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Normal solutions for master equations with time-dependent transition rates:
Application to heating processes
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The long-time limit of the solutions of a master equation with time-dependent transition rates is ana-
lyzed, and the existence of a special (normal) solution, that all the other solutions tend to approach, is
shown under quite general conditions. In general, the normal solution will be quite different from the
time-dependent equilibrium distribution, although for not too fast continuous heating processes, it
asymptotically tends to the equilibrium curve. The results seem to be relevant for the explanation of
what is observed in real experiments. The general theory is applied to a very simple model, for which
the normal solution is exactly found.
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I. INTRODUCTION

The modeling of many physical processes by means of
master equations requires the consideration of time-
dependent transition rates. This is the case, for instance,
when the variation of one or more intensive thermo-
dynamic parameters, such as the pressure or the tempera-
ture, is assumed to be externally controlled. Several mod-
els that attempt to explain the peculiar behavior shown
by glasses under continuous heating or cooling have been
formulated in this way [1].

While there is a well-structured theory for master
equations with time-independent transition rates [2], re-
sults for the more general situation of time dependence
are scarce. Nevertheless, an analysis of the literature
shows that rather di6'erent models lead to similar results,
and one has the feeling that the same general feature is
being rederived many times. This situation is not only
unpleasant from a formal point of view, but it also makes
difficult the progress in our physical understanding of the
phenomena we are trying to describe. We must be able to
separate general behaviors from those that are specific for
the model under consideration.

One of the most fundamental and celebrated properties
of the master equation with constant transition rates is
that, as the time goes to infinity, all solutions tend to be
the equilibrium solution. This theorem holds when the
Markov process defined by the master equation has a
finite number of states and it is irreducible, i.e., all the
configurations can be reached from a given one by a
string of transitions with nonzero probability.

The first point we address in this paper is whether a
generalization of the above property holds when the tran-
sition rates change in time following a given law. It will
be shown that, under conditions quite similar to those
considered in the constant-rate case, all solutions of the
master equation converge. For cooling processes, the ap-
plicability of the result is limited by the possible freezing
of the system and the loss of irreducibility. But, in other
cases, there is a special solution of the master equation

which a11 the other solutions tend to approach. We will
refer to this solution as the normal solution for the given
transition rates.

The generality of the above result must be stressed. It
is not restricted to near-equilibrium situations or to pro-
cesses in which only the variation of the tempeature is in-
volved. Besides, given the arbitrariness of the processes
for which it applies, the long-time limit does not imply
that any of the physical parameters appearing in the tran-
sition rates is going to infinity. The evolution of the sys-
tem can be such that all its parameters remain bounded
for all times. This is the case, for instance, when periodic
transition rates are considered. In this context, the nor-
mal solution for a given system is not only an asymptotic
solution but is expected to be defined for the entire range
of variation of the parameters. The situation is similar to
the one found in kinetic theory, from which the term nor-
mal solution has been borrowed. The existence of these
normal solutions is the main result of this paper.

A particularly interesting case is the continuous heat-
ing of a system. The experience shows that for usual lab-
oratory heating rates the system always reaches the equi-
librium curve at high temperatures. Of course, it is trivi-
al to see that the time-dependent equilibrium distribution
is an asymptotic solution of the master equation at
infinite temperature when the system is heated slowly.
We will also present here a proof that all the solutions of
the master equation, including the normal one, show that
asymptotic behavior in the long-time limit, under well-
defined conditions.

The existence of a normal solution has serious implica-
tions for the behavior of the system that is being heated.
Also, it explains the hysteresis eFects that are observed
when a system is cooled to low temperatures and then
heated. Therefore, the construction of the normal solu-
toin is a main step in understanding the behavior of a sys-
tem with time-dependent transition rates. This may be a
difficult task for realistic models, and require the use of
approximation techniques. Nevertheless, for very simple
but important models the normal solution can be found
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exactly. An example will be given here.
We want to emphasize the kind of processes we will

consider. The transition rates are assumed to be external-
ly controlled, their time evolution being independent of
the state of the system. In this sense, those models where
the transition rates depend on time through some func-
tional of the distribution function are excluded. There-
fore, the derivations presented here apply neither to usual
mean-field-model approximations nor to the case of the
presence of forces controlling the state of the system (e.g,
thermostat forces). The existence of normal solutions for
these situations will be discussed in a separate paper.

The plan of the paper is as follows. In the next section,
the long-time limit of the solutions of a master equation
with time-dependent transition probabilities will be ana-
lyzed. The particular case of continuous heating process-
es is studied in Sec. III. Finally, in Sec. IV, the applica-
tion to a two-level-system model is presented.

