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Resummation of classical and semiclassical periodic-orbit formulas
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The convergence properties of cycle-expanded periodic-orbit expressions for the spectra of classical
and semiclassical time evolution operators have been studied for the open three-disk billiard. We
present evidence that the semiclassical and perhaps the classical Selberg zeta functions have poles. Ap-

plying a Fade approximation on the expansions of the full Euler products, as well as on the individual

dynamical zeta functions in the products, we calculate the leading poles and the zeros of the improved
expansions with the first few poles removed. The removal of poles tends to change the simple linear ex-

ponential convergence of the Selberg zeta functions to an exp[ —n ] decay in the semiclassical case. The
classical Selberg zeta function decays like exp[ —n'~ I. The leading poles of the jth dynamical zeta
function are found to equal the leading zeros of the (j+1)th one: However, in contrast to the zeros,
which are all simple, the poles seem without exception to be double. The poles are therefore in general
not completely canceled by zeros in the way suggested by Artuso, Aurell, and Cvitanovic [Nonlinearity

3, 325 (1990)]. The only complete cancellations of this kind occur in the classical Selberg zeta function
between the poles (double) of the first and the zeros (squared) of the second dynamical zeta function.
Furthermore, we find strong indications that poles are responsible for the presence of spurious zeros in

periodic-orbit quantized spectra and that these spectra can be greatly improved by removing the leading

poles, e.g., by using the Pade technique.

PACS number(s): 05.45.+b, 03.65.Sq, 02.30.+g

I. INTRODUCTION

Trace formulas in chaotic dynamical systems relate
phase-space averages to sums over periodic orbits [1—6].
Exponential trace formulas give rise to Selberg-type zeta
functions, named after corresponding expressions arising
in studies of billiards on surfaces of negative curvature
[7,8]. Selberg zeta functions factorize further into prod-
ucts of dynamical zeta functions, each one being an
infinite product over all primitive nonrepeated periodic
orbits (PPO) of the system. Finally, the term cycle ex-
pansion refers to a certain expansion and truncation of
(dynamical and Selberg) zeta functions into polynomials.
Whereas the original trace formulas and the infinite prod-
ucts have the same convergence and analyticity proper-
ties, cycle-expanded periodic-orbit expressions typically
converge much better [3,4].

Calculations can be improved if the pole structure is
known [9]. Typically, dynamical zeta functions will have
poles; for Selberg zeta functions, one can advance argu-
ments [3,10] that they should be entire and thus ideally
suited for numerical purposes. We present here quantita-
tive results on the analyticity properties of zeta functions
for a two-dimensional (2D) conservative dynamical sys-
tem, a point particle elastically scattered off three disks
placed symmetrically in the plane [11—14]. This system
is ideally suited for such an investigation since (for
sufficiently separated disks) it is a hyperbolic system with
a good symbolic coding (complete binary, once the sym-
metries are factored out). Periodic orbits can convenient-
ly and accurately be computed.

We proceed with a formal definition of the objects in-
vestigated: Let p denote all primitive nonrepeated

1Z(z) =exp
I det(1 —J~ ) I

with

j=0

'(z) =+(1—z ' A 'A '),
P

and the semiclassical Selberg zeta function [15—17]
rn —i' n./2

z ~ eZ(z) =exp
det(1 —J,")I'"

(2)

with

j=0
(3)

'(z)=+(1—z 'e ' IA I

' A ), (4)

all as functions of z. We avoid use of additional labels
distinguishing classical and semiclassical zeta functions
and hope that it is clear from the context which one is
meant. Straightforward formal manipulations allow to

periodic orbits, n their symbolic length, p the Maslov
index (in a billiard p =2n ), and J~ the linearization per-
pendicular to the orbit, with A the eigenvalue of largest
absolute value. For the two-degree-of-freedom system
considered here J is a 2X2 matrix of determinant 1 so
that the other eigenvalue is 1/A . We then consider the
classical Selberg zeta function [5]
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FIG. 1. Expansion coefficients C„ofthe classical Selberg zeta
function (1) for different d/R in the open three-disk system.
(3
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express each function (1)—(4) as a power series Q„C„z"in
z, which, when truncated, yields the cycle expansion.
Where needed, we will abbreviate with t the contribu-
tions of periodic orbits to the dynamical zeta fUnction
with j =0 so that gJ '=+ (1 —t„A ~)

The above expressions are correct for maps, the
periods of orbits being integers. For Aows one would re-

n n
place z ~ by z ~exp[icoT I in the classical case or by
z exp[iS (E)/AI in the semiclassical case, expand in a
power series in z, and consider the final result as a func-
tion of frequency co or energy E, respectively, for z= l.
In billiards, the action is given by S~(E)/A=L&k(E),
where L is the geometrical length of the PPO and
k(E)=&2mE /A' is the wave number. In addition to
Maslov phases there can be further phases due to sym-
metries [18—20]. For the case of three disks, the above
expressions are correct in the A, subspace; in the A2
subspace there is an additional phase i m if n„ is odd.

Periodic orbits for the three-disk system have been
computed using Newton's method on two different maps,
one based on direct description (impact parameter,
scattering angle) of collisions with the disks and one
based on stationarity of action. The computations were
done for several values of the ratio p—=d/R, where d is
the disk separation and R the disk radius. Symmetry-
reduced orbits up to symbolic length 13 have been found
in double-precision numerics with relative accuracy
10 ' . The exponential of (1) and (3) was computed using
all orbits and repetitions satisfying n ~ X and then ex-
panded in a series Q„C„z"using the recurrence relations
of Plemelj [21] and Smithies [22] (see also Ref. [23]).

