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Parametric motion of energy levels in quantum chaotic systems.
I. Curvature distributions
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The motion of energy levels in quantum systems that show a chaotic classical limit is statistically
analyzed, A quantitative comparison is made between the tails of the curvature distribution and
numerical results obtained for various physical models. Approximate analytic expressions for the
full curvature distribution are derived from the statistical mechanics of a fictitious gas in a refined
formulation that recovers the random-matrix theory for an arbitrary number of levels. They provide
a better description of numerical data than just the tail-limiting expressions available previously.
Good agreement with numerical data for various physical systems as well as for a model random
dynamics is obtained with the ad hoc introduced very simple analytic expressions containing no free
parameter. The nonuniversal behavior of small curvatures is discussed. The data obtained for the
magnetized hydrogen atom support the previous interpretation of this phenomenon as due to the
"scarred" wave functions. A large number of analyzed data allows us to show that the details of the
curvature distribution provide a qualitative measure of the degree of scarring in di6'erent systems.

PACS number(s): 05.40.+j, 05.45+b

I. INTRODUCTION

Although developed about thirty years ago in an at-
tempt to characterize complicated spectra of compound
nuclei, random-matrix theory (RMT) [1, 2] found its re-
cent successful application in describing properties of
quantum spectra of simple systems which show classically
chaotic behavior [3—5]. Low-dimensional systems, in con-
trast to nuclear physics problems where the exact form of
the Hamiltonian is unknown, offer a unique opportunity
for studying the connection between RMT and the deter-
ministic dynamics, as generated by a typically nonran-
dom and strongly correlated Hamiltonian matrix. The
connection between RMT and quantally chaotic dynam-
ics is not yet fully understood, although some progress in
this direction has been obtained in statistical-mechanics
formalism (see [4) for a good systematic account of such
attempts).

Until very recently, "quantum chaos" applications of
RMT were limited to the comparison of its predictions
with the statistical properties of energy eigenvalues and
eigenvectors for well-defined model or realistic single sys-
tems. The knowledge of the system Hamiltonian allows
us to pose questions concerning the generic behavior of
a whole family of systems as opposed to its single real-
ization. Imagine the Hamiltonian of the system is de-
pendent on some parameter A, H = H(A), and consider
the motion of energy levels of the system as A is var-
ied. The parameter in question may be, for example, the
value of the external electric or magnetic field affecting
the energy levels of atoms (molecules), as exemplified in
studies of the magnetized hydrogen atom [6], the ampli-
tude of the laser (microwave) field leading to ionization
(or dissociation) or intermolecular distance in the adia-
batic approximation to the molecular Hamiltonian.

One may then define new statistical properties of spec-
tra for a suitable range of A instead of considering just a

single system realization at fixed value of A, say A = Ao.
Such measures will not only supplement the statistical in-
formation obtained applying the standard RMT for single
systems but will provide information about the system
studied.

Already in the early days of the study of irregular sys-
tems, an increased sensitivity of the energy levels to the
small changes of the parameter has been suggested as a
signature of the irregular behavior corresponding to the
transition from mostly regular to predominantly chaotic
classical motion [7, 8]. This sensitivity is closely related
to the appearance of multitude of avoided-level crossings
(repulsions of adjacent energy levels) [9]. The statisti-
cal properties of avoided crossings may be characterized
by the probability distribution of gaps, i.e. , local min-
ima of the energy difference between the adjacent levels
as a function of the parameter varied [10—12]. The de-
tailed analysis of this measure is presented in the paper
immediately following this one [13].

The dependence of levels on the small changes of A

may be characterized by the levels curvature K„
dzE„(A)/dAz [8, 14, 15]. The statistical properties of cur-
vatures have been first discussed in [14, 15]. The authors
have derived the expressions for the large-curvature tail
of the curvature density distributions, tested them qual-
itatively on the RMT model, and postulated their uni-
versal character. A similar qualitative test of the tail dis-
tributions has been performed for the kicked-top model
[16] confirming predictions of [15] on the well-known
model system exhibiting chaotic dynamics [17—19]. How-
ever, a subsequent study [20] has shown that, while the
large-curvature tail indeed shows a universal behavior,
full-curvature distributions obtained for different systems
show significant differences which suggest nonuniversal
behavior of small curvatures.

Let us note that, apart from the intrinsic interest in the
curvature distribution as one of the statistical measures
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of the properties of the levels dependence on the parame-
ter, curvatures, as a second derivative of the energy, are of
direct physical importance. The curvature distributions
may find direct applications in the description of fiuctua-
tions of magnetic (such as the diamagnetic susceptibility
[21]) or temperature (e.g. , heat capacity) properties in
mesoscopic quantum systems or random media.

In this paper we consider several possible distributions
describing the generic behavior of curvatures in the whole
range of their values. We review in Sec. II, for the sake
of completness, the essential points of the statistical ap-
proach to curvature distribution as developed by Gas-
pard et al. [14, 15]. This approach enabled the authors
[14, 15] to derive the large-curvature tail of the curvature
distributions in the limit in which the number of levels
N in the system is infinite. The Full-curvature distri-
butions seems to be diffucult to evaluate in this limit.
A standard approach known from the RMT would be
to turn towards the finite-level-number approximation.
Such a two-level approach had been quite succesful in
the past predicting, e.g. , Wigner-type distributions for
the nearest-neighbor spacings [1,2, 4, 5, 22, 23], as well as
producing analytic predictions concerning the avoided-
crossings distributions [12]. We show, however, that
without necessary modifications the fomalism of [14, 15]
is unsuitable to treat the finite-N ease.

This leads us to reformulating the Gaspard et al. [14,
15] theory in a form more suitable for curvature distri-
bution study in finite-dimensional systems (Sec. III). Us-
ing a 2 x 2 theory, we derive expressions for the cur-
vature distributions. By readjusting them to have the
same numerical value in the large-curvature limits as the
tails of the distribution derived previously [14, 15], we
can compare their predictions with numerical data. This
provides, at the same time, a quantitative test of the
tail distributions. A comparison with numerical data for
the kicked-top model shows, however, that the two-level
theory, although an improvement over the limiting tail
distribution, is not sufficient to reproduce the numerical
data satisfactorily. We introduce, therefore, an ad hoc
solution to the problem, i.e. , we present our guess for
the curvature distributions —simple analytical function
which fit the data for the kicked-top model quite well. In
Sec. IV we test, therefore, the proposed expressions on
a variety of systems including a generic random-matrix
theory model as well as difFerent physical models finding
that they reproduce surprisingly accurately the numeri-
cal data.

