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Deterministic and stochastic surface growth with generalized nonlinearity
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The scaling behavior of the interface width for the generalized Kardar-Parisi-Zhang (KPZ) equation
Bh /dt =vV h + A,

~
Vh ~"+ ri(x, t) is studied in two dimensions as a function of p with and without the ad-

ditive noise term g. In the case of additive noise, the scaling of the surface width is found for all p to be
the same as for the ordinary KPZ equation (@=2) in contrast to a previous conjecture. This appears to
be due to the combined action of the nonlinearity

~
Vh ~" and the noise under renormalization, which to-

gether induce a
~
Vh

~
term. For the deterministic case corresponding to the smoothing of an initially

rough interface with roughness exponent u, good agreement with the scaling relation
z =min[2, u(1 —p)+p] is obtained for p, & 1. However, for p & 1, an instability is observed, which leads
to a fluctuating grooved surface. For an asymptotically large system, the roughness exponent is 1 and
the growth exponent is approximately equal to 2. The evolution of two slightly different surfaces is stud-

ied in order to determine a Lyapunov exponent characterizing this instability.

PACS number(s): 05.40.+j, 64.60.Ht, 68.55.—a, 68.10.Jy

I. INTRODUCTION Edwards-Wilkinson equation [20],

The central feature of many growth processes is the
formation of a surface which evolves in time [1]. The
spatiotemporal characteristics of a growing surface may
play an important role in determining bulk properties as
well. For this reason there is considerable interest in un-
derstanding the dynamics and the morphology of grow-
ing surfaces and interfaces [1].

In addition to extensive computer simulations of sim-
ple models, the morphology of surface growth has been
studied experimentally in a wide variety of systems, in-
cluding recrystallization of amorphous semiconductor
films [2], thin-film growth by molecular-beam epitaxy
[3,4], vapor deposition [5,6], and sputtering [7], two-fiuid
displacement in porous media [8,9], settling of granular
material [10],biological growth [11,12], tearing [13), and
burning [14] of paper, and electrochemical deposition
[15]. Much of the progress in describing surface growth
has been based on the observation that surface Auctua-
tions exhibit scaling behavior in both time and space. In
particular, assuming an initially Aat interface, the scaling
of the interface width w (L, t) on length scale L at time t
is expected to be of the form [16], w(L, t)=L f (t/L'),
where f (x)-x~ for x &&1, f (x)~const for x &&1, and
z =a/P. This scaling behavior has been found in simula-
tions of a wide variety of surface growth models [16—19]
as well as experiments [2—14].

From the theoretical point of view the main approach
for describing the growth of surfaces and interfaces is
based on coarse-grained Langevin-type equations [20,21].
In this approach, the interface fluctuations are assumed
to depend on an interplay between smoothing effects and
random noise which tends to roughen the surface. The
simplest such equation, appropriate for a fluctuating in-
terface in equilibrium (also studied as a model of random
surface deposition with diffusion under gravity), is the

aI
at

=vV h+g( xt),

where h (x, t) is the interface height (in d dimensions)
above a (d —1)-dimensional plane, the Laplacian
represents a surface-tension term which tends to smooth
the surface, and the roughening is caused by the noise
ri(x, t), which is typically assumed to be 5-function corre-
lated in space and time, i.e., (ri(x, t)g(x', t') )
=D5" (x—x')5(t t'). T—his equation is linear, and the
surface width scaling exponents may be shown to have
the form a=(3—d)/2, P=(3—d)/4, and z =2, which
implies in d =2, a =

—,', and P= —,'.
For the case of a growing surface, Kardar, Parisi, and

Zhang (KPZ) [21] have argued that due to sideways
growth, the correct equation at large length scales should
also include a term proportional to the square of the local
gradient. This leads to a nonlinear interface equation of
the form

aI
Bt

=vV h +A,
i Vhi +ri(x, t) . (2)

The nonlinear term may also be explained as the first
relevant term in an analytic expansion of the dependence
of growth rate on the local tilt. In two dimensions
(d =2) the scaling exponents for the KPZ equation have
been shown from a renormalization-group analysis
[21,22] and symmetry arguments [23] to be a= —,', P= —,',
z =

—,'. In three and higher dimensions the exponents are
not exactly known, however, the general scaling relation
a+z =2 holds [19,21,24].