Figure 1 shows the results for the classical Selberg zeta
function. An apparently faster-than-exponential decay is
observed. In contrast, the semiclassical Selberg zeta
function seems to decay faster than exponentially for the
first three or four terms, but then settles for an exponen-
tial decay; see Fig. 2. In the following we will explain
this difference in behavior, show its effects in calcula-
tions, and demonstrate how this knowledge can be used
to improve calculations.

We begin in Sec. II with a detailed discussion of the
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FIG. 2. Expansion coefficients C„ofthe semiclassical Selberg
zeta function (3) for different d /R in the open three-disk system.
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convergence of cycle-expanded zeta functions, including
numerical results for the three-disk system. In Sec. III
we turn to methods for identification and removal of
poles. The effect of poles when calculating quantum reso-
nances is discussed in Sec. IV. We conclude with a short
summary and comments on other systems in Sec. V.

II. CONVERGENCE ESTIMATES

Expanding the product on j in a power series in z, one
finds

Z( )=g[g, '( )]' '-yd„
—n32

with d„-A " (see below). Similarly, in the semiclassi-
cal case one finds

and

Z(z) =+g '(z) —gd„'z", (8)

nwith d„' —A " [essentially due to the Euler product for-
mula; see, e.g. , Eq. (89.18.3) in Ref. [24]]. Because of this
rapid decay, these functions are free of poles.

In the general hyperbolic case, the expansion of
dynamical zeta functions does not stop with the linear
term but rather continues with exponentially decaying
coefficients, c„-p" with

~ p~ ( 1. Summing this geometri-
cal series one finds a pole at z=p '. In Refs. [3,10], p
has been related to the Lyapunov exponents which sug-
gests that the poles of g~

' should be compensated by the

Some insight into the behavior of the cycle expansions
of (1) and (3) may be obtained by considering the special
case of a complete binary code with Ao-A, -A and a
factorization of the eigenvalues of the longer periodic or-

no n&bits Ap Ao A, , where no and n, are the numbers of
zeros and ones in the symbolic description ofp. Then the
classical dynamical zeta functions take on the form

'(z)-(1 —2ziAi 'A i) .
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zeros of g~+). To see what terms have to compensate in
order to provide faster-than-exponential decay of the
coefficients in the Selberg-type zeta function, let us con-
sider the classical and semiclassical cases in more detail.

A. Semiclassical case

—
( 1 f(0) (0) 2 (0) 3 . . .

)

X(1 f(')z —c—"'z —. )3 10

X (1 f',"z c—",,'z' — ). — (9)

As is often convenient for dynamical zeta functions we
distinguish curvature terms c; of orbits grouped together

n

with shorter shadowing orbits and fundamental contribu-
tions f, of the sh. ortest orbits, which by definition are not
approximated by other orbits. Superscript labels here in-

With each dynamical zeta function expanded in a
power series in z, the semiclassical Selberg zeta function
(3) looks like

Z( )=gg, '( )

dicate the order j of the zeta function. Subscripts indi-
cate the size of the terms in powers of ~A~ ', where ~A~

is a typical instability of the shortest orbits (obviously,
some uniformity in the Lyapunov exponents is assumed
here). For instance, f'1 ' comes from terms of the form

~A ~

' e ~ in g0 ', whence its subscript equals 1.
Fundamentals f(~) with higher j have additional powers
~A~~

' and thus i =1+2j. The order of the curvature
corrections c j)z" is determined by two factors: the typi-

n

cal size of the terms contributing (about ~A~
" ~") and

an additional factor -A " due to exponential shadowing
of long orbits by short approximants; thus i„=(3+2j)n.

To estimate the convergence behavior, we will now ex-
pand (9) in z, Z(z)=Q„C„z", and evaluate the leading-
order contributions in each coefficient C„. One sees that
there is a considerable difference in order of magnitude
between the fundamental term and the first curvature
correction, so to begin with one would expect to find
significant contributions from fundamentals only. In the

nO nl
ideal two-scale approximation Ap Ao A1' all curvatures
are identically zero, c '=0, and the expansion looks as

n

follows:

Z (z) = ( 1 —f '1 'z ) ( 1 f '3"z ) ( 1 f 5
—'z )—

(f(0) +f (1) +f (2) +. . . ) +(f(0)f(1) +f{0)f(2) +f(0)f(3) +f(1)f{2)+. . . )
2

(f(0)f(1)f(2) +f (0)f(1)f(3) +. . . ) 3+. . .

g d„'z" .
n=0

(10)

We notice that the leading terms grow in order (I„) like
I2=1, I2 =1+3=4, I3 =1+3+5=9, . . . , i.e.,
lnd„' -I„=g".:0{(1+2j ) =n, a quadratic exponential
convergence.

