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Statistical properties of levels of quantum systems chaotic in the classical limit are studied using
the distribution of avoided crossings, i.e., of the sizes of local minima of adjacent-level spacings. The
results obtained previously for the two-level random-matrix theory are compared with the predictions
of the statistical-mechanics description of the equivalent fictitious-particle system. The distributions
derived are compared with numerical results obtained for several physical systems. The origin of the
discrepancies (in former numerical calculations) of small-avoided-crossing behavior is found. The
ratio of the average crossing to the average spacing is shown to have a nonuniversal behavior and
seems to provide information on the degree of scarring in the system studied.
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I. INTRODUCTION

This paper is a continuation of our study of the sta-
tistical properties of the motion of the energy levels in
quantally chaotic systems when some parameter describ-
ing the system, say A, is varied. While in the preceding
paper [1], referred to here as I, we considered the distri-
bution of curvatures, i.e., the second derivatives of en-
ergy levels with respect to A, we shall concentrate here
on the properties of the so-called avoided crossings. We
attempted to make this paper as self-contained as pos-
sible. However, to avoid excessive repetitions, we shall
frequently refer to the results obtained in I. In particu-
lar, Eq. (2.1) of I will be referred to simply as Eq. (I1.2.1).

Consider the motion of energy levels in a generic sys-
tem as a parameter A is varied. By an avoided crossing
we mean any local minimum in the distance between the
adjacent energy levels. The distribution of avoided cross-
ings is defined as the distribution of the avoided-crossing
gaps, i.e., of the minimal distances between the adjacent
levels.

The appearance of a multitude of avoided crossings was
identified already as a hallmark of the irregular behav-
ior in a quantum system a long time ago [2]. While this
finding became quite commonly accepted, little had been
done to classify quantitatively the behavior of avoided
crossings in a generic quantally chaotic system until the
pioneering work of Wilkinson [3]. He derived the analyt-
ical expressions for the number of small avoided cross-
ings in a given system (in the limit of vanishingly small
crossings) using the random-matrix theory (RMT) [4-T7].
It has been predicted that the number of crossings with
value less than C grows linearly with C for the orthogonal
universality class of systems [the corresponding ensemble
of random matrices is called the Gaussian orthogonal en-

semble (GOE)] and quadratically for systems that belong
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to the unitary class [Gaussian unitary ensemble (GUE)].
These results were found to disagree [8] with the nu-
merically calculated small-avoided-crossing distributions
for two model systems: the so-called Africa billiard (so
named because of its shape) and the hydrogen atom in a
strong magnetic field.

The avoided-crossing distribution is an interesting
quantity to study due to its statistical properties in re-
lation to the parametric motion of levels. Probably even
more importantly is its application, e.g., in the study of
the applicability range of the adiabatic theory. The pres-
ence of a large number of very small avoided crossings, as
implied by [3], would mean that the adiabatic approach
for strongly chaotic systems belonging to the orthogo-
nal universality class must be very difficult to apply. By
contrast, the presence of the small crossings hole in the
distribution, if confirmed, would provide a hope for such
an approach. Avoided crossings appear quite naturally,
for example, in the study of atomic systems perturbed
by external fields, in treating the molecular systems as a
function of the internuclear distance, etc. Knowledge of
their generic behavior is, therefore, quite important.

The nearest-neighbor-spacing distribution for random
ensembles [GOE, GUE, and the third universality class,
the symplectic case, for which the corresponding ensem-
ble is called Gaussian symplectic ensemble (GSE)] are
very well approximated by the famous Wigner surmise
[4-7] obtained by considering 2 x 2 matrices. As shown
by us in a recent Letter [9], a similar approach enables one
to obtain simple analytic expressions for the distribution
of avoided crossings for all three universality classes. The
analytic formulas were found to be in very good agree-
ment with distributions obtained via numerical experi-
ments [9] on the kicked-top model [10-12].

The aim of the present paper is to discuss in more
detail the distribution of avoided crossings for systems
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which exhibit chaotic behavior in the classical limit. In
Sec. II, the theoretical results of our previous short re-
port on this work [9] are reviewed. New formulas for
the distribution of avoided crossings are found using the
statistical-mechanics approach to the motion of levels de-
scribed by an equivalent Hamiltonian of fictitious inter-
acting particles. Although the calculations are also lim-
ited to a two-level simplified model, we find small differ-
ences between the results presented here and the former
expressions [9]. The origin of these differences is pointed
out. It is shown that the present formulas reduce, in the
limit of very small crossings, to the original expression
of Wilkinson [3] after an appropriate rescaling of small-
spacing behavior. We discuss also the relation between
the average crossing size and the average spacing for all
three universality classes.

The theoretical predictions are compared with the nu-
merical data in Sec. III. The rich variety of systems are
studied including a model random-matrix dynamics in-
troduced in I, the kicked-top model, the hydrogen atom
in a magnetic field as well as the Africa billiard. More
importantly we find that the “hole” present in the previ-
ous evaluations of avoided-crossing distributions for the
hydrogen atom in a strong magnetic field and the Africa
billiard (8] and later confirmed for the kicked top [9] is
a spurious effect resulting from the numerical procedure
adopted in both these papers. The results obtained are
shown to agree qualitatively with the limiting expressions
of [3] as well as with the full distributions predicted in
[9] and in Sec. II.

Finally, in the concluding Sec. IV we summarize the
results obtained. We find that the ratio of the average
crossing to the average spacing is a nonuniversal quantity
which provides a crude estimate of the degree of “scar-
ring” [13] in the system. We discuss the relation between
the statistical properties of curvatures discussed in I and
that of the avoided crossings.

