD model of
liquid lead. The relevant memory functions and constitu-
ent mode-coupling terms were derived from the simulat-
ed correlation functions and compared with the corre-
sponding mode-coupling-theory predictions. The main
conclusion of this study is that some assumptions incor-
porated in the present formulation of the theory, which
used to be regarded as universal are, in fact, of limited va-
lidity. In particular, the LV form (1) of the memory
function derived for the LJ liquid was demonstrated to be
inadequate for the memory functions derived here for the
model of liquid lead. This is concluded to be related to
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the particular form of pair potential utilized in this mod-
el. In the light of the analysis presented, the universality
of other basic postulates incorporated in the theory, such
as, for instance, the concept of binary collision, is also
questioned. The question still remains as to whether the
theory can be formulated in such a way that it would be
able to account for all possible variations in atomic dy-
namics in simple liquids caused by different forms of pair
potential.
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APPENDIX

P "(g, )= 1

g /mP
iso—+f'1,(g, to)

1

ico+—Q DE(g, to)
(A2)

Memory-function equations relate the density-self-
correlation function P'(Q, c)o with its memory functions

I

The memory function f''»(Q, co) is calculated in mode-
coupling theory by the following equation:

f'Pi(g, to)+~ oo(g, co)+f''„(Q, co)R o, (gizmo)

1 —R o|(g,~)—f' ii(g, io)p i|(g, io) —[f' ii+8 oo(g, co)+f' |ig oi(q, co)]R 22(g, to)

The binary-collision term I ' is respected by a Fokker-Planck collision term with a Gaussian ansatz M':
oo (k2)n

PEP' (Q, to)= —1+ gioEQ'(g, io) P „,(P+1) (P+n)

(A3)

(A4)

where
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and
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g2 [REF ' (Q, to)]
Pi(g ~)=~E.
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COE
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COE
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Finally, the mode-coupling terms are given by the equations
2
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(A 1 1)

Q is given in units of Qo and c0 in units of coE, where Qo is the position of the main peak of S(Q) and co@ is the Einstein
frequency, S(Q) the structure factor, CI(Q, t) the longitudinal-current correlation function, C, (Q, t) the transversal-
current correlation function, Vo =(Pm ) ', and

Fo Q
7 Q

2

=exp
m /3cog

(A12)

is the free-particle density-self-correlation function

t, (Q)=
2
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where
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and the index d denotes the distinct part. Values for mode-coupling terms for Q =0 are more easily obtained from
2

R oo(O, co) = f dQ'Q 1—,f dr e' '[F'(Q, r/co~ ) F(Q', rico—~) ]F(Q', r/co~ ),
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R;,(O, co) =
3
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3

R 22(O, co)= f dQ'Q [t„(Q')] f dre'"'[F'(Q', rlcoE) —F (Q', r/co~ )]C, Q',
Q)E 3~ n 0 0 COE

(A20)
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