In the full evaluation of (9) we cannot expect the purely
fundamental product terms to be leading forever. Ar-
ranging products as above according to the sum of the
lower indices and calling the leading fundamental terms
I 2 we find the following expansion coefficients Cn:

Co —
&

C, =F, —f"'—f' '+O(7),
—F +f(0)f(2) c (0) +f(0)f(3) +f(1)f(2)

—c9 '+O(10),
c(0) +f{1)c(0) f(0)f(1)f(3) +f(2)c(0)

(11)
3
—

9 C9 3 C6 1 3 7 5 C6

+fI 'cI()'+O(12),

C = c + g ( )c( )-+ c( c( ) +(1)+( )c(0)

+F,6+f ) 'cI5'+ +O(18),
C = —c( ) + ~(')c( ) + r( )c(o) r(1) ~( )c( )

+ +F25+ . +O(27),

—
( 1 f{0)z c(0)z2 c(0)z3 )

X(1—f'" —c'" —.. . )2 6

X (1 f '"z c"'z' . )'— ——
3 8 (13)

etc. , where O(n) indicates terms of size -A ". Up to
and including n =3 the convergence is unconditionally
quadratic as in the ideal situation. At larger n, however,
due to the simple exponential decay of the pure curva-
tures, these as well as mixed curvature and fundamental
cross product terms have outgrown the pure fundamental
ones. Unless there now exist efficient additional cancella-
tions within complexes of the form

(12)

raising their order to at least n, a sudden change in the
convergence behavior of the semiclassical Selberg zeta
function around n =4 is to be expected. This is indeed
what is observed in Fig. 2.

B. Classical case

Following the procedure in the semiclassical treatment
above we now analyze the slightly more complicated clas-
sical Selberg zeta function (1),
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Since in the classical case weights are proportional to
powers of ~Api, subscripts now indicate the size of the
terms in powers of iAi ' rather than iA[

The convergence behavior in the ideal case c '=0 is

found as follows: From a straightforward expansion of

Z(z)=(1 f'1 'i—)(1 f2"i—)'(1 f(2"z—)'

C2n 2f 2 C2n —2+f 2 f2 C2n —4
(o) (&) (o) (1) (I) (o)

Things work out nicely until order 4; beginning from or-
der 5 additional cancellations are needed. As Fig. 1

shows, these seem to occur in the classical case.

C. Numerical estimate of curvatures

d.z"
n=0

one obtains the expansion coeKcients

do=1

d = —f' '+ . =O(1)
—2f (0)f(1)+. . . —O(3)

d = f' 'f'"f"—'+ =O(5),
d4=3f', 'f"'f"'f"'+ . =O(8),

3f( )f( )f(1)f(2)f(2)+. . . —O(11)

f (0)f(1)f(1)f(2)f (2)f (2) +. . . O( 14)

4f (0)f ( 1 )f ( 1 )f(2)f(2)f(2)f (3 ) +

(14)

(15)

A rather crude estimate of the individual curvature
terms c'j' t-A ' +", where t =~Api ' in the classical
and t =iA

i

i in the semiclassical case, was used
above to obtain the correct order of magnitude for the
full curvatures c,'J', each being a sum over individuals

with the same symbol length. One would benefit more
from the results of the preceding sections if there were a
better estimate of the individual curvatures c' ' in g0 '.
Consider again a system with binary symbolic dynamics.

First note that due to uncertainty in the building of
complexes like cooo» = tooo» —

tooo, t, —totoo» + tptoo, f,(o)

and coo]oi tooipi tooi tp, it appears necessary to collect(0)

curvatures with the same number of zeros and ones into a
single term,

(o)
Cnm =+5n, n05mnCp,

(16)
dJ
dI =J ~

Equation (16) gives j„=n', which is inserted into Eq.
(17). The solution of the resulting equation is the
sought-after asymptotic relation I„-n

The full evaluation of Eq. (13) gives

(17)

Co 1

C, =F, —2f2" —3f3 '+O(4),
c(0) f(1)f(1) + 3f(0)f(2) +6f(1)f(2)

etc. The growth rule should be obvious: From the jth
zeta function (counting $0

' as the first), there are j con-
secutive contributions to the leading-order terms, each
increasing the order of magnitude by an amount j, i.e.,
j=j„grows by one over an interval of length An =j„and
the total growth in order I„ is bI„=I„+«—I„=j„.For
large n one thus ends up with the following di6'erential
equations:

where the Kronecker deltas select primitive periodic or-
bits with number of symbols no =n and n, =m. After
this precaution one may make the following ansatz,

c„„=a„„(t()A()') '(t)A, ') ', (21)

hoping that the essential stability dependence has been
correctly extracted, so that the prefactors a„„depend

0 1

only weakly on stability. We aim at finding an approxi-
mation for the prefactors a„„better than a„„—1.

0 1 0 1

We have calculated the prefactors e„„up to symbol
0 1

length 6 for the open three-disk system, with values of p
(=d/R) ranging from 2.5 to 6.0, and with weights given
by t =

i A i
. The results of the calculations are

presented in Table I (D =
—,', semiclassical case) and Table

II (D =1, classical case). The values for D =1 are rough-
ly twice those for D= —,

' and some variation in parallel
with the instabilities Ao and A, is noticeable. The depen-
dence on no and n

&
seems to be roughly binomial with an

additional factor no+n&,' we conclude that the data in
Tables I and II should be more or less well approximated
by the following formula:

+4f', 'f4 '+O(6),
c( ) +2f ( c( 6f ( )f ( )f(2) +2f c(1)

+3f3 'c4 ' —. . +O(8),

(18) a„„=DhL)(A0(p), A, (p) )( n0+ n, )

DhD (p )B„„—

no+n& —2

no —1

(22)

4 8 C8 2 C6 2 2 C4 1 2 C6

+3f3 'c6 '+ . +O(10),
C~= C'(0'+2f 2"C's '—f2"f2"C6 '+F„+ . +O—(12),

where hD captures the dependence on the separation ra-
tio p. Figure 3 shows the rescaled prefactors
a„„/DB„„as a function of p, together with the linear

0 1 0 I

fits of the data:

etc. The leading-order terms in each C„which have to
compensate in order to get the faster than exponential
convergence n are now of the form

h 1(p)= —0.584+0.378p,

h, i2(p)= —0.506+0.376p .