Scaling results from computer simulations of a number
of simple stochastic growth models [16,19,25,26] are in
excellent agreement with those obtained for the KPZ
equation [21,22,27]. This supports the assumption of
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sideways growth made by Kardar, Parisi, and Zhang.
However, in general surface growth processes the depen-
dence of the local growth velocity on tilt is expected to be
diFerent from the quadratic form assumed by KPZ.
Therefore, it is of interest to investigate the scaling be-
havior of surface growth equations in which a more gen-
eral slope dependence is included.

Recently, Krug and Spohn [28] considered a general-
ized form of Eq. (2) without additive noise of the form

Bh =vV'h +~I Vh I"+g(x, t),
Bt

in d =2 dimensions, for —,
' ~ p ~ 4. In our simulations Eq.

(5) was integrated using a finite-difference scheme similar
to that used in previous numerical studies of the KPZ
equation [27,31]. Using a lattice with grid spacing hx = 1

and system size L and assuming periodic boundary condi-
tions, we rewrite (5) in the discrete representation

Bh =vV2h+X(Vh [",
at

(3) h(i, t+1)=h(i, t)+vbt[h(i+1, t) 2h(i, t)+h(i l, t)]

where p ~ 1. They argued that such an equation might be
appropriate to describe the smoothing of an initially
rough interface under deterministic growth. For the case
in which the initial interface has roughness exponent o,

they used scaling arguments to derive the scaling relation

I h (i + 1, t) —h (i —1, t) ~+A.At

+V2dht g(i, t) .

z =min[2, p(l —a)+a] .

This result can also be obtained by equating the scaling
[24,29] of the ~vh ~" term with the Bh/Bt term under the
scale change h —+b h, x~bx, and t~b't, and is con-
sistent with the KPZ scaling relation a+ z =2 for p =2.
In addition, it implies the existence of a critical value

p, =(2—a)/(1 —a), beyond which z =2 and the non-
linearity becomes irrelevant. For a= —,', relation (4) pre-
dicts p, =3.

In order to test this relation, Krug and Spohn [28]
studied several deterministic discrete surface growth
models in two dimensions. They argued that for these
models the appropriate continuum description is Eq. (3)
with p=1. Starting from an initially rough interface
with a =

—,', they obtained z = 1 from their simulations, in

agreement with (4). However, no attempt was made to
test relation (4) for general p. In addition, the stochastic
version of Eq. (3) with additive noise has not been studied
for @%2. Recently Wolf [30] has argued that the scaling
relation (4) should hold in the stochastic case as well.
Accordingly, we decided to directly study Eq. (3) with
and without the addition of noise, as a function of p.

In this paper we present the results of a systematic
study of a surface growth equation [see Eq. (5) below]
with a generalized nonlinear dependence on tilt. We con-
sider both the case of stochastic growth (with additive
noise) as well as the case of deterministic growth starting
from an initially rough interface. In Sec. II we define the
mode1 in more detail and describe our numerical solution
technique. The results of numerical integration of the
stochastic equation are described in Sec. III while our re-
sults for the deterministic equation are presented in Sec.
IV. In the deterministic case, an interesting instability is
found for p&1. This instability is further discussed in
the context of a Lyapunov exponent in Sec. V. In Sec.
VI, we summarize our results and present our con-
clusions.

II. SOLUTION OF GENERALIZED
NONLINEAR EQUATION

We have numerically solved the generalized nonlinear
equation

For the stochastic case, g(i, t) was taken to be an indepen-
dent random variable with either a uniform or a Gaussian
distribution, and with unit strength, while for the deter-
ministic case g(i, t)=0. The time step b, t was decreased
until the results were essentially independent of At.

In the stochastic case corresponding to the roughening
of an interface, Eq. (5) was integrated with additive noise
starting from a Rat interface until saturation, and the
scaling exponents a and P were determined from the scal-
ing of the interface width. To study the deterministic
case, we began with an additive noise and integrated (5)
until the surface reached the steady state. We then
"turned off" the noise (/=0) and continued the integra-
tion in order to study the smoothing behavior of the in-
terface and determine the dynamic exponent z for this
case. Averages were taken over many (40—60) runs and
for several system sizes L. In order to study the behavior
for p (1 and beyond p„roughening and smoothing of
the interface was studied for values of p equal to —,', 1, 2,
3, and 4. Pictures of the interface profile during smooth-
ing were also obtained.