We discuss in detail further the nonuniversal behavior
of small curvatures discovered for stadium billiard [20].
We find a similar behavior in the study of the hydrogen
atom in a strong magnetic field. Following the original
idea [20] we are able to classify qualitatively the degree
of "scarring" [24] in different systems studied.

ter A,

H(A) = Hi+ AH2, (2.1)

B. Level dynamics and tails
of curvature distributions [11]

Consider the motion of eigenvalues of (2.1) treating
A as a fictitious time. It is well known that using the
Schrodinger equation

H(A)~n, A) =x„(A)]n,A), n = 1, ..., N ( oo (2.2)

one may derive [25—28, 4, 15] a set of equations describing
the motion of x„(A)(we follow the notation of [15])

(2.3)&A Pni

) - LnmLmn

Xm Xn
m (gn)

) L, iL,i„[(x„—xi) ' —(x —xi) '],
l (/mn)

(2.4)

(2.5)

where Hi and H2 are operators describing some parts
of the dynamics. We avoid the standard notation H =
Hp + AV, as such a form is frequently used with addi-
tional assumptions, e.g. , an integrability of the classical
equivalent of Ho. We assume that no additional con-
stant of the motion exists. Then the Hamiltonian, Eq.
(2.1), may be diagonalized for each A value by orthog-
onal, unitary, or symplectic transformation. The type
of the transformation necessary for diagonalizing (2.1)
classifies the system as belonging to one of the three
universality classes known from the RMT [1—5]. The
corresponding ensembles of random matrices are called
Gaussian orthogonal, unitary, and symplectic ensembles
(GOE, GUE, and GSE, respectively).

Recent years have brought numerous examples con-
firming the conjecture [3] that classically fully chaotic
motion is strongly correlated with the fact that the sta-
tistical properties of eigenvalues (and eigenvectors) follow
predictions of RMT. Throughout this paper we assume,
therefore, that (1) classical motion corresponding to the
considered H(A) is fully chaotic in the whole interval of
A values, and (2) H(A) belongs to the same universal-
ity class in the whole range of A. We underline that
we do not consider the case when a change in A induces
the transition from one universality class to the other
as considered, e.g. , in [22, 23]. The latter assumption is
necessary as it is well known that statistical properties
of spectra strongly depend on the universality class the
system belongs to. As we shall consider system proper-
ties in the whole interval of A values, we must ensure that
within this interval the system behaves in a statistically
similar way.

II. CURVATURE DISTRIBUTIONS:
Hg + AHg DY'NAMICS

where

p„(A)= (n, AiH2in, A), (2.6)
A. Preliminaries

In this section we shall consider systems for which the
Hamilton operator is linearly dependent on the parame-

(A) = [x (A) —* (A)](ni, A~H2~n, A). (2.7)

For all three universality classes L „maybe compactly
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represented in the quaternion notation [15] energy levels with respect to the parameter [29]

L „(A)=)e L(l,
a=0

(2.8)
X~

dA
(2.12)

where the index v takes the following values: v = 1 for
orthogonal, v = 2 for unitary, and v = 4 for symplectic
systems, respectively. In Eq. (2.8), e are unit numbers

in the quaternion space, L
„

is real antisymmetric, while

L „,a = 1, 2, 3, are real symmetric with vanishing di-
agonal elements.

Equations (2.3)—(2.5) may be generated from the clas-
sical Hamiltonian [26—28, 15]

(L(~) )~—,) P-+2). )
( ),

(rn gn)

(2 9)

assuming appropriate Poisson brackets. Thus an N level
parametrically dependent system is equivalent to a set
of interacting fictitious particles. The energy levels and
their slope with respect to the parameter are identified
as positions and momenta of the fictitious particles, re-
spectively. The motion takes place on a manifold of the
[2N + vN(N —1)/2]-dimensional phase space and has
been shown [28] to be strictly integrable for any finite N.

An appropriate statistical-mechanics approach to find
distributions of different physical quantities would be to
define a microcanonical ensemble based on the Hamil-
tonian, Eq. (2.9), and the appropriate constants of the
motion. However, all such independent constants of mo-
tion are, as of now, unknown [4]. To avoid this problem a
canonical ensemble is constructed [15] restricting the mo-
tion of eigenvalues to an interval ( L/2, L/2]; —at +L/2
the hard walls are placed. At the end of calculations
one lets L, N —+ oo keeping N/L constant. Defining the
Gibbs measure

1
dG~L = e

ZNL I

a=0(l&m&n&N)

dx dp dL~ ~,

(2.10)

one finds that P is given by the inverse variance of the
Gaussian distribution of velocity p„[obtained by inte-
grating Eq. (2.10) over all x, and L~„],while the joint
probability density of the energy levels takes the form

1
PNL(21 " &N)

I

~ t2
(1&~&q& N)

(2»)

In the standard RMT, the joint probability density
contains additionally the Gaussian weight function
exp( —

2 Q& x&), also the available configuration space is
IR instead of [ L/2, L/2] . Yet t—he authors [15] prove
that in the N, L + oo limit the characteristic RMT
nearest-neighbor spacing distribution for orthogonal and
unitary ensembles is recovered taking the average density
of states p =

L . They conjecture that for the symplectic
ensemble their model will also yield the spacing distribu-
tion characteristic for GSE. Finally, they consider the
distribution of curvatures, i.e., the second derivative of

and find that the large curvature tails of the distributions
are given by

Po(K) = —
I

—
I IKI '+"(pl

(2.13)

s

PU(K) =2 ir
I

—
I IKI

&Pr
(2.14)

2is 4
(2.15)

for GOE, GUE, and GSE, respectively.
The expressions (2.13)—(2.15) have been compared

with numerical experiments resulting from the random-
matrix model [15] as well as with data obtained for var-
ious physical systems [16, 20]. In all these studies, how-
ever, only the slope of the tail distributions (2.13)—(2.15)
has been tested, and no attention has been paid to the
coefficients appearing in the formulas. One of the aims
of this paper is to fill this gap.

At the same time we find that the lack of even some ap-
proximate formulas for the full curvature distribution is
highly unsatisfactory. Unfortunately, we were also unable
to obtain such expressions from the formalism sketched
above. It is well known [1—5] that approximate level-
spacing distributions may be obtained in the RMT by
considering a simple two-level model system. The result-
ing so-called Wigner surmise formulas approximate very
well the level-spacing distributions for arbitrary-N sys-
tems. In an attempt to derive an analytic approximation
for the curvature distribution a natural first step would
be to consider, therefore, the N = 2 model within the
theory of [14, 15]. However, immediately one is faced
with a serious difficulty. Not only the two-level theory
but also any finite-N-level theory must fail in predicting
the small-curvature behavior for the assumed linear de-
pendence of the Hamiltonian, Eq. (2.1), on the parameter
A. In such a theory no limits on A values are imposed.
One immediately notices that for very large A values the
Hi part is negligible and the eigenvalues are essentially
that of H2 multiplied by A. Their curvatures will be very
small for such A values. The origin of this behavior lies in
the fact that for the assumed linear dependence in A, the
"gas" of particles —levels described by the Hamiltonian
(2.9) "xpands indefinitely. This means that the statis-
tical properties of energy levels are not stationary when
A varies, preventing the system from reaching a thermo-
dynamic equilibrium. The Gibbs measure, Eq. (2.10) is
thus clearly inadequate. To remedy this unpleasant sit-
uation Gaspard et al. [15] have put hard walls in their
model (see above) but then they could recover RMT pre-
dictions, e.g. , for the level spacings in the limit of N = oo
only. For any finite N their theory does not reproduce
the corresponding RMT predictions.