(23)

(24)
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TABLE I. Semiclassical curvature prefactors a„„ofgo
' [Eq. (4)] for the open three-disk system

(A i subspace).

d/R

&zi

&iz

Ct i 3

CX4 i

CXz3

CXi4

CXs i

&4z

+33
EXz4

&is

2.5

2.6180
3.4867

1.1186

1.6744
1.1115

2.0462
3.0188
1.6862

2.3333
5.3147
5.6405
2.0389

2.6004
7.8084

11.894
8.4893
2.4947

2.8

3.2967
4.2299

1.3544

2.0904
1.4729

2.6014
4.0646
2.1916

3.0303
7.2931
7.5660
2.7079

3.4420
10.979
16.481
11.638
3.3024

3.0

3.7321
4.7162

1.5062

2.3410
1.7097

2.9302
4.7274
2.5191

3.4400
8.5355
8.7926
3.1391

3.9340
12.964
19.395
13.651
3.8249

4.0

5.8284
7.0967

2.2298

3.4572
2.8696

4.3757
7.8445
4.1148

5.2285
14.296
14.659
5.2205

6.0712
22.091
33.237
23.287

6.3585

5.0

7.8730
9.4411

2.9255

4.4835
4.0094

5.7007
10.811
5.6864

6.8635
19.712
20.352

7.2543

8.0196
30.607
46.568
32.652

8.8413

6.0

9.8990
11.771

3.6098

5.4784
5 ~ 1394

6.9875
13.713
7.2505

8.4507
24.989
25.982
9.2723

9.9093
38.877
59.695
41.925
11.307

The relative deviations from the linear fits are rather
large for small values of p, but shrink with increasing p,
at p=6 the maximum relative error is less than 10%
(semiclassical case). The ansatz hD(Ao, A, ) =irD ~AoA, ~'

with ~, =K&&2=0.2 is another simple and relatively accu-
rate estimate.

Equation (22) gives us information with sufficient detail
that we may now return to the question of whether there
exist additional cancellations in the classical and semi-
classical cycle expansions for the open three-disk prob-
lem. The estimate of the full curvatures becomes

'I

n —1 n —2,

c ' =nDhD g I
Ao'A, ,

n, =i ."O

=nDhD Rod, (Ao+ A, , )"

=nDhD ko~&fD (25)

where fD refers to f ~&" in the classical and f3" in the
semiclassical case, respectively. For short, we have writ-
ten A.o:—toAo

' and A, , —=t, A, '. The perhaps surprising
observation to emerge from Eq. (25) is that the leading

TABLE II. Classical curvature prefactors a„„ofgo
' [Eq. (2)] for the open three-disk system (A,

subs pace).

d/R

&zi

&iz

+13

CX4i

&3Z

CX i4

si
&4z

&z4

Qis

2.5

2.1001

2.8211
1.9894

3.2373
4.7872
3.0514

3.5819
7.6837
9.1325
3.6692

3.9392
10.575
17.569
13.644
4.4981

2.8

2.5773

3.6797
2.6964

4.4162
6.8163
4.0477

5.0739
11.527
12.845
4.9844

5.7353
16.709
26.216
19.669
6.0848

3.0

2.8835

4.1979
3.1619

5.1151
8.1208
4.6946

5.9509
13.990
15.236
5.8351

6.7861
20.651
31.833
23.571
7.1147

4.0

4.3394

6.4921
5.4579

8.1406
14.328
7.8584

9.7075
25.561
26.806
9.9614

11.267
39.052
59.045
42.501
12.135

5.0

5.7359

8.5797
7.7261

10.858
20.266
10.985

13.063
36.474
38.119
14.009

15.262
56.258
85.552
61.064
17.074

6.0

7.1077

10.591
9.9797

13.471
26.080
14.103

16.287
47.090
49.337
18.032

19.097
72.928

111.74
79.508
21.988
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1.5

The conjecture [3] that the position of the poles of the
dynamical zeta function g is given by the zeros of g~+&
remains valid, but the order of the poles is not simple but
double. Returning to the arguments of Aurell and co-
workers [3,10] one notes that they are rather liberal with
the prefactors, and it is precisely in the prefactors that
the difference between a simple and a double pole resides.

0.5

FICx. 3. Rescaled semiclassical (diamonds) and classical
(crosses) curvature prefactors a„„/DB„„ for different p0 1 0 1

(=d/R) in the 21 subspace. The straight lines are the corre-
sponding linear approximations [Eq. {24)]: h, ~2{p) in the semi-
classical case (dashed line), and h 1(p) in the classical case (solid
line).

III. IDENTIFICATION AND REMOVAL
OF POLES

In the case of maps, phase-space averages can be relat-
ed to zeros of zeta functions Z (z) =g„" oC„z". Practical
calculations estimate such zeros from a truncation of the
series, F&(z)=g„oC„z". In ideal situations, exponen-
tial [3,4] or even faster-than-exponential convergence [9]
is obtained. The presence of poles destroys faster than
exponential convergence and makes it more difficult to
calculate the exact positions of the zeros; consider a sim-
ple case where there is one zero and one pole:

F(z)= =(1—az)(1+bz+b z + . . )
1 —az
1 —bz

pole of go '(z) has to be double: =1—(a b)z —(—a b)bz —. = &—Cz" .n
n=0

(29)

X „DD~o~lfD
' Xn(fDz)"