II. AVOIDED CROSSINGS
IN TWO-LEVEL MODELS OF DYNAMICS

A. H, + AH; dynamics—RMT predictions [9]

Consider a system dependent on a parameter A,

H(\) = Hy + \Ha. (2.1)

We prefer the notation of Eq. (2.1) over the more stan-
dard form H = Hy + AV, as the latter is frequently used
in situations for which V' is a perturbation of typically
integrable Hy. This is not the case considered here. As
mentioned in I, we assume that in the full range of A the
classical motion corresponding to H is strongly chaotic.
Moreover, we assume that the change in A does not mod-
ify the symmetries of H, i.e., the system preserves its
character with respect to the main universality classes as
defined in RMT [4-7]; see also L.

It is possible to obtain simple analytic formulas for
these distributions assuming that the avoided crossings
are isolated, i.e., involve two levels only and are well sep-
arated on the energy and/or parameter scale from each
other. Actually, one may make a weaker assumption,
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namely, that multiple avoided crossings, i.e., avoided
crossings which involve at least three levels, appear less
frequently and are, therefore, statistically insignificant
[9]. Then one may consider, locally, only the two strongly
interacting levels which reduces the problem to the 2 x 2
(4x4 for the symplectic system) Hamiltonian matrices. A
similar approach for the nearest-neighbor spacing distri-
butions leads to the Wigner surmise yielding an excellent
approximation to the exact RMT spacings distributions
for all three universality classes [6, 7].

The avoided-crossing distributions are particularly
easy to obtain in the basis in which V is diagonal. In
the 2 x 2 subspace the effective Hamiltonian may be rep-
resented (for GOE and GUE) as

_la ¢ vy O
w-[r gy o).
In Eq. (2.2), a, b, v1, and v, are real numbers. Simple
calculation shows that the value of the avoided cross-
ing (i.e., the minimal gap between the energy levels as a

function of X) is C = 2|c|.
For GOE, c is real and normally distributed,

P(c) = v/moexp (—c?/o?),

according to RMT [4-7].
Then the probability distribution of avoided crossings
reads

(2.2)

(2.3)

02
P (C) = /7o exp (_4_1;5) , C >0, (2.4)
while a standard 2 x 2 calculation for the spacing S distri-
bution (see, e.g., [6]), assuming H(\) pertains to GOE,
yields

1 52
P(S) = ﬁSeXp <'—m> y

which leads to the unit average spacing for 02 = 7~1.
With this o2 value, Eq. (2.4) gives the average crossing
value equal to C' = 2/7.

One may also, as we have done in [9], represent
Eq. (2.4) in the form normalized to the unit average
avoided crossing,

(2.5)

Po(C) = 2 e C>0
o ( )—ﬂ_exp( 7r)’ > 0. (2.6)
There is a certain flaw in the arguments given above.
For any particular realization of H; and H; in Eq. (2.1),
the levels separate with an increase of \ for a sufficiently
large A\. Thus the calculation of spacing distribution is
valid in the limit of small A only while the crossing distri-
bution is calculated regardless of the A value. The com-
parison of the spacing distribution and the crossing distri-
bution given above, and in particular the obtained ratio
of the average crossing to the average spacing C = 2/,
is, therefore, falsified. One should first unfold the levels
and then compute the crossings; this requires knowledge
of the crossings position with respect to \ for each real-
ization of the Hamiltonian matrix. Such a procedure is
quite complicated and a better approach to this problem
will be presented below.
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It is quite obvious, however, that the majority of cross-
ings may appear in the 2 x 2 matrix model with linear
dependence on A only for A small. Once A becomes large,
the spacing generally increases and a probability for a lo-
cal minimum in the spacing becomes negligible. We ex-
pect, therefore, that the distribution given by Eq. (2.6)
above and by Egs. (2.7), (2.9), and (2.11) below for other
universality classes should to a large extend resemble the
“exact” distributions which take into account the nec-
essary unfolding. The appropriate ratio of the average
crossing to the average spacing valid for the 2 x 2 model
cannot be, however, obtained in this way.

In the GUE case ¢ is a complex number ¢ = cg + icy
where, according to RMT, cgr and ¢y are independently
normally distributed with the same dispersion. Simple
calculation then yields [9]

Py(C) = -Tr—(—j-exp (—Z‘-—Cz) , (2.7)
2 4
choosing such a o value that the average avoided crossing
is equal to one.

It is interesting to study the case when the orthogonal
symmetry of H is partially broken only [14]. Such a
situation may be realized in our simple model assuming
that the dispersion oy of ¢y is smaller than og of cg

0% = ack. (2.8)
Changing o from 0 to 1 allows us to study a whole fam-
ily of systems from pure GOE case (a = 0) to pure GUE
systems (o = 1). Note that the change of A does not cor-
respond to the change of the symmetry as in [14]. The
calculation of probability distribution of avoided cross-
ings proceeds as in (2.7) above. The integration is slightly
more difficult due to different dispersions of P(cg) and
P(cr) and gives

P(C) = é(ﬂzcexp (_(_l_wlc@)

2\/a 8a
xIo (QLW(J?) (2.9)
with A(a) given by
16 1+a\]?
Ala) = Ti—a) [Ql_l/z (1 — a)] . (2.10)

Following [15], Iy denotes the modified Bessel function
while Ql_1 /2 is the associated Legendre function of the
second kind.