In our opinion a more satisfactory solution to this prob-
lem is presented in the next section.
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III. ALTERNATIVE LEVEL DYNAMICS

A. Formulation of the problem

To remedy the "expansion problem" of the "gas of lev-
els" one may assume a different from (2.1) dependence of
the Hamiltonian on the parameter A. This problem has
been studied in detail in [4]. Assuming that this depen-
dence takes a quite general form

H = f(A)Hi + g(A)H2.

and requiring the levels motion to be again equivalent to
the classical motion of a fictitious many-particle systems
restricts the admissible f(A) and g(A); see [4] for details.
In fact, a quite nice choice is realized assuming the form

par(xi, ",xiv) = . exp ——) x~~
~

(1&~&~& N)

(3 7)

yielding the RMT joint probability density for arbitrary
N value. Therefore the statistical mechanics for the con-
tained gas leads to RMT for arbitrary N [4]. In par-
ticular, for the N = 2 level model, (3.7) yields immedi-
ately the Wigner level spacing formula, Eq. (4.13), with
o = P ~ . For difFerent N, other values of P lead to
a unit average spacing. In the large-N limit one re-
covers from Eq. (3.7) the Wigner semicircle law for the
ensemble-average level density p(x) following standard
derivations of RMT [1,4]

H = cos(A)Hi + sin(A)H2. (3.2)
(3.8)

If Hi and H2 are two random matrices of the same RMT
ensemble (GOE, GUE, or GSE), the above choice ensures
the stationarity (with respect to A) of the statistical prop-
erties of energy levels (density of states, spacing distribu-
tion, slopes, etc.) which strongly supports the thermo-
dynamic approach to the problem. The definition, Eq.
(3.2), is equivalent to the linear A-dependence model of
the previous system for A smal1. . The corresponding clas-
sical Hamiltonian for the fictitious interacting particles
reads

(3.3)

where L „nowdiffers from (2.7) by division by cos(A),

[x„(A)—x (A)](m, A~H2~n, A)

cos(A)
(3.4)

The Hamiltonian, Eq. (3.3), differs from Eq. (2.9) by the
presence of the additional harmonic well which binds the
particles (levels) together preventing them from flying
apart. We call the model defined by Eq. (3.3) the "con-
tained gas" in contrast to the "expanding gas" defined
by Eq. (2.9) [31]. Using the same Poisson brackets [15,
4] as before, the equations of motion are obtained. They
take the same form as Eqs. (2.3)—(2.5), except that the
force equation contains now additional term coming from
the binding potential

It shows clearly that, in the model considered here, there
is only one parameter P, which determines the average
level density, i.e. , the mean spacing. This makes a minor
difFerence as compared with the model considered in [15]
(see Sec. IIB), since the replacement of cos(A) [sin(A)]
by cos(aA) [sin(aA)] in Eq. (3.2) allows us immediately
to obtain two independent quantities p and P.

As in the expanding-gas model, Eq. (3.6) yields the
Gaussian normal distribution with zero mean and the
variance P for the velocity distribution by straighfor-
ward integration of Eq. (3.7) over all x~, L, and all
but one momenta (velocities) p

Consider now the curvature distribution. It is easy to
notice that in the asymptotic N ~ oo limit the canonical
ensemble for both the expanding gas, Eq. (2.9), consid-
ered in [15] and the contained gas, Eq. (3.3), will lead the
same predictions concerning the distributions of curva-
tures and, in particular, to the same large curvature tails
given by Eqs. (2.13)—(2.15) (provided the average level
density p is determined from P for the contained gas),
similarly to the nearest spacing distributions as proved
in [15). The advantage of the presently considered model
lies in the possibility of using the finite-N theory in an
attempt to obtain predictions concerning full-curvature
distributions and not merely the large-curvature tails of
them. Here we shall consider the K = 2 case only as we
have been unable (although we have not lost the hope
yet) to solve the problem in the general case.

L'nm ~mn

m (gn)
(3.5)

B. Curvature distributions in the N = 2 model

1
dG~ ——

ZN I

f n a=o(1&m& n& N)

dXmdymdI, ~ ~ (3.6)

[with 'Riv given now by Eq. (3.3)] one obtains the joint
probability density for the energy levels in the form

The nicest thing about the level dynamics correspond-
ing to (3.3) comes when, following [15], we attempt to
construct the appropriate canonical ensemble. Using the
Gibbs measure

Before presenting the calculations for the two-level
model, it is worth clarifying one point, already mentioned
in Sec. III A, i.e. , applicability of the canonical ensemble
with the Gibbs measure, Eq. (3.6). In the N = 2 case, it
is easy to find all necessary integrals of motion to treat
correctly the two-level model using the microcanonical
ensemble. In particular, note that for the GOE case the

is then the const ant of

motion�

. Were the two-level
system completely isolated, the microcanonical ensemble
would be a proper choice. The application of the canon-
ical ensemble, on the other hand, is equivalent to a more
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( ~-' (L(~))2
P(K) = dG26 K+xy —2)

xy —x2 )
(3.9)

realistic assumption that the two-level system weakly in-
teracts with the remaining levels. We do not expect that
the curvature distributions obtained in this simple model
will work so well as for the level-spacing distributions or
for the avoided-crossing distribution [12, 13]. Due to the
long range of the potential in Eq. (3.3), for small curva-
tures one expects the N = 2 model to produce results
diferent from those expected in the large-N limit. On
the other hand, the two-level approximation should work
quite well in the limit of large curvatures, where an inter-
action of two adjacent levels close to the avoided crossing
should be dominant.

The curvature distribution for the N = 2 case, using
Eqs. (3.5) and (3.6), is

exp ——xP 2

2

( P,ix exp~ ——x ~+)
l
r
(3.15)

Po (K) = [Zo (K) + Zo (—K)]
3

16''2~As
(3.16)

with 2'o(K) reexpressed as

with erf(x) being the error function. As p2(x) is not
approximately constant over the region of interest it is
difBcult to define the average density of states. To avoid
this problem we have chosen to adjust p to fit the correct
long tail distribution, Eq. (2.13). This leads to

The Gaussian integrals over momenta in (3.9) are car-
ried out first. Next we take care of the 6 function by
integrating over one of the L iz, say I zz . Consider first,
in more detail, the GOE v = 1 case. The resulting inte-
gral may be put in the form [after determining separately
the normalization factor Zq in Eq. (3.6)]

Zo(K) =

and with

dxx exp[ —(x —K) /A ]

/'2K —x )XV,/, ] 2A
(3.17)

3P3/4
Po(K) = [Zo(K) + Z'o( —K)],

16 27r
(3.10)

(3.18)

which makes the symmetry of the distribution with re-
spect to K = 0 apparent. The function 2'o(K) may be
expressed as

The distributions for the GUE and the GSE cases are
derived in quite an analogous way. After a similar fitting
(performed for the same reason) one obtains

Zo(K) = dxx '/2exp[ —P(x —K) )] P~(K) = (Z~(K) + 2'U( —K)]
3

(3.19)

xV „,i
(2K-x) ~,)' (3.11)

where the 'D„(z) is shorthand notation for the product
of a parabolic cylinder function D&(z) [30] with an expo-
nential

with

z'U(K) = dxexp( —(x —K) /A ]D 4 i 2A )
(3.20)

'D„(z)= exp(z /4)D„(z). (3.12)
A comparison of Eq. (2.14) with the limit of .large K of
Eq. (3.19) yields

Using the asymptotic form for D„(z)[30] we get for 17„(z)
in the limit of large z

41/3 &5/6

3i/s P' (3.21)

'D„(z)oc z"[1+O(z )]. (3.13)

We were not able to reduce (3.17) further. For large
K, the dominant part of the integral comes from x —K.
Together with the asymptotic form (3.13) one obtains for
the large-iKi limit

The P~(K) [Eq. (3.19)] may be expressed in another form
by reversing the order of integration. The new final ex-
pression is an integral of the polynomial, exponential,
and the error function which we were not able to reduce
further. For consistency with other formulas, we have
chosen here the representation given by Eq. (3.19).