For both the stochastic and the deterministic case, the
exponents u and z were determined from scaling plots of
the form m (L, t)/L versus t/L' for different values of L.
For the stochastic case, the exponents a and P were also
determined by studying the scaling of the correlation
function G(x)=([h(x) —h(0)] ) (which should scale as
x ) as well as the early-time behavior of the width
(tU —t~) for very large system sizes L =65 536—131072.
These results were always in agreement with our scaling
function plots.

III. STOCHASTIC GROWTH

Figures 1 and 2 show our results for the scaling func-
tion f (t /L') for the surface width, obtained from numer-
ical integration of (5) with additive noise, for p= 1 and
p=3, respectively. In both cases we find, somewhat
surprisingly, good agreement with the KPZ values a= —,',
P= —,', z =

—,', which correspond to p=2. Simulations were
also conducted for both values of p for large system sizes,
with slightly lower values of k than shown in Figs. 1 and
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FIG. 1. Scaling plot for surface width w(L, t) in stochastic
case with p=1, L —256, 512, and 1024, and z = z. Integration

parameters are v=1.0, D =0.5, ht =0.005, and A, =5.0. Slope
of fit in early-time region is P=0.31%0.01.

FIG. 3. Scaling plot for p=4 with additive noise for L = 128,
256, and 512, and z= 2. Integration parameters are v=1.0,
D =0.5, At=0. 001, and A, =1.0. Linear fit at early time has
slope P=0.32+0.02.

2, and a slow crossover from Edwards-Wilkinson behav-
ior (p= —,') to KPZ behavior (p= —,

'
) at much later times

was observed.
We now consider the case p=4 with additive noise.

This case is particularly interesting, since it corresponds
to the next term after the

~
Vh~ term in an analytic ex-

pansion of the dependence of the growth velocity on tilt
(assuming an even function). Consequently, it might be
expected to yield a new universality class corresponding

to the case where the
~
Vh

~
term is zero. Simple power-

counting arguments imply that for p )3, the
~
Vh ~" term

becomes irrelevant and therefore one expects Edwards-
Wilkinson (a= —,', P= —,', z =2) behavior.

The case p =4 is relatively difficult to integrate, due to
the high order of the nonlinearity. However, for an inter-
mediate value of A, (X= 1.0) we found, in contrast to the
power-counting arguments, that the scaling behavior was
the same as for the KPZ equation as shown in Fig. 3.
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FIG 2. Scaling plot for @=3 with additive noise for L =256
and L =512, and z = z. Integration parameters are v=1.0,
D =0.5, ht =0.005, and A, =3.0. Slope of fit in early-time re-
gion is P=0.34+0.01.

FICx. 4. Scaling plot for p =
2

with additive noise for
L =64—1024 in multiples of 2, and z = 2. Integration parame-

ters are v=1.0, D =0.5, At =0.005, and A. =2.65. Dashed line
has slope of —'.
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FIG. 5. Pictures of interface during smoothing at eight
different times (starting from a fully roughened interface at
t =0) for p=1. System size is L =512. Interfaces have been
shifted for clarity.

FIG. 7. Pictures of interface during smoothing for p =3.

IV. DETERMINISTIC GROWTH

For smaller values of A, we obtained somewhat smaller
values for P (intermediate between —,

' and —,'), which are
most likely due to a slow crossover to KPZ behavior.
For somewhat larger values of A, , the integration was
found to be numerically unstable. Thus, we conclude
that for p =4, the scaling behavior of the interface width
is the same as for the KPZ case.

Finally, we consider the stochastic case with p= —,'.
For this case we again find, as shown in Fig. 4, KPZ scal-
ing exponents for the interface width. (As we discuss
below, this case becomes unstable when the additive noise
is removed. ) Thus for all values of (M with additive noise,
we find KPZ scaling behavior for the interface width.