The GSE case is only slightly different in a sense that
the eigenvalues should appear in pairs (Kramers degen-
eracy [6]) and we have to consider a 4 x 4 Hamiltonian
(symplectic) matrix (for details see [9]). The distribution
of avoided crossings may be expressed as

8172 9
Ps(C) = 1—27;03 exp (—Ecﬂ) (2.11)

again, for the average avoided crossing equal to one.
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B. Statistical-mechanics predictions

The above-mentioned problem of unfolding the levels
is easily overcome by modifying the dependence of the
total Hamiltonian on A. Assume it takes the form (see I)

H()\) = cos(A)Hy + sin(\) Ho, (2.12)

which reduces to Eq. (2.1) in the important region of A
small. If we now assume that H; and H; belong to the
same universality class and have the same mean spac-
ing, the mean spacing of H in Eq. (2.12) becomes in-
dependent of A. One could, therefore, improve the ap-
proach presented above by considering the crossing dis-
tribution using a similar method applied to the A\ depen-
dence given by Eq. (2.12). The resulting calculations are
quite tiresome algebraically; we shall in the following use
a statistical-mechanics approach, similar to that used for
the curvature studies in I. For 2 x 2 matrices both ap-
proaches are, however, equivalent.

To this end we consider the dynamics of the fictitious
interacting particles model corresponding to Eq. (2.12)
(for details the reader is advised to consult Secs. I
and IITA of I) described by the Hamiltonian given by
Eq. (1.3.3). We use the canonical ensemble defined by
the Gibbs measure dGn, Eq. (1.3.6), where N is the num-
ber of levels in the system. We restrict ourselves in the
following to the N = 2 model for simplicity.

Avoided crossings, as minima of the spacing between
the two levels considered, appear at certain values of pa-
rameter A\, A = ;. Therefore the number of avoided
crossings with size C' per unit interval of A values may
be found as

n(C) = Z/dGzé(/\ - X)6(C — |z1 — z3)), (2.13)

where, as in I, zx denotes the energy of the kth level,
k = 1,2. To evaluate the integral above it is convenient
to reexpress the §(A — );) in terms of the slopes of the
levels, pr = dzy/dA, i.e., the momenta of fictitious parti-
cles. Their motion is governed by Eq. (1.3.5). One imme-
diately notices that at any avoided crossing the momenta
of the levels involved in the crossing must be equal, i.e.,
P1 = p2. Moreover, the curvature of the higher-lying level
must be larger than that of the lower level (the opposite
case corresponds to the local maximum of the spacing).
Therefore

57600 = ) = 8o - pp) APL=2) (214)

with the understanding that for z; —z3 > 0 (< 0) the do-
main of integration in Eq. (2.13) is restricted to positive
(negative) values of the derivative in Eq. (2.14). Sub-
stitution of Eq. (2.14) into Eq. (2.13) yields a general
formula which may be easily generalized for arbitrary N.
We were not able, however, to evaluate the resulting in-
tegrals for arbitrary N values.

On the other hand, for the N = 2 model, the inte-
gration is quite straightforward for all three universality
classes. We obtain for the orthogonal (GOE) system
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2

++/merfc (\/,_6-0/2) (1 — 'B—g—)] , (2.15)
where £ is the inverse temperature in the canonical mea-
sure and determines the density of states (see I).

The total number of crossings in the unit interval of A

is given by
& 1
ng = / dCno(C) = — (2.16)
0 ™
and is independent of 3. The above result has the sense of
the average over the canonical distribution. Using explic-
itly the periodicity of Eq. (2.12) with the period T = 7
one may easily prove a stronger statement, namely that
for any single realization of 2 x 2 matrices H; and H;, one
will have exactly one minimum and one maximum of the
spacing per period. The identical result is obtained for
the GUE and the GSE cases and easily confirmed by the
integration of the corresponding expressions for ny (C),
Eq. (2.19), and ns(C), Eq. (2.20).

As mentioned in I, the canonical ensemble yields for
arbitrary N the same joint probability density of levels
as the RMT. In particular, one may derive from it the
Wigner surmise for the 2 x 2 matrix nearest-neighbor-
spacing distribution. For the GOE case, the unit spacing
corresponds to 8 = m, independently of A (stationarity of
the ensemble—see I). The average crossing to the average
spacing ratio may be now obtained using Eq. (2.15) with
the norm given by nf’

Co=\/§—1.

It is interesting to compare the number of crossings of
smaller size than some small C,,, obtained from Eq.(2.15)
for the two-levels model with unit spacing,

Cm 1 [m
= dc C)=Cmz4/=
m= [ dCno(©) ~ O[5

with the similar quantity derived in the large-N limit
by Wilkinson [3] which, in our notation, takes the form
Noo = Cmm3/2/64/B. The ratio of ny to ne is equal to the
ratio of leading coefficients in the spacing distribution of
the Wigner surmise for GOE (7/2) to the exact formula
valid for large N [4-7] (w2/6). This is easily understood
as the smallest crossings are well described by the two-
level model.

Equally easy calculations yield the number of crossings
of size C for the GUE and the GSE systems. Explicitly
we obtain in the units of the mean average spacing in the
GUE case

(2.17)

(2.18)

16C

ny(C) = ——exp (—8C?/m) (2.19)

with the average crossing equal to Cyy = 7/4+/2. For the
GSE we obtain in the same units
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'ns(C) =

216C3 2502
353 ( + =5 ) exp (—27C?/9r) (2.20)
and the average crossing C's = 397/128+/2.