The corresponding expressions for GSE case are
3 1

4P iKis
(3.14) (3.22)Ps(K) =,[is(K) + is( K)]—15

The above formula has to be reexpressed in terms of the
average density of states p in order to compare with the
tail distribution, Eq. (2.13). The average level density
for N = 2 case divers significantly from the Wigner semi-
circle law being explicitly given by

with

dxxexp[ (x —K) /A —]17 7 i

(3.23)
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A comparison of (2.15) with the limit of large K of (3.22)
yields

2'vr'~' &/'5 p
45 p

(3.24)

The tests of the distributions given by Eqs. (3.16),
(3.19), and (3.22) have been performed by comparison
with the numerical data for the kicked-top model [17—19].
The resulting dynamics belongs to the circular rather
than Gaussian ensembles [4], as the system studied be-
longs to a class of periodically perturbed models for
which the Hamiltonian reads

H = Hp+ AUf(t), f(t) = ) b(t —n) (.3.25)

Here the eigenphases of the unitary operator describing
the evolution over one period

—~HO~ —iV 3.26( )

play the role of eigenvalues in statistical analysis. Several
previous studies (see [17—19], a more complete list of ref-
erences may be found in [4]) have shown that this model
is very faithful to the B.MT predictions which, e.g. , level
spacings do not distinguish between circular and Gaus-
sian ensembles. For this system all three universality
classes may be realized by a proper choice of Hp and U
and, importantly, the curvature data have been kindly
supplied to us by the authors [16].

In the original publication [16] only a qualitative com-
parison of predicted slopes [Eqs. (2.13)—(2.15)] with nu-
merical histograms has been made. The average density
of states is p = N/2x and the parameter P is extracted
from the numerically computed velocity distribution (for
the parameters of [16]), which turned out to be well ap-
proximated by a Gaussian ensemble. This provided a
test that indeed the theory of [15] should be applicable.

The comparison of the theory and numerical experi-
ment is presented in Figs. 1—3 for the orthogonal, uni-

-12- 4
hc 3
CL

14 o

-16- 0 2 4 6 8 10
10 3]K)

I. .. J J . I J
6 7 8 9 10

In([K [)

FIG. 2. Same as Fig. 1 but for the unitary kicked top.
The comparison is made with the distribution given by Eq.
(3.19). For details see text.

tary, and symplectic cases, respectively. The numerical
histograms are taken from [16] (see this reference for de-
tails on the model and parameter values), dotted lines
give the long tail prediction of [15], while solid lines rep-
resent Eqs. (3.16), (3.19), and (3.22), respectively. We
would like to stress that no free parameters enter into
this calculation.

For the large-curvature limit the comparison of the
data with dotted lines show quite good agreement be-
tween numerical data and the theory, Eqs. (2.13)—(2.15)
[15]. Let us stress that this provides a quantitative test of
this theory. Note that while in the orthogonal case (Fig.
1) the large-curvature limit is really reached as indicated
by a coalescing dotted and solid lines, this is not com-
pletely the case for both unitary (Fig. 2) and symplectic
(Fig. 3) cases. The agreement at low curvatures is not
good, as anticipated, and is shown in the insets to the
figures. The agreement becomes slightly better with in-
creasing v, i.e., going from orthogonal to the symplectic
class but certainly is far from being satisfactory.

We must stress that the distributions found above are
quite difBcult to compute numerically, especially for large
values of K/A. We could not find an available routine for

10

CL 5
14 o

-10-

-16- 2 3

7 8
In([KJ)

9 l0

-12- 4

CL

-14-

FIG. 1. Normalized curvature histogram compared with
the tail prediction (2.13) (dotted line) and the approximate
distribution (3.16) in the log-log scale for the orthogonal
kicked-top model. The inset shows the small-curvature be-
havior in the linear scale. Numerical data for curvatures ob-
tained by courtesy of F. Haake and D. Saher. For further
details see text.

0 2 4 6 8 10
10 3[K[

5 6 7 8
In([ K [)

I

9 10

FIG. 3. Same as Fig. 1 but for the symplectic kicked top.
The comparison is made with the distribution given by Eq.
(3.22). For details see text.
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the parabolic cylinder function D„(x)working reliably
for arbitrary x and negative p. To evaluate this func-
tion. i or rather the function 'D„(x)defined previously in
Eq. (3.12), we have combined the series expansion valid
for small x with the asymptotic expansion [of which the
leading term is given by Eq. (3.13)] valid for large x. We
believe that the "theoretical" curves in Figs. 1—3 are ac-
curate to within the l%%uo relative accuracy. Let us also
note that for negative integer p, 'D„(T)is expressible in
terms of exponentials and error functions. This expan-
sion, however, at least in double precision arithmetics,
fails even for moderate values of K/A. .

Clearly, to get a better approximation for the curva-
ture distribution one needs to go beyond the two-level

approximation and consider either the N = oo model of
[15] or, which may be technically simpler, start from the
fini. te-N-level contained gas model for N large. Let us
stress again that this necessity is due to the long ranging
potential in Hamiltonians (2.9) and (3.3).

Unfortunately, as mentioned before, this problem still
awaits a rigorous solution. Being unable to perform the
required calculation, we have been left with the only pos-
sible other solution to the problem, i.e. , to guess the ap-
propriate formulas.

C. A guess for the curvature distributions

The guess we present below is based on the only ac-
curate prediction available [15], i.e. , the tail distribution
formulas given by Eqs. (2.13)—(2.15). We require also, as
for every good guess, that the resulting formulas should
be as simple as possible. The simplest form we could
think of takes the form of the Lorentzian function taken
to the appropriate power to ensure proper limiting be-
havior for large [K[. Thus we have

(3.27)

(with, as usual, v = 1, 2, 4 for GOE, GUE, and GSE,
respectively). Defining the dimensionless curvature k as

(3.28)

(3.33)

for the GUE, and

(3.34)

for the GSE. Clearly, despite the fact that the coefBcients
in Eqs. (2.13)—(2.15) are quite complicated, quite surpris-
ingly a single relation links p with the p/P ratio for all
three universality classes, namely

P
pv =&& (3.35)

1

in[& (~k~)]

where v = 1, 2, 4 for GOE, GUE, and GSE, the same v
which, e.g. , determines the degree of level repulsion.