70

We now turn to the generalized KPZ equation without
additive noise. Figure 5 shows a picture of the smoothing
of the interface for p= I, which looks quite similar to the
interfaces in the deterministic models studied by Krug
and Spohn [28]. The case p=2 corresponds to Burgers
equation, as has already been pointed out by a number of
authors [21,28], and so one obtains the familiar cusps (see
Fig. 6) in this case. Figure 7 shows similar pictures for
p=3.

A scaling plot of our results for the surface width for
(((, =1, of the form w(L, t) versus t/L' with z =1 and
a= —,', is shown in Fig. 8. As one can see, the scaling is
very good, in agreement with (4) and the previous results
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FIG. 6. Pictures of interface during smoothing for p =2.
FIG. 8. Scaling plot for deterministic equation with p = 1 for

L =256, 512, and 1024 using z = 1.
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FIG. 9. Scaling plot for deterministic equation with p=2,
L =256 and 512, and z = —', .

FIG. 11. Scaling plot for deterministic equation with p=4,
L = 128, 256, and 512, and z =2.

of Ref. [28]. Figure 9 shows a similar scaling plot for
p=2 wit z= —,, e=2 h =

—,', the same as for the stochastic case. Fig-
ures 10 and 11 show scaling plots of our results for p= 3
and 4, respectively, with z =2 for both. Thus, the non-
linearity appears o e

't be irrelevant for the deterministic
case for p + 3 and relation (4) appears to hold for p, ~
We note that for the p=4 case there is a small discrepan-
cy in the scaled values of the width at early time. How-
ever this is most likely due to fluctuations and should
disappear with averages over a larger number of runs.

One interesting question is the shape of the " ecay
curve" and its dependence on p and/or z. For the
smoothing of a rough interface following the linear equa-
tion, one may show that the scaling form 0.2

I
I I I

I
1 I I

I
I I I

I
I I I

w L, t)=L f( /rL') holds, with the shape of the decay
b f (u)-1 —u' ' for u «1, with a= —,

' andcurve given y u-
m holdsz =2 in d =2. We conjecture that this scaling form o s

for the general nonlinear case as well, with the appropri-
ate value of z. Scaling plots of the form w(L, t)/L
versus u =t no' '/L ( ot shown) show linear behavior for
small u, in approximate agreement with this form.

We now consider the deterministic case for p= —,'. ig-
ure 12 shows a scaling plot with z =1 for this case.
Somewhat surprisingly although the decay of the surface

m letel to zero,w1 1dth is quite rapid, it does not decay comp e e y
but in fact saturates at a finite value at late times.s. In ad-
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FIG. 10. Scaling plot for deterministic equation with p=3,
L =256 and 512, and z =2.

1FIG. 12. Scaling plot for deterministic equation with p= 2,
L =512 and 1024, and z = 1, starting from an initially saturated
interface (upper curves .) Lower curve is for an initially random
interface as described in text.
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FIG. 13. Log-log plot of saturation width w(L, oo) vs L for
an initially rough interface with p=

2 and no additive noise.

Slope of fit is 0.96.

dition, while the early "decay" part of the curve scales
well with z =1 (and a= —,'), the saturation value for the
width at late times scales with a higher power of I.. We
note that Eq. (4) would predict z =

—,
' and thus does not

hold in this case. Also shown is the "growth" curve for a
system of size L =512 (again with no additive noise),
starting from an initially random surface corresponding
to heights randomly distributed from —0.005 to 0.005.
The final state is the same as for the case of "smoothing"
starting with a saturated surface. Thus, the late-time

FIG. 15. Pictures showing further evolution of the interface
shown in Fig. 14.

evolution of the fIuctuating interface appears to be in-
dependent of initial conditions.

The existence of a finite interface width at long times in
the absence of additive noise appears to be due to an in-
stability which occurs for p & 1, so that the flat solution
with zero slope becomes nonlinearly unstable. Due to
this instability any slightly random initial interface will
form a rough surface despite the absence of additive
noise. Figure 13 shows a log-log plot of saturation width
as a function of system size L for p= —,', for the deter-
rninistic case. From Fig. 13 we see that the roughness ex-
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FIG. 14. Pictures of evolving interface for deterministic
growth with p=

2 starting with a saturated interface at t =0
(L =512). First two pictures have been scaled by a factor of —,

'

for clarity.