For the direct comparison with the formulas obtained
before [9] for the 2 x 2 model linearly dependent on A
[Egs. (2.6), (2.7), and (2.11)] the present expressions
given by Egs. (2.15), (2.19), and (2.20) should be repre-
sented in the units of mean average crossing. It is, how-
ever, clear from their functional dependence that there
are some differences in the GOE and GSE cases, while
for the GUE the functional form is the same. We will
compare the corresponding distributions while analyzing
the numerical data for various systems in Sec. III. Let
us mention only that the difference is quite small, which
supports the claim given at the end of Sec. II A, namely
that the former formulas [9], although found without un-
folding the levels, provide a good approximation for the
crossing distributions for the 2 x 2 model in units of the
mean crossing.

On the other hand, as mentioned there also, the aver-
age crossing values obtained using the previous approach
are wrong and the correct predictions of the two-level dy-
namics are the one given by the values of Cp, Cy, and
Cgs given above.

III. NUMERICAL STUDIES

In a previous Letter [9] we have compared the distribu-
tions (2.6), (2.7), (2.9), and (2.11) with numerical data
obtained in several versions of the kicked-top model [11].
Very good agreement has been found for all three univer-
sality classes in general. There were, however, significant
differences for the orthogonal case in the limit of small
avoided crossings similar to that found in [8] for other
systems. Starting with the orthogonal class systems, we
shall in this section first reevaluate the data for the or-
thogonal kicked top and show that the effect previously
observed was a spurious one resulting from the inaccu-
racy of the numerical procedure adopted in [8,9]. Then
we shall consider a “generic” model based on RMT, intro-
duced already in detail in I. Later, we compare the the-
oretical expressions with the data for the Africa billiard
[8] and the hydrogen atom in a strong magnetic field. In
Sec. III B we shall consider also the predictions of the
“generic” random model for other universality classes.

A. Orthogonal universality class systems

1. Kicked-top revisited

The kicked-top (KT) model system has been shown
[10-12] to follow quite remarkably the predictions of
RMT concerning the statistical properties of both eigen-
values and eigenvectors. It was thus quite a surprise for
us when we found numerically [9] that the small avoided
crossings appear in this system in a much smaller rela-
tive number than that predicted by the RMT expression,
Eq. (2.6). On the other hand, this finding correlated well
with a previous report [8] in which the similar small-
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crossing “hole” has been found for both the Africa bil-
liard and the hydrogen atom in a strong magnetic field.
Here, we reexamine the numerical procedure used to find
the values of the crossings.

The kicked top belongs to the class of time-dependent
systems in which an integrable Hamiltonian is perturbed
periodically by very short and strong perturbations mod-
eled by the 6 function—the so-called § kicks. For such
systems, properties of the evolution operator over one
period of the perturbation rather than properties of the
Hamiltonian itself are of interest. The evolution operator
we consider reads [11, 9]

U = exp(—ipJy) exp (——z%Jf) , (3.1)
where J, and J, are the (25 +1) x (2j + 1) spin matrices
and p and k are the parameters. We can choose either &
or p as the coupling parameter A. In the numerical cal-
culations we change A = p in intervals where the classical
motion is fully chaotic.

The numerical procedure to evaluate the avoided cross-
ings seems straightforward. It is sufficient to diagonalize
Eq. (3.1) in sufficiently small steps in A = p and find the
local minima in the distance between the eigenphases of
U (eigenvalues lie obviously on the unit circle). Strictly
speaking the corresponding ensemble of random matrices
is not GOE but rather the circular orthogonal ensemble,
but this does not affect the predictions of RMT [6, 7,
14]. Instead of using numerically found minima, one may
interpolate the eigenphases between consecutive diago-
nalizations to obtain the improved values of the avoided
crossings sizes.

The procedure adopted in (8], and followed by us be-
fore [9], was to make a parabola fit to the result of three
consecutive diagonalizations for each level independently.
A quite natural criterion of the convergence of this pro-
cedure appears: one assumes avoided crossings sizes are
properly estimated when the fitted values of the cross-
ings do not differ much from the corresponding values
obtained using just the diagonalization data. As any
curve can be locally represented by the Taylor series ex-
pansion to the second order, this approach seems to be
quite accurate. However, this is not the end of the story,
as otherwise we could not improve over the results pre-
sented before.

In fact, explicit calculation for a 2 x 2 model shows
easily [3] that the dependence of the levels (here eigen-
phases) on the parameter A has the form of a hyperbola,
whose branches describe the two levels undergoing the
avoided crossings. It is easy to show that the same data,
i.e., three consecutive distances d;, i = 1,2,3, between
the adjacent levels (of which the middle one is the small-
est) are sufficient to determine precisely the minimal dis-
tance between the levels C, assuming the hyperbola de-
pendence on A. One easily gets

- gz (dB—d})?
¢= \/d2 8(d3 + d? — 2d3)’

where the denominator should be positive [this is a re-
quirement for a local minimum, compare Eq. (2.14)]. Us-

(3.2)
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ing Eq. (3.2) we have reevaluated the avoided crossings
sizes using similar parameters and, importantly, a sim-
ilar step in A as in [9]. We found that the results of
the “parabola fit” and the “hyperbola fit” differ signifi-
cantly for the very small (much smaller than the average
crossing—see below) crossings. Moreover, for about 50
out of roughly 10000 crossings, the value of C obtained
has been imaginary (the argument under the square root
is negative).