(1 fDz )—

=DhDkoi, ,fD '%0, (27)

the terms do not cancel; there still remains a rest of
(roughly) order O(3n), building up a (simple) pole at

p 3z =I/f'"=(i&el '"& '+IAil '"Wi ') '. This is in

line with our earlier numerical findings that the semiclas-
sical Selberg zeta function is not free of poles. However,
if we insert the same expression (25) into the classical
complexes (19),

c; 2fDc; i +fDC;

= [n —2(n —1)+(n —2)]Dh&Aol&fD =0, (28)

the additional cancellations are there.
Note that the qualitative results above are independent

of the choice of weight (i.e., the values of D); the different
results for the classical and the semiclassical Selberg zeta
function are entirely due to the difference in the power of

The double pole of go
' occurs at z =fD ', which is

identical to the lowest-order approximation of the leading
zero of g, '(z). By taking the square of g, '(z) as in the
classical Selberg zeta function one doubles the leading
zero, which then precisely cancels the double pole of go '.
In the semiclassical case the simple zero of g&

' cancels
only one pole with a simple pole remaining [Eq. (27)].
We study this point further below.

If (25) is now inserted into the semiclassical complexes
(12),

c ' fDc o' = [—n (n —1)]Dh—DAok, ifii
n n —1

We assume that 0(b (a. A truncation after the linear
term gives a value of the zero zo =(a b) ' T—his is .ob-
viously a bad estimate of the true value zo =a ' if a and
b are of the same order of magnitude. The inclusion of
higher-order terms only slowly improves zo, the error be-
ing —( b /a ) asymptotically. Furthermore, additional
"ghost" zeros appear: The number of these unwanted
zeros equals X —1 and they do not vanish to infinity as X
grows large —they cluster around the circle lzl =b
which borders the region of absolute convergence. To see
this, consider the function

(1—bz )F (z) = 1 —(a —E)z

—E(a b)z [1+bz+ b z —+ ] (31)

has already in the linear approximation a zero
zo=(a —E) ' close to zo. The position of the ghost zeros
may be estimated from the function [cf. Eq. (30)]

=(1—az) g (bz)J,(1—az)[1 (bz)+]—
1 —bz

which differs from F~(z) only in the coefficient Cz.
clearly has N —1 additional zeros on the circle lzl =b
For b &a)0 the situation is still worse; there is no zero
of F~(z) converging to zo =a

If on the other hand the pole were absent, one would
have a polynomial 1 —az, which "converges" to its exact
form already after the first term in the "expansion"; the
zero zo=a ' is at once correctly determined. By es-
timating the value of b from the asymptotic behavior of
the coefficients C„, we could remove the effect of the
pole: Assume an estimate b close to b with
l
b b l

=
l
E

l
«a. Th—en the function
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TABLE III. Leading zeros and poles of the semiclassical Selberg zeta function (3) and of the th~ee lowest-order dynamical zeta

functions (4) in the A
&

subspace, determined from the different Pade approximations of the respective functions (N 13).

d/R

2.5
2.8
3.0
4.0
5.0
6.0

zero

0.901 776
0.992 814
1.048 112
1.285 008
1.481 805
1.654 411

z
pole

4.477. . .
6.978. . .
8.917. . .

21.88. . .
40.2. . .
63.6. ~ .

zero

0.901 776
0.992 814
1.048 112
1.285 008
1.481 805
1.654 411

—1
0

pole

4.48. . .
6.979. . .
8.917 ~ . .

21.86. . .
39.9-. . .
63.3. . .

zero

4.477 109
6.979 119
8.917 864

21.878 53
40.175 55
63.590 37

pole

8.904 1. . .
14.706 24
19.418 66
54.551 28

111.762 7
194.356 8

zero

8.904 120
14.706 24
19.418 66
54.551 28

111.762 7
194.356 8

—1

2

pole

29.31 . . ~

68.4. . .
108.7. . .
592. . .

1876. . .
4508. . .

N

( 1 —bz )F~(z) = ( 1 —az ) 1+( s /b ) g ( bz )~ (32)
from QL(z)F~(z) Px L(z) —i.e

N L N —L

g B(N n n—')C—„B„.z"+" = g A„z";
for large z, it is dominated by the highest power of z, so
that its zeros lie on the circle Izl -(c/b) '~ b '. They
tend to infinity as a~0.

If several poles are present, as, e.g. , in a rational func-
tion

n=O n'=0 n=0

0, x&0
e(x) = (34)

F(z)= P(z)
z)

(33)

with polynomials P and Q, the zeros
lzil «lz2I «Iz31« . «Q b~~~g di««n«rom the
zeros of P, the removal of the leading pole z, leaves a
function where z2 determines the convergence. In the
special case P(z)=(1 —az) and Q(z) =(1—b, z)(1 b2z)—
with 0& bz «b& &a, the removal of z, =b, ' pushes the
ghost zeros to the neighborhood of Izl =b2 ' and the er-
ror in the linear estimate of zo shrinks from
b i I'a (a b, ) ]—', which may be larger than a ', to
beta(a b2)] '«a—'. If z2 in the last example is not
much larger than z&, but close in magnitude, the im-
provement is of course only marginal. Thus if two (or n)
leading poles are close in magnitude, one has to remove
both (all n) before any considerable improvement takes
place.

To remove a certain number of poles in a consistent
way, one may use a Pade approximation I25]: Assume
that X+ 1 coe%cients C„of the function
F(z)=P(z)/Q(z)=Q„=DC„z" are known and that one
wants to know the power-series expansion of the un-
known functions PM(z) =g„0A„z" and
QI (z)=Q„OB„z". With the normalization Bo= 1, one
has to determine M+1+L coefFicients A„,B„, so that
X=M+L is required. The coe%cients are determined

By identifying terms of equal power in z, one finds alto-
gether X+ 1 equations for the M+L + 1 =X+ 1 un-
knowns.