In describing the curvature distributions for a generic
quantum system, the problems with the present model
are similar to that encountered with direct application of
RMT to the nearest-neighbor level-spacing distribution
[1—5], i.e. , the real systems do not obey the semicircle law.
Rather, one can assume locally that the level spacing is
uniform. For the real system, therefore, P and p have
to be separately determined. In this context, the tail
formulas, Eqs. (2.13)—(2.15), coming from the model of
[15] are useful in applications to fix the P/P ratio and
thus p . Examples of such a situation are given below
and in Sec. IV.

The truly amazing fact appears when one compares
the distributions (3.29)—(3.31) with numerical data for
kicked top as shown in Figs. 4—6 for the orthogonal, uni-
tary, and symplectic cases, respectively. The insets in
the figures show the detail of the small-curvature dis-
tribution in the linear scale. Recall that P and P are
determined independently. For each universality class, p
is calculated using Eq. (3.35) from available p and P, no
fit is being performed. This time, the agreement between
the data and the guessed distributions is quite good for
all three universality classes. Note the deviations from

we have explicitly

Po(K) =—1 1
2 (1+k')'~' (3.29)

-3- 2
P(jkj)

2 1PgK=—
& (1+ k2)
8 1PsK=

3vr (1 + k2)s

(3.30)

(3.31)

(3.32)

for the GOB,

The first remarkable finding occurs when we compare
the large curvature behavior of Eqs. (3.29)—(3.31) with
the exact tail distributions Eqs. (2.13)—(2.15). We obtain

-95
0

-3

2 3 4
jkj

li
3

FIG. 4. Same as Fig. 1 except the comparison is made
with the distribution given by Eq. (3.29). The inset shows the
small-curvature behavior in the linear scale. Note the change
of horizontal and vertical scales in comparison to preceding
figures —the dimensionless curvature is used and no rescaling
of the data for the linear plot in the inset is necessary.
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FIG. 5. Same as Fig. 4 but for the unitary kicked top.
The comparison is made with the distribution given by Eq.
(3.30). The same scale as in Fig. 4. For details see text.

IV. OTHER SYSTEMS

A. Randoxn model

As a first example of this section let us consider a para-
metric motion of levels in a random system. We define

In[P(IkI)]—
-1-

-3- 2
P(]k])
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FIG. 6. Same as Fig. 4 but for the symplectic kicked top.
The comparison is made with the distribution given by Eq.
(3.31).

the "ad hoc" distributions predictions for the orthogo-
nal and especially symplectic cases. We shall return to
this point later while discussing the nonuniversality of
small-curvature distribution.

Certainly, a single comparison with data originating
from one model, even as celebrated as the kicked top,
should not allow us to draw any definite conclusions. Af-
ter all, it has been shown that the small-curvature be-
havior may be system dependent [20] and, therefore the
agreement obtained may be just a coincidence. To check
whether this is not the case, we have to compare the dis-
tributions (3.29)—(3.31) with numerical data coming from
other physical models as well as with that originating
from the genuine random dynamics. Such a comparison
is the object of the next section.

the random Hamiltonian matrix in a form of Eq. (3.2),

H(A) = cos(A) Hi + sin(A)H2, (4.1)

repeated here for convenience. It is apparent that the
maximal interval leading to independent dynamics is now
restricted to A c [0, m), while the dynamics changes from
that determined by Hi to the one dominated by H2 in
[O, m/2] interval. The "random" dynamics is generated
by an appropriate choice of matrices H& and H2. For
a considered universality class we assume that both Hi
and Hz belong to this class [so in the whole interval of A

values, H(A) belongs to the same universality class].
Numerically H, are generated according to prescription

given, e.g. , in [5]. Let S (A) denotes a real symmetric
(antisymmetric) matrix (of dimension N x N). Then,
explicitly

(v=1)
(ij = 2)

(~=4)

(4.2)

H, =S+iA (4 3)

H, =Seo+A'ei+A ez+A es, (4.4)

where e, are 2 x 2 matrix representation of quaternion
unit numbers:

(1 oio=I(0 1)I

(4.5)
(0 —li /'

& O'I
oI "=Io-I)

and the direct product of matrices in Eq. (4.4) is as-
sumed. The independent matrix elements of symmet-
ric matrices are generated from the zero-centered normal
distribution with the variance for the diagonal elements
being twice the variance for the nondiagonal elements

9,', = (1+6,,), i (j (4.6)

and the elements of antisymmetric matrices are also zero-
centered normally distributed with the same variance
2/P, having obviously zero on the diagonal. The assumed
form of the Hamiltonian H(A) in Eq. (4.1) ensures that
the density of states for difFerent A values are the same
and, moreover, the joint probability density at each A

value takes the form of Eq. (3.7).
The numerical results have been obtained in the follow-

ing way. Matrices H, have been generated as described
above. The resulting Hamiltonian H(A) has been diago-
nalized for difFerent values of A E [0, x/2). The step in A

has been chosen suKciently small to allow us to obtain
the velocities (first derivative with respect to A) and the
curvatures of the levels (i.e. , their second derivative with
respect to A) approximated by the finite difference. Both
velocities and curvatures have been calculated at A val-
ues suKciently separated to make them reasonably sta-
tistically independent. To obtain statistically convincing
samples, several random Hi and Hq choices have been
used. The additional averaging makes the results inde-
pendent of any single realization of matrices H, .

The produced data allow us to test two important con-
jectures made previously. First, as noted several times
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P (~) = (1 —~')'"2N
(4.8)

which indeed is reproduced very well by the numerically
simulated density of levels.

As mentioned in Sec. III, the canonical ensemble de-
fined by Eq. (3.6) predicts a Gaussian velocity distribu-
tion with zero mean and the variance P . We have
found numerically the velocity distribution and its vari-
ance. To stay in the "Bat maximum" interval of the semi-
circle, only the velocities of levels lying in the interval

[
—0.4, 0.4] were taken for the analysis.

Indeed, the velocity distributions for all three univer-
sality classes are approximated very well by Gaussian
distributions of zero mean (the results are plotted in

[13] where some additional tests are made). The vari-
ances obtained directly numerically (and not from the
fit to Gaussian distributions) are equal to 401, 805, and
1616 as compared with theoretical values of 400, 800,
and 1600. This is quite good agreement (about 20000
velocities were taken for each average)

I et us concentrate in more detail on the curvature
distributions. Curvatures were obtained from the finite-
diKerence approximation based on three consecutive di-
agonalization with a very small step in A. Next, A was
increased by a much larger amount to the next point
around which curvatures were calculated. Relatively
large spacing between values at which curvatures have
been found should minimize correlations between results
of difFerent triple diagonalizations. As mentioned above,
several random matrices Hq and H2 were used to average
over their individual realizations. Only the curvatures of
levels lying in the [

—0.4, 0.4] interval were collected. The
average density of states, needed to determine p, was
obtained by averaging the semicircle law Eq. (4.8) over
the interval of x values taken for the analysis. For each
universality class the numerically obtained velocity vari-
ance has been used in Eq. (3.35). The total number of
curvatures used in the final plots, presented in Figs. 7
(the linear scale) and 8 (the logaritmic scale) was about
198000 curvatures per universality class. Note that this
time the agreement between the ad hoc distributions Eq.
(3.27) and the numerical data is such an excellent one
that it is hard to notice the theoretical curves under
the histograms. This result speaks for itself and pro-

above, the canonical ensemble is not, strictly speaking,
the appropriate choice due to the integrability of the
fictitious-particle Hamiltonian, Eq. (3.3). The proper
choice should be the microcanonical ensemble. We can,
at least partially, test the canonical ensemble approxi-
mation by comparing its predictions, e.g. , concerning the
velocity distribution with numerical results. Second, we
may compare the ad hoc assumed distributions of curva-
tures Eq. (3.27) with numerical data for a genuine ran-
dom model.