We have, therefore, decreased the step size in the di-
agonalization and we have noticed that the number of
“imaginary” crossing sizes decreased significantly. More
importantly, while the numerical values of the hyperbola
fitted avoided crossings sizes have been only slightly mod-
ified, some values of the smallest parabola fitted crossings
decreased sharply (although in both cases they have been
very close to the values obtained from direct diagonaliza-
tion data). It has become quite clear that the numerical
procedure adopted in [8,9] has not been the best. Figure
1 presents the results on the global scale. The normalized
histogram of avoided crossings on this scale, and due to
the finite size of the bin, does not differ within the sta-
tistical deviation from the corresponding histogram pre-
sented in [9]. The horizontal axis is measured in units of
the numerical average crossing size Cxr, ie., c = C/Cxr
(see also below). The solid line is a theoretical probability
density distribution of avoided crossings P(c) obtained
from the 2 x 2 model expression, Eq. (2.15), multiplied
by 7 for correct normalization and, importantly, assum-
ing the numerically obtained value of the average avoided
crossing. The dotted line represents Eq. (2.6) similarly
rescaled. Note that both the solid and the dotted lines fit
the numerical data quite well, and the difference between
both distributions is quite small.

Let us concentrate on very small avoided crossings first.
Figure 2 presents this region of the integrated distribu-

1.0 . , ,

P(c)
0.8} .
0.6

0.4

0.2

0-05 1 2 3 4

FIG.1. The normalized histogram of avoided crossings for
the kicked-top model Eq. (3.1). Solid and dotted lines com-
pare two theoretical probability-density distributions result-
ing from Egs. (2.15) and (2.6), respectively. The horizontal
axis is in dimensionless crossings ¢ = C/CX™. Both theoreti-
cal distributions are expressed in respect to numerically found
mean crossing. The data correspond to j = 50 odd-parity tops
with k = 10,11, ..., 20 and the parameter A = p € [1.9,2.6] in-
terval.
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tion D(c) in more detail. In panel (a), the solid curve
represents the final numerical result obtained with the
hyperbola fit while the dotted line corresponds to the
parabola fit. The similar curves in panel (b) are obtained
with the diagonalization step twice as large. The solid,
almost-straight line for the presented range of ¢ values
is the low-c part of the integrated theoretical distribu-
tion, while the dashed line corresponds to the integrated
probability distribution resulting from Eq. (2.6). Note
how with the decreasing step size the apparent hole in
the numerical integrated distribution of crossings disap-
pears, with the hyperbola fit results being much better
converged than the parabola fit distribution. The region
shown in the panels corresponds to 2% of the total num-
ber of 11900 crossings, thus the deviations between the
theoretical “lines” and the converged hyperbolic fit result
[solid line in panel (a)] are mainly of statistical origin. As
exemplified for other systems below, decreasing the step
size in diagonalization even more would yield the dis-
appearance of the spurious parabolic hole. Already the
presented results show that once a proper numerical pro-

0.02 T
D(c)

(a)

0.00 o

O.b2 0.03

0.02 T T

D(c)

0.01} .

(b)

0.00
0.00 0.01

0.02 0.03

C

FIG. 2. (a) Detail of Fig. 1: small-avoided-crossing in-
tegrated distribution obtained with the hyperbola fit (solid
curve) and with the parabola fit (dotted curve). Almost-
straight solid and dashed lines correspond to the theoretical
integrated distributions resulting from Egs. (2.15) and (2.6),
respectively. (b) reveals the larger “hole” obtained with twice
larger step between succesive diagonalizations. For the dis-
cussion see text.

cedure is applied, the numerical data for kicked top are
well described by the theory.

The careful reader has noticed that up until now we
have evaded the comparison between the numerically
obtained value of the average crossing size Cxt and
the value predicted by the two-level model (see above),
Co =~ 0.4142. The theoretical curves have been drawn
assuming the numerically obtained value which, for the
kicked-top model is CXT = 0.5101. Clearly the relatively
large difference between CXT and Cp shows that the 2x2
model cannot correctly describe large crossings. This is
to be expected since, in a fully chaotic region, only the
small crossings may be treated as isolated, and only for
them will the two-level model be accurate.

2. Random-matrix model of level dynamics

Up until now the numerical test of crossing distri-
butions has been performed for the kicked-top model
only ([9] and above for the orthogonal universality class).
Here we present the results of such a comparison for
a “generic” model of autonomous system. The model,
based on the random-matrix simulation of the paramet-
ric dependence on A given by Eq. (2.12), has been intro-
duced in I for the purpose of the curvature distributions
analysis. Referring the reader to I for details, let us men-
tion only that the matrices H; and H, are generated in
this model from the ensemble of random matrices appro-
priate for the universality class considered. Let us discuss
here the GOE case in which we shall pay particular at-
tention to the problem of numerical convergence of the
results. The results for other universality classes will be
presented later. The numerical procedure adopted for
finding the avoided crossings is the same as the one used
above for the kicked top.

Figure 3 presents the results for the GOE model with
N = 50 levels on the full scale. The main part shows

1.0 T T

D(c)
0.8 i

0.6

T

0.4

0.2+

D I T S

FIG.3. The integrated probability distribution of avoided
crossings D(c) for the GOE random dynamics compared with
the theoretical distribution resulting from Eq. (2.15) shown
by the dashed line. The inset shows the comparison of
the normalized histogram with the corresponding theorectical
probability-density distribution based on Eq. (2.15). Avoided
crossings are measured in units of the numerically obtained
mean crossing.
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the integrated distribution of avoided crossings while the
dashed line gives the integrated probability distribution
D(c). On this scale, the 2x 2 theory represents the results
quite well if expressed in terms of the numerically found
value of the mean crossing. The histogram presents the
numerical, converged results in unit of the mean cross-
ing CCOF ~ 0.5232 (in unit of the mean spacing), i.e.,
a value slightly, but significantly, larger than CXT. To
avoid the effect of the boundaries for finite-dimensional
matrices, only the levels in the interval [—0.5,0.5] have
been taken for the analysis; they were unfolded according
to the semicircle law, which as tested beforehand, well ap-
proximates the average density of states for N = 50. The
total number of crossings obtained is 21 440. It has been
tested that the average crossing is reasonably insensitive
to the interval of levels taken, e.g., for the [-0.7,0.7] in-
terval, the average crossing is 0.5230 mean spacing out
of 27500 crossings. The dashed line in Fig. 3 is the the-
oretical probability density distribution obtained from
Eq. (2.15) (as in the kicked-top case, we use the numeri-
cally obtained value of the average crossing size).