Once the coefFicients are known, the solution of
QL (z~ ) =0 gives approximately the position(s) of the
dominant pole(s). If the computed value z converges for
increasing L (and N), one may feel confident about really
having identified a pole. Similarly, solutions of
PM(zo)=0 that converge for increasing L and N should
give improved estimates of the zeros of the full function
F(z). (Calculating poles is in general much more difficult
than finding good values for the zeros; even the leading
pole requires large N. )

We have applied this to the three-disk system. An ap-
proximation with linear denominator Q, (z) already gave
good results, confirmed and stabilized by computations
for quadratic and higher-order denominators. The posi-
tions of the leading zeros and poles of the full Selberg
zeta function and of the three first dynamical zeta func-
tions are listed in Tables III—VI. The data clearly
confirm the conclusion drawn at the end of the preceding
section that the poles of g~ approximately coincide with
zeros of g +, . The poles appeared in the computations
either as pairs of nearby real values or as pairs of
complex-conjugate values with small imaginary parts, a
strong indication that they are double. Assuming that
they are all real and double, the identification of poles

TABLE IV. Zeros and poles of the semiclassical zeta functions in the A2 subspace. (cf. Table III).
—l
0

d/R

2.5
2.8
3.0
4.0
5.0
6.0

zero

—1.903 081
—2.478 382
—2.867 599
—4.888 079
—7.005 394
—9.184 139

pole

—2.883 523
—3.864 797
—4.554 415
—8.421 929

—12.930 16
—18.006 87

zero

—1.903 081
—2.478 382
—2.867 599
—4.888 079
—7.005 394
—9.184 139

pole

—2.883 523
—3.864 797
—4.554 415
—8.421 928

—12.930 16
—18.006 87

zero

—2.883 523
—3.864 797
—4.554 415
—8.421 929

—12.930 16
—18.006 86

pole

—11.339.
—21.5005
—30.5791

—111.00 . .
—266.53 . .
—518.04 . .

zero

—11.336 765
—21.500 63
—30.579 32

—111.006 1
—266.528 2
—518.037 4

pole

—26.12. . .
—54.290. . .
—80.822. . .

—348.648. . .
—956.113.. .

—2079.23. . .
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TABLE V. Zeros and poles of the clasical zeta functions in the A, subspace. No pole could be determined for Z(z) [Eq. (1)] from
the Pade approximation. (Cf. Table III.)

d/R

2.5
2.8
3.0
4.0
5.0
6.0

Z

zero

1.617 959
1.963 506
2.189 327
3.294 206
4.382 146
5.463 591

zero

1.617 959
1.963 506
2.189 327
3.294 206
4.382 146
5.463 591

—1

0

pole

7.095. . .
12.181. . .
16.407. . .
48.858. . .

102.44. . .
179.3. . .

zero

7.095 174
12.18000
16.408 21
48.858 24

102.439 3
179.463 2

pole

15.358. . .
28.3748. . .
39.7475. . .

138.153 . . ~

327.3269
636.421. . .

zero

15.359 95
28.374 85
39.747 46

138.1530
327.326 9
636.421 1

—1
2

pole

47.27. . .
122.68. . .
206.60. . .

1 383.5. . .
5 043.3. . .

13 500. . .

could in some cases be done with up to seven-digit pre-
cision, applying an extrapolation scheme on the results

given by different orders of approximations N and l..
The improvement in the decay of the coefficients is ap-

parent from Fig. 4, where we show the behavior of the
coefficients A„ in the P~, (z)IQ, (z) approximation of
the semiclassical Selberg zeta function (3); in line with the
above discussion we have approximated the denominator
by Qi(z)=1 —z/z„where z, is the leading zero of g, '.
With the leading pole gone, the faster-than-exponential
decay now continues beyond n =4 out to n = S or 6.

In the classical Selberg zeta function we were not able
to identify any pole with the Pade technique (X 13),
which would imply that they are all canceled by zeros of
higher-order dynamical zeta functions. As our numerical
results show, however, the (leading) poles of the dynami-
cal zeta functions are double; it is evident that the double
zeros of gi do cancel the double poles of go ', as was
also shown in the preceding section, but the poles of g,
are then quadrupole and too many to be completely can-
celed by the triple zeros of gz . Thus one might expect
the classical Selberg zeta function to have poles as well,
the leading ones arising not from go as in the semiclassi-
cal case, but from g, '. Since the magnitude of these
poles is rather large, we have not been able to extract
them directly from a Pade approximation to Z(z).

IV. REAL AND SPURIOUS ZEROS
IN QUANTUM SPECTRA

As mentioned in the Introduction most calculations re-
quire the zeta functions not as functions of z but rather as
functions of frequency co and energy E or wave number k.