The data have been obtained for N = 200 matrices for
the variance of the matri~ elements of H, in Eq. (4.6)

1 1

2P 4N
(4.7)

i.e. , P = 2&v. Equation (3.8) then reduces to

1.0
F (a)

0.8

0.6

0.4

0.2

0.0—
4

FIG. 7. The normalized curvature histograms for the ran-
dom dynamics model for all three universality classes. The
corresponding ad hoc distributions are drawn by solid, dashed,
and dotted lines for GOE, GUE, and GSE, respectively. For
a discussion see text.

vides the strong support for our guessed distributions
Eq. (3.27). Note also nice agreement in the tail distribu-
tion, which provides further quantitative agreement with
Eqs. (2.13)—(2.15) of [15].

B. Kicked rotator and stadium bi11iard

-95 -3 3
in(ikil

FIG. 8. Same as Fig. 7 but in the logarithmic scale show-
ing agreement in the large-A: limit,

The curvature distributions for the kicked-rotator
model has been studied by Takami and Hasegawa [20).
The authors were most kind to make their data avail-
able to us for comparison with theoretical distributions.
After appropriately rescaling their data to our definition
of dimensionless curvature k, Eq. (3.28) [32], we com-
pare them with the predictions given by Eqs. (3.29) and
(3.30), respectively (for the description of the kicked-
rotator model and the values of parameters see [20]).

Figure 9 shows the curvature distribution for the or-
thogonal kicked-rotator case in the logaritrnic scale to-
gether with the theoretical curve, Eq. (3.29). No fitting
has been done and the agreement for large curvatures
with the tail of the distribution is quite good. The scale
is chosen such that it coincides with the scale of Figs. 4—7
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FIG. 9. Comparison of the theoretical ad hoc distribution
with the curvature distribution obtained for the orthogonal
kicked rotator. Data obtained by courtesy of T. Takami and
H. Hasegawa. The inset shows very-large-curvature behavior,
the axes of the inset match the axes of the main figure, so their
title in the inset is suppressed for clarity. For a discussion see
text.

2.5
p(k)

2.0—

for better comparison. Once more, therefore, a quanti-
tative test of Eq. (2.13) confirms this formula. The inset
shows even larger curvatures (the slope of the line is dif-
ferent due to difFerent scale). One notices a small devia-
tion from the linear (with slope p = —3) behavior for very
large curvatures —in this regime, however, the number of
data points was probably too low. Notice also signifi-
cant asymmetric peaks. Local maxima of curvatures are
obtained in the vicinity of narrow avoided crossings. If
the step in determining the curvatures is very low, then
one will obtain contributions from a single level to each
bin consecutively up to the locally maximal curvature
at the crossing. This characteristic behavior indicates,
therefore, that the data points are not statistically inde-
pendent, at least for very large curvatures.

A proper comparison with the distribution Eq. (3.29)
should be, however, made also in linear scale for the
study of small-curvature behavior. The results, follow-
ing Takami and Hasegawa [20] are presented in Fig. 10.

The figure contains also the data (appropriately rescaled
[32]) for the stadium, obtained also from Takami and
Hasegawa. One notes that the distribution given by
Eq. (3.29) quite correctly describes the behavior of the
kicked-rotator curvatures, except for a small excess in
numerical data in the vicinity of k = 0. By comparison,
the data for the stadium billiard yield, as found in [20],
completely difFerent distribution at small curvatures. As
pointed out by Takami and Hasegawa, this indicates the
nonuniversal small-curvature behavior and has been re-
lated by them to the abundance of strongly scarred states
[24] in the system. These states shift in energy almost
linearly with the change of the parameter (here, the as-
pect ratio of the radius of the semicirle part to the length
of the straight part in the stadium) except when they un-
dergo a small avoided crossing.

The large-curvature behavior in the stadium-billiard
case is studied in Fig. 11. A comparison with the limiting
behavior given by Eq. (2.13) shows that this time the
large-k limit behavior is not given by the k s dependence.
This behavior has not been noticed in [20] as there only
a qualitative comparison has been made. We will come
back to this point in more detail after presenting the
results for the magnetized hydrogen atom.

Figure 12 shows the curvature distribution for the uni-
tary kicked rotator in comparison with the Eq. (3.30)
distribution. The results provide evidence of the correct-
ness of both the tail distribution and formula Eq. (3.30)
for the full curvature distribution.

C. Magnetized hydrogen .atom

H= ———+ (x +y).p 1 B
2 r 8

2

in[P(~k~)]

(4.9)

As a final example let us consider one of the most
prominent systems of quantum chaos" —the hydrogen
atom in a strong uniform magnetic field. For the review
of its properties see recent reviews [6, 33]. The Hamil-
tonian of the hydrogen atom placed in a static uniform
magnetic Geld, after omitting the trivial Zeeman term,
reads in atomic units

1.5-

1.0- -10—

0.5—

0.0 4

-16 2 4 5
In(ik[)

FIG. 10. Small-curvature distribution for the stadium bil-
liard and the orthogonal kicked rotator (data courtesy of T.
Takami and H. Hasegawa). For comparison the ad hoc theo-
retical distribution is also drawn as a smooth line.

FIG. 11. Large-curvature behavior of the stadium bil-
liard curvatures in the logarithmic scale (data courtesy of T.
Takami and H. Hasegawa). Note the deviation from the the-
oretical distribution, in particular, the difference in the limit
slope.
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FIG. 12. Large-curvature behavior of the unitary kicked
rotator in comparison with the theoretical ad hoc distribution.
Note quite an excellent agreement in striking contrast to Fig.
11. Data courtesy of T. Takami and H. Hasegawa.

FIG. 13. "Nonuniversal" behavior of small-curvature dis-
tribution for the magnetized hydrogen atom. Smooth line
represents the ad hoc theoretical distribution. More than
140000 curvatures have been used to obtain the normalized
histogram.

It has been shown frequently in the past (see [6] for re-
view and the extensive list of references to original pa-
pers) that the classical behavior of the system is deter-
mined by the so-called scaled energy s = E/Bz~s, where
E is the energy corresponding to Hamiltonian (4.9). For
s & —0.127 the classical motion is predominantly chaotic.
Instead of diagonalizing the Hamiltonian (4.9), it is ad-
vantageous to rewrite the Schrodinger equation in the
semiparabolic coordinates treating e as a parameter and
obtaining as eigenvalues the quantized values of the mag-
netic field or, as it may be better expressed, for fixed both
the energy and the magnetic field one finds the spectrum
of h, i.e., the values of 5 for which an eigenstate with
energy E and the field value B exists [6].