The integrated probability distributions are presented
in Fig. 4. Only the most interesting, small-crossing
regime is presented, as the plot of the fully integrated dis-
tribution, similar to the one presented in Fig. 1, is “too
good”—the numerical data coincide with the theoretical
integrated distribution so the latter are not visible.

Note in Fig. 4 that the fully converged (one
“imaginary” —see above—crossing size out of more than
20000 crossings) hyperbola fit results show quite good
agreement with the theoretical dashed line for small
crossings while the parabola fit dotted line reveals still
a quite small “hole.” The spurious-hole effect appearing
while using the parabola fit is exemplified in the inset
where three solid lines show the results obtained for dif-
ferent diagonalization step size. The curve closest to the
theoretical prediction corresponds to the smallest step
and is the same as the dotted line in the main panel.
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FIG. 4. Detail of the small-crossing integrated distribu-
tions. Main panel: the converged hyperbola fit results (solid
curve) compared with the results obtained using the parabola
fit (dotted curve). Dashed line represents the theoretical pre-
diction. The inset shows three parabola fit distributions, the
diagonalization step decreases from the bottom curve to the
top curve.

The similar results presented for the kicked top in the
previous part and for the GOE model provide the con-
vincing evidence for the fact that the hole reported in
previous calculations has been a spurious effect. Let us,
however, discuss also other systems studied in [8].

8. The Africa billiard

The data for this system have been kindly made avail-
able to us by Dr. Goldberg. For the description of the
system the reader is referred to [8]. In the original work
(8] the authors could not compare the data with the the-
ory [9], which came a bit later, and they restricted them-
selves to the small crossings limit. The data set con-
tains 725 avoided crossings. The normalized histogram
together with the theoretical probability density distribu-
tion resulting from Eq. (2.15) is presented in Fig. 5. The
relatively small number of avoided crossings has enforced
a relatively large bin size for a reasonable comparison.
In such a situation much more meaningful is the com-
parison of the integrated probability distribution D(c)
presented in Fig. 6. The solid smooth curve gives the
theoretical prediction and shows quite good agreement
with the data, particularly for the smallest avoided cross-
ings. The inset shows the enlarged small-crossing part
of the integrated distribution. The solid line connecting
the numerically evaluated distribution corresponds to the
hyperbola fit, the dotted line to the parabola fit [both
data sets have been obtained by Goldberg, the calcula-
tions with the hyperbola fit expression, Eq. (3.2), have
been performed on our request]. It turns out that the
step size assumed in calculations has been so small that
the deviation between hyperbola and parabola results is
quite small. It is quite clear that what had been inter-
preted originally as a hole is due to some excess over the
theoretical line for a bit larger crossings. This excess is
probably of the statistical nature, i.e., it results from the
relatively small number of avoided crossings available for
this system.

Let us note that the numerical value of the average
crossing obtained for the Africa billiard system is CAfr ~
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FIG. 5. The normalized histogram of 725 avoided cross-
ings for the Africa billiard system (numerical data courtesy of
Goldberg). The solid line is the theoretical prediction based
on Eq. (2.15).
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FIG. 6. The integrated probability distribution of avoided
crossings for the Africa billiard system (data courtesy of Gold-
berg) compared with the theoretical prediction. The inset
shows the small-crossing region in which the hyperbola fit
(solid line) results are compared with the parabola fit results
(dotted line). For discussion see text.

0.49 mean spacings, i.e., smaller than in the orthogonal
kicked-top model but considerably larger than the Co
value obtained from two-level model considerations. The
average crossing seems not to be a universal quantity; we
shall come back to this point in detail later.

4. The magnetized hydrogen atom

The original eigenvalue data on which the calculation
reported in [8] was based were made available to us cour-
tesy of Goldberg. We have analyzed them using both
the hyperbola fit and the parabola fit; the results are
presented in Fig. 7 and compared with the theoretical
distribution. Indeed, the pronounced small-crossing hole
is visible. Clearly, however, the results of the hyperbola
fit differ strongly from the corresponding results obtained
using the parabola fit, which indicates that a too-large

D(c)

0.2 0.3
(o

FIG. 7. The original data for the hydrogen atom in a
strong magnetic field used in [8] and kindly supplied by Gold-
berg analyzed using the hyperbola fit (curve denoted by H)
and by the parabola fit (P). Solid line represents the theo-
retical prediction, for comparison.
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step in the diagonalizations has been taken. Also out of
a little above 900 avoided crossings, Eq. (3.2) predicted
30 imaginary values which, as discussed in detail while
treating the kicked-top model, is another indication of
the too-large step taken.

We have, therefore, performed an independent calcula-
tion of the avoided crossings for this system. The calcu-
lations have been done in the same interval in which the
curvature distribution has been studied in I. Therefore,
for more details on the diagonalization procedure we re-
fer the reader to I, as well as to the general reviews [16,
17] for more information about this “standard model” of
quantum chaos.