Consider therefore a case similar to the one above, but
with "energy-dependent" coefficients C„=C„(E). Set
a =1, b =e, and replace z in Eq. (29) by e' to obtain a
function

(35)

it rnimics the behavior of zeta functions in the case of a
bounded system. We assume 6 & 0, consistent with
0&b &a above The .function F(E) has zeros E„=2m.n,
n HN along the real axis and poles E„=2m.n' —i'6, n'EN
along the line Im(E) = —5, defining the abscissa of abso-
lute convergence in the complex E plane. We are in-
terested in the properties of a finite-order expansion of I
and introduce therefore a generalized function I'(E,z)
with the property F(E)=F(E, 1),

iE
P(E,z)=

] —e' ~z

=1—(1—e )e'z —(1—e )e e 'z

= g C„(E)z" .
n=0

The expansion in z is only formal; at the end one sets
z=1. All results of the preceding section concerning
zeros, poles, etc. , can now be used, replacing z by e', zo

iEO
by e, etc. , and relating them to the complex E plane
rather than the z plane. For a finite-order expansion of
F(E) one may therefore immediately state the following:

(i) Any truncation of the power series puts the zeros of
F(E) off the real axis; in the linear approximation we ob-

tain e ' = ( 1 —e ) ', with solutions E„' =E„ie, where—

TABLE VI. Zeros and poles of the classical zeta functions in the A2 subspace. No pole could be determined for Z(z) from the
Fade approximation. (Cf. Table III.)

d/R

2.5
2.8
3.0
4.0
5.0
6.0

Z

zero

—2.868 809
—4.076 735
—4.950 091

—10.068 88
—16.266 57
—23.348 95

zero

—2.868 809
—4.076 735
—4.950091

—10.068 88
—16.266 57
—23.348 95

—1

0

pole

—5.094 786
—7.564 134
—9.429 729

—21.468 10
—38.061 85
—59.222 79

zero

—5.094 784
—7.564 134
—9.429 729

—21.468 10
—38.061 86
—59.222 79

pole

—18.203 . ~ .
—38.338. . .
—57.483 61

—255.25. . .
—703.34. . .

—1519.21. . .

zero

—18.200 26
—38.239 05
—57.483 60

—255.258 6
—703.344 5

—1519.201

—1
2

pole

—43.82. . .
—102.967 ~ . .
—163.2066
—876.6592

—2785.186
—6777.36 ~ . .
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FIG. 4. Improved convergence is achieved in the semiclasical
Selberg zeta function (3) after removal of the leading pole: The
figure shows the expansion coefficients of (1—z/z, )Z(z), where
z~ is the leading zero of g, '(z). The data are for the 2, sub-
space.

e= —ln(1 —e ); for 5 sufficiently large e=e . The
imaginary part of the energy vanishes with increasing N
like e-e . Large X are required if the poles lie close
to the real axis.

(ii) Ghost zeros of F(E) will be found in the neighbor-
hood of the line Im(E)= —5: There are N 1 of them—

distributed more or less evenly around the circle
;E iP. +6.

~e'
~

=e, they satisfy e' =e ' ' with 6 =5,
0~$, (2', j=1,2, . . . , N 1, i e., —E=E„.=E„
+P i5 —The .ghost zeros converge towards the abscis-
sa of absolute convergence and their number goes to
infinity with N.

One may remove poles in the same manner as before;
the formal expansion I'(E,z) =+„C„(E)z"is approximat-
ed with the Fade technique, z is set to 1, and what is left
is a power-series approximation of the part of F(E) con-
taining the zeros. The energy-dependent analog of the
two-pole example in the preceding section demonstrates
the general tendency:

(iii) Removing leading poles has the following effect:
Ghost zeros are pushed down in the negative imaginary
direction; main zeros having small imaginary part ap-
proach the real axis.

The numerical investigations in this paper were per-
formed for an open hyperbolic system, and property (i)
has no relevance. Properties (ii) and (iii) are not restrict-
ed to bounded systems, though. We present numerical
evidence that the removal of the leading pole does indeed
push what seems to be ghost zeros in the open three-disk
system far down in the negative complex energy plane:
Figure 5(a) shows the lower part of the spectrum of the
%=8 approximation of the semiclassical Selberg zeta
function together with an improved spectrum where the
leading pole has been removed (Pade, L =1). The origi-
nal spectrum displays, in addition to the main zeros
which lie relatively close to the real axis, a whole band of
lower-lying zeros. When plotting spectra with higher N,
one obtains main zeros at the positions of the old ones,
but the zeros in the band seem not to stabilize and their
number increases with N. In the improved spectrum in

0.8

1st leading pole
2nd leading pole -~--

0.6
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+
+C'

0 0

10 15 20 25 30

Rek
FIG. 5. Semiclassical resonances for the open three-disk sys-

tem for d/R =3, computed using Selberg's zeta function in the
A 2 subspace. The energy is expressed in terms of
k =k(E):—&2mE /R. (a) Spectrum in the %=8 approximation,
without removal (diamonds) and with removal (crosses) of the
leading pole. (b) Spectrum with the leading pole removed, in
the X= 8 (diamonds) and N =6 (crosses) approximation.

Fig. 5(a) a few zeros in the band remain with approxi-
mately unchanged or even larger imaginary part, while
most of the others are pushed away; in a certain range
around Re(k) = 13, however, no such improvement of the
spectrum can be noted.

To find out whether the remaining zeros correspond to
real resonances, we can compare Pade improved spectra
for diff'erent N. Figure 5(b) shows improved (L = 1) spec-
tra for N=6 and 8. Except for the zeros in the interval
Re(k) =10—16 most remaining zeros in the N=8 approx-
imation correspond also to a nearby zero in the N =6 ap-
proximation and thus seem to be stable. One exception is
the zero at k=24. 4 —i1.S; we have checked with the
N=10 approximation though and have found a corre-
sponding zero very close to that position.