To Bnd the curvatures, the Hamiltonian of the system
in semiparabolic coordinates is diagonalized for difFerent
s c (—0.125, —0.075) values. The Lanczos algorithm,
used for diagonalizations, produces both the eigenvalues
and the eigenvectors in the prescribed eigenvalue range.
The eigenvectors are used to obtain the slopes p„[com-
pare Eq. (2.6)]. Two diagonalizations closely spaced in e'

give us about 300 curvatures using the first-order finite-
difference method as applied to the slopes found (levels
from around 250th to around 550th are used). Then s is
increased in value and the procedure is repeated. The rel-
atively large spacing between consecutive double diago-
nalization is intended to minimize statistical correlations
between difFerent sets of curvatures. We have checked
that the level spacing is well represented by the Wigner
surmise in agreement with previous studies in this regime
[6]. Altogether more than 140000 curvatures have been
collected in this way.

The numerically obtained curvature distribution, to-
gether with the distribution given by Eq. (3.29), is shown
in Fig. 13 in the linear scale and in Fig. 14 in the logar-
itmic scale. Immediately one notices a huge similarity of
the numerical curvature distribution for the magnetized
hydrogen atom to the behavior observed for the stadium
billiard. Both distributions are strikingly similar, espe-
cially for sxnall curvatures. The deviation from the an-
ticipated large-k behavior is, however, much smaller for

the magnetized hydrogen atom (Fig. 14). In our case the
slope seems to behave according to the A: rule, and the
line in the logarithmic plot appears to be shifted with
respect to the data.

To Bnd the origin of the deviation from the tail expres-
sion Eq. (2.13) for the large curvatures we have checked
whether the other basic results of the theory [15] (see
also Sec. IIIA) are fulfilled. As frequently mentioned
above, the theory yields a Gaussian velocity distribution.
We have numerically computed, therefore, the velocities
(slopes of the levels). The histogram is presented in Fig.
15. Velocities have been compensated for the overall drift
so the average velocity vanishes. They also have been
rescaled so the variance of the presented distribution is
one. One immediately notices a strongly asymmetric
shape with a long tail for positive velocities. Clearly,
the hydrogen atom in a magnetic Beld does not obey the
theory [15] or its version given in Sec. III.

2-
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FIG. 14. Same as Fig. 13 but in the logarithmic scale
showing the large-II. behavior. The solid line represents the ad
hoc distribution; the dashed line is the rescaled distribution
to compensate for the large tail of the velocity distribution.
See the discussion in the text and Fig. 15.
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billiard might be a first indication of the nonuniversality
of large-curvature behavior.

0.6—
D. Nonuniversality of curvature distributions
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FIG. 15. Normalized velocity distribution for the magne-
tized hydrogen atom. The horizontal axis scaled to the unit
variance. Note the large asymmetry of the curve around the
mean v = 0 value and the long tail of the distribution.

Let us consider the velocity distribution in more detail.
The huge bump around v = 0 resembles the Gaussian
distribution, provided we neglect the asymmetry due to
the tail. In the coordinate frame, in which the overall
drift of levels is zero, velocity of a given level changes
sign mainly when the level undergoes an avoided cross-
ing. The corresponding curvature should be large. On
the other hand, the long tail may be associated with the
motion of the scarred states (very abundant in the mag-
netized hydrogen [6]). Their absolute velocity is typically
small (they behave almost linearly with the change of the
parameter s), thus in the moving frame (where average
velocity of att levels is zero) they acquire a relatively large
nonzero component. Thus the tail is related to the "lin-
ear regime" of the scarred states motion and, therefore,
to the nonuniversal [20] small-curvature regime.

For comparison with the random theory ([15] and Sec.
III) this tail may be substracted. Then clearly the vari-
ance of velocities becomes smaller. This in turn affects
the proper rescaling of the curvatures. Recall that P in
the definition of p~, Eq. (3.32), is the inverse velocity
variance. The effective p~ should, therefore, be smaller
and the dimensionless curvature k, Eq. (3.28), should also
be appropriately modified. Instead of shrinking k, we
may rescale (expand) the theoretical distribution. The
trend obtained by such a procedure is depicted in Fig. 14
by a dashed line. Notice that after the correction of the
velocity variance the numerical histogram and theoretical
curve practically coincide for large k.

The question remains as to what the origin of the un-
expected slope in the stadium-billiard case is, Fig. 12.
Purther tests in the billiard case would be necessary to
draw any definite conclusion. The correspoding veloc-
ity distribution should be found. Importantly, strictly
speaking, there is no theoretical ground to believe that
the tail behavior, as given by Eq. (2.13), should be ap-
plicable for strongly scarred systems. Both the theory of
[15] and the theory of Sec. III assume the decorrelation of
velocities (slopes) and positions (eigenvalues) of the fic-
titious particles. This is certainly only an approximation
for a strongly scarred system. The results for the stadium

1 (—y)
Py(y) = exp

I

2vry6 g 2b )
(4.12)

On the other hand, S is distributed according to the cel-
ebrated Wigner form,

Let us consider in more detail the small-curvature dis-
tribution and its nonuniversality. As discussed above,
the accumulation of curvatures around k = 0 has been
attributed [20] to the strongly scarred "bouncing-ball"
eigenstates. Similar effect has been observed for the an-
other "strongly scarred" system, the magnetized hydro-
gen atom (Fig. 13) supporting this interpretation. The
question remains as to whether some simple distribution
may, at least partially, simulate the numerically found
distributions presented in Figs. 10 and 13.

Fortunately such a distribution is easily at hand. Ac-
cording to Takami and Hasegawa [20] (see also the discus-
sion above), the accumulation of curvatures comes from
small curvatures of the "scarred states" in the relatively
large intervals of parameter values where these states do
not undergo some avoided crossings. The dependence of
the energy on the parameter is, in this regime, almost
linear. Recall, from the Sec. II, that it is precisely the
linear regime which forced us to abandon the linear de-
pendence on the parameter model, Eq. (2.1). Therefore
the simple 2 x 2 model should be applicable to a good
approximation for the strongly scarred states, as they are
either little affected by other levels or undergo relatively
small and narrow avoided crossings.

To construct such a model the theory of [15] cannot
be used. What we need now is not a statistical theory
in which no limit on A may be imposed, but rather a
standard two-level RMT approach applied to the Hamil-
tonian, Eq. (2.1). The equation relating the curvature
to elements of the Hamiltonian matri~ (2.4) for N = 2

levels takes the form

dz x„(H2)„(Hz)&n— 7l Q m ) ~

A/2 2.

(4.10)

Let us consider the distribution of ~K~. The ]2:2 —xi~ is

equal to the level spacing S. Thus

(4.11)S
Consider the case of small A, then H2 in Eq. (2.1)

may be considered as a perturbation of Hq. The matrix
elements of H~ are to be calculated in the eigenbasis of
H(A). For A small this basis will be an eigenbasis of Hi to
a good approximation. For almost any Hz one may there-
fore assume that the matrix of Hq will have GOE prop-
erties with some variance b. Its nondiagonal matrix ele-
ments will be equal, real, and normally distributed with
zero mean. Their product y = (Hq) i 2(H2)q i, therefore,
obeys the Porter- Thomas distribution



1662 JAKUB ZAKRZEWSKI AND DOMINIQUE DEI.ANDE 47

S f S2)
Pg(S) = exp ~—

2crz ( 40 z (4.13)

where o is the variance corresponding to Hq, in general
different from b. Typically, a = ir i~, so the average
spacing is equal to one.