In the studied parameter and eigenvalue range, cor-
responding to a fully chaotic motion, more than 3000
avoided crossings have been found. The value of the
average crossing found (in the unit of mean spacing) is
C™4d = 0.420, much closer to the two-level model pre-
diction than for other systems. Figure 8 shows the inte-
grated probability distribution, obtained numerically, by
a solid line (as in the other plots we use a dimensionless
crossing size ¢ = C/C™9) and the theoretical integrated
distribution, based on Eq. (2.15), as a dashed line. As
for other systems studied, once the data are expressed in
terms of the numerically found mean crossing, the agree-
ment between the theory and the numerically obtained
data is quite impressive. The inset presents the small-
crossing behavior in comparison with the theory. No hole
is present and the agreement for small crossings is excel-
lent (a nonzero value of the numerical distribution at zero
corresponds to four crossings which, as indicated by the
hyperbola fit procedure and other precautions used in
numerical evaluation of avoided crossings, are too small
to be reliably evaluated).

Figure 9 presents the comparison of the theoretical
probability-density distribution with the numerically ob-
tained histogram of avoided crossings. The data pre-
sented in Figs. 7 and 8 are firm evidence that the RMT

[3] correctly describes the small avoided-crossings behav-
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FIG. 8. The integrated probability distribution of avoided

crossings D(c) evaluated independently by us for the same
system as in Fig. 7 and compared with the theoretical pre-
diction based on Eq. (2.15). The inset shows the detail of
small-crossing behavior. For discussion see text.
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FIG. 9. The normalized histogram of 3063 avoided cross-
ings found for the magnetized hydrogen atom, for the same
parameter values as in I, compared with the theoretical prob-
ability density distribution (dashed line).

ior. The data (Fig. 9) agree very well with the full dis-
tributions found on the basis of the 2 x 2 model.

B. Other universality classes

As compared with the GOE case, the small crossings
are very seldom in both GUE and GSE [as seen from
Egs. (2.7) and (2.11) [9] or the corresponding expres-
sions derived in this paper, Egs. (2.19) and (2.20)]. This
fact has been confirmed in the kicked-top study [9]. The
results are not affected by the improvement of the nu-
merical procedure developed here (as small crossings are
very rare). Therefore we do not reproduce the results
[9] for other universality classes here [obtained with an
appropriately modified version of the evolution operator,
Eq. (3.1)], especially as similar agreement between the
theory and the numerical experiment is obtained in the
model of the autonomous system studied below.

To this end we use again the same RMT model de-
scribed already above (see also I). Figure 10 presents
the numerical histogram obtained for the unitary sys-
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FIG. 10. The theoretical distribution of avoided crossings
versus the numerically obtained data for the GUE random
dynamics model. For further discussion see text.
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tem again in the units of the numerically obtained mean
crossing value CGVE = 0.638. More than 37 000 crossings
have been collected, again from the [—0.5,0.5] interval.
The histogram obtained is fitted quite well by a solid line,
which corresponds to the Wigner-like formulas Eq. (2.7).
Exactly the same expression results from Eq. (2.19) if the
latter is properly normalized and expressed in terms of
the average crossing. Let us stress that, as in the GOE
case, the numerical average crossing obtained exceeds the
2 x 2 model prediction Cy = 0.555 (in units of the mean
spacing), although the relative difference is a bit smaller.

The similar comparison for the GSE model system is
presented in Fig. 11. The dotted line gives the theoretical
probability-density distribution obtained from Eq. (2.20)
and expressed in terms of the average crossing. The nu-
merical data are rescaled to the same units ¢ = C/CCSE,
where CGSE = (.7359 and, as for other universality
classes, exceeds the two-level prediction Cs = 0.6768.
The dashed line corresponds to Eq. (2.11) [9]. Note that
as for other universality classes the difference between
the predictions given in [9] and the present model based
on a canonical ensemble which correctly includes “un-
folding” is very small if both corresponding expressions
are expressed in terms of the average crossing.

To complete our study of RMT model dynamics we
may discuss the case of the partially broken time-reversal
invariance. We have not derived the appropriate formu-
lae in the statistical-mechanics formalism although it is
quite easy—one must assume only the different 3 values
for the real and imaginary parts of L3 in the Gibbs mea-
sure, Eq. (I1.3.6). The experience with all three univer-
sality classes considered above shows that the difference
between the 2 x 2 RMT expressions of [9] and the refined
approach proposed here are very small if the theoretical
formulas are expressed in the units of the average cross-
ing. Thus it is sufficient to compare the numerical data
obtained with the corresponding expression, Eq. (2.9).

To obtain the crossings numerically for a partially bro-
ken time-reversal invariance case, we have to modify ac-
cordingly the way in which the random matrices H; and
H; in (2.12) are generated, as the description given in I