To see the correlation between the quantum spectra in
Fig. 5(a) and the position of the leading poles, we have
plotted the absolute values of the two lowest zeros of
g& '(E,z) [assuming that they equal the poles of go '(E,z)
and Z(E, z)j as a function of Re(k) with Im(k)= —2. 5
fixed; see Fig. 6. At low values of Re(k) the magnitude of
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FIG. 6. The magnitude of the leading and next-to-leading
zero of the semiclassical g, (E,z) as a function of Re(k) with

Im(k) = —2.5. The zeros are assumed to equal the leading and
next-to-leading pole of Z(E,z). (d /R =3, A2 subspace. )

V. SUMMARY AND DISCUSSION

We have presented numerical evidence that the semi-
classical and perhaps the classical Selberg zeta functions
for the opeli three-disk system have poles. This shows
that results for 1D maps [9,26] cannot be transferred im-

mediately to higher-dimensional systems, such as the
three-disk system. In the semiclassical case it was clear
already from a simple plot of the expansion coefficients
that the convergence soon settles for a simple exponential
decay. This was confirmed by (1) a numerical determina-
tion of zeros and poles of dynamical zeta functions, show-
ing that the leading poles of g

' equal the leading zeros
of g. + &, but are double and therefore not completely can-
celed; (2) a numerical estimate of the curvature correc-
tions of go, showing that the leading pole is double; (3)
an analysis of the explicit terms in the expansion of Z (z),
which with use of (2) showed that necessary cancellations
between cross terms, in addition to those present within
the curvatures, do not occur, causing a transition in the
convergence rate at around n =4; and (4) the fact that
stable poles could be extracted from QL (z), the denomi-
nator of a Pade approximation, Z(z)=P& I (z)/QL (z),
and that the numerator P~ I (z) showed improved con-
vergence.

In the classical case, the presence of poles would be
rather surprising, since the system under consideration is
an almost ideal hyperbolic 2D system (complete binary
symbolics, highly unstable periodic orbits with ~A ~

))1,
no intermittency). Points (1)—(3) above also apply to the

the second pole is much larger than the leading one, so
that the removal of the leading pole has a large efFect on
the spectrum, which is also observed in Fig. 5(a). Around
Re(k)=13 the two poles are very close in magnitude,
which explains why the removal of just one pole only
marginally afFects the spectrum. For increasing Re(k) the
number of leading poles with comparable magnitude in-

creases; it becomes more and more difficult to improve
the spectrum.

classical zeta function, but we have not been able to
stably identify poles from a Fade approximation. This
may be due to their large imaginary parts as explained at
the end of Sec. II C: The poles of go

' are canceled by the
zeros of g, ', but there are not enough zeros from g2

' to
cancel the poles in g, '. A plot of the expansion
coefficients of the classical Selberg zeta function is con-
sistent with the anticipated, pole free exp[ —n ~

] decay
(this was also found by Cvitanovic and Rosenqvist [27]).
One option we have not been able to test is whether the
poles are in fact completely canceled by next-to-leading-
order zeros of dynamical zeta functions.

Since the zeros of dynamical zeta functions are rela-
tively easy to compute, one may also quite easily identify
the poles, provided there is a 1:1 (here rather 2:1)
correspondence between poles and zeros of neighboring
dynamical zeta functions. Our numerical findings give
evidence that this is most probably the case for the lead-
ing zeros and poles. With the precision of our investiga-
tions, we were not able to identify stable next to leading
poles from QI (z)=0 more than in a few cases and then
only with 1 —2 digits precision; in these cases there did ex-
ist a next-to-leading-zero within the uncertainty of the
pole.

There are several ways to remove poles. The Pade
numerator PM(z) directly gives an approximation of Z(z)
or go '(z). One may also first compute leading pole esti-
mates z„ from zeros of dynamical zeta functions and then
multiply +„(I —z/z„) into the expansion of Z(z). Fur-
thermore, the classical Selberg zeta function can be used
with semiclassical weights to improve the convergence
for semiclassical zeros; the poles of go

' will then be gone.
If, finally, there actually is an I:1 correspondence be-
tween the poles of g,.

' and the zeros of g +, for all j, the
following construction,

rn

=exp. —g g
p

tp

1 —mA p

(37)

is free of poles and has zeros which equal the zeros of
go '(z) and Z (z). A numerical test for the three-disk sys-
tem (m =2) shows that this zeta function (classical or
semiclassical weights) really has faster-than-exponential
convergence all the way out to the largest n considered
(=13). Equation (37) and related forms require further
investigations.

Recently, quantum spectra of bounded chaotic systems
have been computed from expansions of semiclassical Sel-
berg zeta function [28—30]. Despite some success, the
calculations were made difficult by slow convergence, no
clear indication that the zeros of the Selberg zeta func-
tion approach the real axis as X~~, missing quantum
levels, and presence of spurious zeros [i.e., zeros of Z(E)
not associated with exact quantum eigenvalues]. The
pole-induced properties (i) and (ii) of the preceding sec-
tion are recognizable here. We therefore suggest a rela-
tion, similar to the simple example above, between the
position of poles and the distance from the real axis of
the zeros of Z(E) [or go '(E)] in bounded systems. In
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the calculations for the anisotropic Kepler problem and
the closed three-disk system, there is one obvious pole,
connected with an orbit not realized by the dynamics, but
for which heteroclinic orbits of arbitrary length exist.
This pole has been removed in the calculations reported
in [29]. But the present investigation suggests that there
are further poles not so simply identified. We suspect
that they are at least partially responsible for the bad
convergence of the zeros of Z(E) (in bounded systems
there are many other sources of trouble, like intermitten-
cy and stable islands). Spurious zeros present in cycle ex-

panded spectra could be (in many cases at least) nothing
but the ghost zeros connected to the poles. Improved
spectra should therefore be obtained by removing the
leading poles, as done here for the open three-disk sys-
tem.
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