The full distribution of curvatures may be obtained in
quite a straighforward manner as

Pg(~K~) = dS dye(S)P„(y)b(K—2y/S),

which with the help of [30] becomes

(4.14)

3 t' /K]

(16/27rB]K/) ~ E, /87rB
(4.15)

where B = o/b and the 'D„(z) function defined by Eq.
(3.12). The distribution given by Eq.(4.15) is divergent
at K = 0 showing that when A becomes large, the lev-
els behave almost linearly. In this regime, however, the
assumption about the smallness of Hq is not fulfilled.
By comparison of Eq. (4.15) with the corresponding ex-
pression obtained in the statistical-mechanics model, Eq.
(3.16), one notices that the latter is nothing else but
the former averaged with the Gaussian of finite width.
Clearly, therefore, to remove the singularity at K = 0
one may average Eq. (4.15) with the Gaussian weight
function, the width of which should be determined by
the limits of applicability of the two-level RMT model,
i.e. , should be related to the mean level spacing.

Even without this averaging we may compare the dis-
tribution Eq. (4.15) with numerical data to see whether
such a procedure would make sense. One must first deter-
mine the free parameter B in Eq. (4.15). This we will do
by comparison of its large curvature limit with the lim-
iting distribution given by Eq. (2.13). Such a procedure
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FIG. 16. Comparison of the normalized-curvature distri-
bution for the stadium billiard (solid line) (data courtesy of
T. Takami and H. Hasegawa) and the magnetized hydrogen
atom (dotted line). Dashed line shows the theoretical dis-
tribution, Eq. (4.15) obtained in the two-level RMT. For a
discussion see text.

fixes B value at

1 p

6~~2 P
(4.16)

To test how the distribution, Eq. (4.15), fares with re-
spect to the "scarred" low-curvature region we plot it
in Fig. 16 together with the stadium-billiard data and
the hydrogen atom data. Only the vicinity of small k
is shown in Fig. 16 [large-k behavior is fitted, via Eq.
(4.16), to the hydrogen data). One notes that the the-
oretical curve reproduces quite well the general shape
of the data. Of course one should not expect a quan-
titative agreement, bearing in mind that the theoretical
distribution diverges at A: = 0 and that the data also
contain contributions from states not scarred, for which
small-curvature behavior is incorrectly described by Eq.
(4.15). The result, although being only qualitative, con-
firms therefore the interpretation of the origin of srnall-
curvature nonuniversality.

V. SUMMARY

The reader, who has survived with us up to this part,
may feel a bit disappointed. We did not present a definite
general answer for the statistical behavior of curvatures
in classically chaotic systems. On the other hand, sev-
eral interesting questions have been here, in our opinion,
answered and the clear picture of the importance of the
curvature distributions to the understanding of the sta-
tistical approach to quantally chaotic systems emerges.

The model that enables us to study the curvature dis-
tribution (as well as other statistical properties —see, e.g. ,

[13]) in finite-dimensional systems has been developed.
The theory is a modification of the statistical-mechanics
approach of [15],but for the "contained gas" rather than
for the "expanding gas" of the fictitious particles.

Several analytic formulas have been presented which
approximate the curvature distributions. Two main ap-
proaches have been used: (1) the two-level model realized
in the statistical mechanics of the "contained gas, " and
(2) inspired guess which has led us to simple analytic for-
mulas reproducing very well these parts of the curvature
distribution that come from the "random" chaoticlike dy-
namics.

The failure of 2 x 2 models to describe, at least approx-
imately, the random part of the curvature distributions
is traced to the strong many-level interaction in chaotic
systems, or putting it in the language of the fictitious par-
ticle dynamics, the long range of the potential coupling
the fictitious particles.

The main problem concerning the "random part" of
the curvature statistical behavior —the calculation of the
appropriate distribution using either the N = oo model
of [15] or the limit of large N in the alternative dynam-
ics of the "contained gas"—remains, however, unsolved.
On the other hand, the "inspired guess" formulas Eq.
(3.27) fit the data for random dynamics model very well,
and the parameters involved in the proposed distribu-
tions have the form coming directly from the semicircle
law. The proposed expressions should be therefore an
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excellent approximation for the random part of the dy-
namics, if not, by pure chance, an exact result,

We have confirmed the nonuniversal behavior of small
curvatures found for a stadium billiard [20] in another
prominent system of "quantum chaos" studies, the hy-
drogen atom in a strong static magnetic field. This re-
sults helps us to confirm that the small-curvature accu-
mulation is due to the strong scarring in the system, in
agreement with the original interpretation of [20].

From an extreme point of view the nonuniversal be-
havior of small curvatures may seem to indicate the lit-
tle significance of the study of their statistical proper-
ties. We strongly disagree with such an opinion. Rather
one should think of using the additional information con-
tained in the curvature distribution to get a quantitative
information about the system studied. Otherwise the
curvature distribution would yield just the same infor-
mation as it is already contained in, e.g. , level-spacing
distributions.

We suggest that the curvature distribution may be
used to measure quantitatively how strongly a given
physical system is scarred. The related problem of mea-
suring the content of a scar in an individual wave func-
tion [34] or a group of states [35] has been addressed re-
cently. How to define properly such a measure remains,
at present, an open question which we shall study in the
future.

The present results allow for only a qualitative classi-
fication of the different systems with respect to scarring.
The results indicate that the excess at k = 0 of the nu-
merical histogram over the value given by the ad hoc
expressions, Eq. (3.27) may be used to roughly estimate
the strength of scarring. It is known [36] that there is
some, not too strong, scarring in the kicked-top model.
This is in agreement with Fig. 4, which shows that the
low curvature excess above the guessed distribution is
quite small. In this aspect, the second time-dependent
Hamiltonian system considered, the kicked rotator (Fig.
13), shows a larger "nonuniversal" contribution, which
suggests that, for the used values of the appropriate pa-
rameters, stronger scarring appears in this system. By

comparison, autonomous systems, such as the magne-
tized hydrogen atom and, in an even higher degree, the
stadium billiard, show much stronger scarring (Fig. 16).

Interestingly, for systems belonging to the unitary sym-
metry class (both kicked top, Fig. 5, and kicked rotator,
Fig. 12) no excess above the random motion predictions
appears. The only nonrandom data f r the symplectic
universality class show (Fig. 6) again ome excess above
the ad hoc distribution limit. Expel'imentally, i.e. , nu-
merically, as far as we know, scarring has been observed
only for the systems belonging to the orthogonal univer-
sality class.

As seen from the above, statistical analysis of the cur-
vature distributions is not only important due to its pos-
sible direct significance for measurable quantities as, e.g. ,
in solid states application (see Introduction), but it pro-
vides very important information about the dynamics of
the system studied. To use the information contained in
the curvature distribution more data for other model and
realistic systems would be most welcome.
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