FIG. 16. Log-log plots of w (L, t) vs t for p=
3 (upper curve)

and p= —' {lower curve) in absence of additive noise starting
with an initially random configuration of amplitude 0.005 and
with L =262 144. Dashed-line fits have slopes 0.47 and 0.50, re-
spectively.
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ponent is a=1. A similar result has been obtained from
the correlation function G(x)=([h(x) —h(0)] ), which
was found to scale as G(x)-x -x . Thus a "grooved"
state appears to be formed.

Figures 14 and 15 show the development and subse-
quent evolution of this grooved state, starting with the in-
terface at saturation in the presence of noise at t =0 for a
system of size L =512. Figure 16 shows a log-log plot of
w (L, t) versus t for L =262144, starting from a random
interface with heights randomly distributed from —0.005
to 0.005. The fit at late time indicates a growth exponent
P= —,', which implies z =2 for this case. Also shown are
results for p= —,

' for which approximately the same value
of P is found.

One striking feature of our results for the deterministic
case with p= —,', is that the roughness exponent a is larger
(a= 1) than for the stochastic case for which a= —,'. This
implies that for large enough system size L (significantly
larger than we have studied here), the surface width will
be larger for the deterministic case than for the stochastic
case for p= —,'. Thus, this may be a rather interesting ex-
ample of noise-induced smoothing. Alternatively, there
may be some mechanism which induces a crossover (for
fixed nonlinearity strength A, ) from a= 1 to a= —,

' at long
length scales. Further work will be needed to determine
if this is the case. Another interesting aspect of our re-
sults is that the existence of a finite saturation width for
this case appears to be due to some sort of deterministic
chaos or sensitivity to initial conditions which does not
allow the interface to settle down to the Aat state. This is
considered in the following section.

V. LYAPUNOV EXPONENTS
FOR SURFACE GROWTH

In order to study the sensitivity to initial conditions for
p= —,', we consider two different interfaces hI and h2 of
size L with slightly different initial values, hI(i, O) and
h2(i, 0), and follow their evolution in time. As a measure
of the difference between the two interfaces we consider
the quantity,
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FIG. 17. Semilog plot of h{t)/5 vs t for both deterministic
{upper curves) and stochastic {lower curve) growth with p= 2.
Dashed-line fit has slope y =3.2.
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creases, the range of time for this exponential behavior
increases. Also shown in Fig. 17 (lower curve) is the
scaled deviation [b,(t)/5] for the stochastic case with an
additive noise of strength D =0.5. For this case the devi-
ation between the two interfaces decreases, indicating a
negative Lyapunov exponent. Similar behavior has also
been observed for p= —,

' and we conjecture that a similar
instability occurs for all p &1. This is supported by the
results shown in Fig. 18. For @=2, b, (t) decreases rapid-
ly with time, while for the "marginal" case p=1, 6 first
decreases, then increases before slowly decaying with

(7)

In analogy with nonlinear dynamics, we expect that for
early times, the deviation h(t) will show an exponential
behavior of the form e ~', where y & 0 is a Lyapunov-like
exponent characterizing the surface dynamics. We take
hI(i, O) to have uniform independent random values
(ranging typically from —0. 1 to 0.1) for each value of i,
and set h2(i, O)=h, (i,O)+5r(i) where r(i) is a uniform
random number from —0.5 to +0.5, and 5 is a small
number (typically less than 0.01). As above, we integrate
Eq. (5) (v=1.0, A, =2.65, b, t =0.005) without noise for
both initial interfaces hI and h2 and calculate A(t). Fig-
ure 17 shows a semilogarithmic scaling plot of b, (t)/5
versus t for different values of 5 for systems of size
L =512 without noise (top curves). We see that for early
times the scaled interface difference b, (t)/5 has the same
exponential behavior e~' for all 5, with y =3. As 5 de-

I » « I I I « I I I ) I I

10 20

FIG. 18. h{t) vs t for deterministic growth with @=1 and

@=2 (I = 131072) starting from an initially random interface
with 5=0.00003.
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