12— ———— 7+ 77—
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FIG. 11. GSE random-matrix model dynamics. The his-
togram compared with the theoretical probability density as
resulting from Egs. (2.20) (dotted line) and (2.11) (dashed
line).
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is valid for pure cases only. The modification is a minor
one, namely the symmetric and the asymmetric matri-
ces yielding H; (see I) are generated assuming different
variances of the random normal distribution, according
to Eq. (2.8). Otherwise the crossings are found by the
similar procedure, already described. It is probably good
to repeat, at this point, that we do not consider the tran-
sition from one universality class to the other with the
change of the parameter A. On the contrary, we assume
that A\ changes does not affect the symmetry properties
of our system.
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FIG. 12. GOE-GUE transition system. (a)—(c) corre-
spond to the N = 25, 50, and 100 models, respectively. Solid
lines represent fitted theoretical distribution Eq. (2.9). For
details see text.
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In [9] we have studied the different degree of the par-
tial time-reversal invariance breaking by modifying « in
Eq. (2.8). Here we study another interesting effect oc-
curing when we compare the results obtained for ma-
trices of different size N, keeping o at a constant value
a = 0.0001. Figure 12 shows the numerical data obtained
for N = 25, 50, and 100 in panels (a), (b), and (c), re-
spectively. One notices that the deviation from the GOE
behavior, for a fixed value of &, increases with increasing
N. This is in agreement with study of level-spacing GOE-
GUE transition statistical behavior [14]. Also the aver-
age crossing values increased with increasing N. Clearly,
as « is the only parameter in the theoretical expression,
Eq. (2.9) (expressed in terms of the average crossing), the
2 x 2 formula cannot describe the observed N-dependent
behavior without some modification. Therefore we have
made a a free parameter and fitted Eq. (2.9) to each data
separately. The solid lines in the panels correspond give a
results of the fit which yields a5 = 0.0025, aso = 0.004,
and o199 = 0.008. Note that, adapted in such a way, ex-
pression (2.9) reproduces the numerical data quite well.
Also the values of a show an expected trend differering

more and more from the two-level value with increasing
N.

IV. CONCLUSIONS

In this paper an extensive comparison of the theoreti-
cal distributions of the avoided crossings, obtained in the
two-level RMT model with numerical data for various
physical systems as well as for a random model of dynam-
ics, has been presented. It has been found that the the-
oretical distributions resulting from the two-level model
correctly describe the avoided-crossing statistical behav-
ior once the numerical data are expressed in terms of the
mean crossing value for all three universality classes of
systems. More importantly the discrepancy between the
RMT and the previous numerical results concerning the
relative number of small avoided crossings for the orthog-
onal class has been shown to be due to the inaccuracies
in the numerical procedures adopted in [8, 9].

On the other hand, significant deviations between the
mean crossing value as predicted by the two-level model,
Co = 0.4142 (for unit mean spacing), and the values
obtained for different physical models have been found.
Moreover, the numerical data indicate clearly that the
mean crossing to the mean spacing ratio is a system-
dependent, i.e., a nonuniversal, property. Let us recall
the values obtained for the mean crossing (all quoted in
the unit of a corresponding mean spacing) for the sys-
tems of the orthogonal universality class, most impor-
tant for applications. For a purely random dynamics we
obtained CGCF ~ 0.5232. The kicked-top model gave
CXT ~ 0.5101, the Africa billiard CAf & 0.49, while the
magnetized hydrogen atom yielded C?9 = 0.420.

While the number of systems studied does not allow
us to draw definite conclusions, the numbers presented
are quite suggestive. The decrease below the RMT lim-
iting value towards the two-level model value obviously
indicates that the isolated two-level avoided crossings be-
come statistically significant in a given system. Such a
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narrow avoided crossing may appear only if the states
involved are very differently localized. This, in a natural
way, leads us to associate the size of the mean crossing
with the degree of scarring [13] in the system. This corre-
lates well with the fact that the smallest average crossing
has been obtained for a strongly scarred magnetized hy-
drogen atom [16], while the largest among the physical
models studied for the kicked top, for which the scar-
ring, although present [18], is quite small. To validate
the usefulness of the proposed statistical measure of scar-
ring further, studies of avoided crossings distributions in
other physical systems (e.g., in the stadium billiard [13])
are necessary.

The above interpretation correlates well with the
nonuniversal behavior of the small-curvature distribu-
tion as found in [19] and discussed in more detail in
I. In particular a nice correlation exists with the ten-
tative classification of the physical systems with respect
to the degree of scarring based on the small-curvature
behavior (of course within the limitation of a relatively
small number of systems studied). There is, however,
a significant difference too. While the small curvatures
are affected by the scarred states behavior “in between”
the avoided crossings, the present measure, by definition,
comes from the region leading to large curvatures. This
supports to some extent, as indication was given while
interpreting the data for the stadium billiard in I, that
the large-curvature tail may also show a nonuniversal be-
havior. Certainly, there may be much more information
available in the curvature distributions, avoided-crossing
distributions, and other statistical measures describing
the parametric motion of the levels than this explored in
I and here. Further studies, let us mention again, for a
wide variety of systems are needed.

Let us finish the study of avoided-crossing distributions
with a word of caution. As indicated by the “spurious-
hole” effect, evaluations of the small avoided crossings
require particular attention. Also, the theoretical ex-
pressions given here are valid provided the correspond-
ing classical mechanics is fully chaotic in a full inter-
val of the changed parameter. In the case of the mixed
chaotic-regular dynamics, the very small avoided cross-
ings will be much more abundant. This fact is illustrated
in Fig. 13, where for the kicked-top model we have in-
vestigated the avoided crossings in the domain of the pa-
rameter values in which small islands of regularity exist
classically. Note the drastic change of the shape of the
histogram. The solid line corresponds to a Poisson distri-
bution and is drawn to guide the eye. We have to stress
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FIG. 13. Normalized histogram of avoided crossings for
the kicked top that show classically small islands of regular
behavior. Solid line represents the Poisson distribution and
is drawn to guide the eye. The data correspond to the j = 50
odd-parity top with k = 10,11, ...,20 and the parameter \ =
p € [2.7,2.8] interval—compare with Fig.1. See text for the
discussion.

that the level-spacing histograms obtained for the same
values of the parameters show only very slight deviations
from the Wigner surmise. The study of avoided-crossing
distribution in the case presented in Fig. 13 requires, for
the reasons given already above, particular attention and
very tiny steps between succesive diagonalizations, and
is, therefore, quite time consuming.
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