II. LONG-TIME LIMIT

for further reference, but in our present discussion it is
clear that the second term on the right-hand side of that
equation vanishes, and we get

dH(t) =A t
dt

(6)

It is easily seen [2] that A (t) ~0, the equality sign hold-
ing only when

p~(t) p;(t)

p, (t) p;(t)

for all pairs of states i,j with W~(t)%0. Besides, H(t) is
bounded below. It follows that it must tend to a limit
and, therefore,

p, (~) p;(~)
p'( oo } p,'(oo )

if W~( ~ )%0. When the long-time limit of the transition
rates still defines an irreducible process, Eq. (8) implies

Consider a system whose dynamics is described by the
master equation

p;(~)=p (~), (9)

dp; =+[W; (t)p —W;(t)p; ] .
dt

Here p,.(t) is the probability of finding the system in state
i at time t, and the transition rates 8'. for changes from
state j to state i depend on time in a given way. We
define a quantity H(t) by

p;(t)
H(t) =gp;(t)ln

p (t)
(2)

where p;(t) and p (t) are two solutions of Eq. (1) corre-
sponding to different initial conditions. The above
definition requires that p (t) is positive for all i If the.
process defined by Eq. (1) is irreducible, this condition
will be verified after an initial transient period, even in
the case that the initial probabilities of some states were
zero. The time variation of H(t) is given by

dH(t) dp;(t) p;(t) p;(t) dp (t)
lndt, dt p,.'(t}, p,.'(t) dt

for all i, i.e., all the solutions of the master equation con-
verge toward the same behavior.

The above result does not apply when the ergodicity of
the system is lost as t~ ~. This excludes, in particular,
the continuous cooling of a physical system to T=O K,
where all the transition rates are expected to vanish and
the state of the system becomes frozen. This is related to
the existence of residual properties obtained in models
proposed to mimic the dynamic behavior of glasses at low
temperatures [1]. On the other hand, models describing
the continuous heating of a system or a periodic variation
of the temperature will satisfy, in general, the conditions
required in the proof. In these cases, Eq. (9) can be un-
derstood as showing the existence of a long-time regime,
where the influence of the initial conditions has been lost,
and the state of the system and its dynamics is fully deter-
mined by the law of variation of the temperature. A
similar discussion can be made when the externally con-
trolled parameter is other than the temperature.

III. CONTINUOUS HEATING

Using Eq. (1) we can transform this expression into

p; dp (t)

,. p,.
' dt

Let us assume that for arbitrary t, the equation

gW;, (t)p, (t)=QW, ;(t)p; (t)
J J

has the canonical solution

(10)

with

A(t)=QW;, p' Pg PI
I I

PJ Pi
ln +1

Z(t) k~ T(t)

Here k~ is the Boltzmann constant, T is the temperature,
c is the energy of state j, and

p& pg pg pg

ps pi pj pg
Z(t) =+exp

k~ T(t)
(12)

Up to this point, we have not used yet that p,'(t) is also a
solution of the master equation. We have written Eq. (4)

is a time-dependent partition function. As indicated in
Eqs. (11) and (12) all the time dependence of p is as-
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p;(i)
H (t)=gp, (t)ln

p;(t)
(13)

sumed to take place through the temperature. The ex-
istence of p is guaranteed by the irreducibility of the
process for all times. Nevertheless, the explicit form in
Eq. (11) has been assumed for the sake of concreteness,
although a similar analysis can be carried out for other
physical distributions, e.g. , the isothermal-isobaric one.

Of course, p (t) is not a solution of the master equa-
tion, due to the variation of the temperature. Define

dH (t) (lim
dt

(21)

However, taking into account that H (t) is bounded
below, it follows that the only possibility is, in fact, the
equality. Thus, it must be

All the heating processes in which the limit T~ ~ re-
quires also t ~ ~ satisfy Eq. (20) and, therefore, Eq. (19).

Since B(t) is the only term giving a positive contribu-
tion to the variation of H, we arrive at

where, again, p;(t) is a solution of Eq. (1). Application of
Eq. (4) yields and

lim A (t)=0
f —+ oo

dH (t) 0 ~ p( dp(~dt, . po dt
(14) lim (E(t) ) =0 .1 dT

r ~ k~T2 dt
(23)

with A (t) given by Eq. (5), but replacing p by p, (t).
Using Eq. (11) it is found

pl dpi l dT
p,. ( ce ) =p,o( 00 ) (24)

As stated before, we expect the master equation to be ir-
reducible in the limit t ~ ~, so Eq. (22) implies that

We use the notation

(16)

and

i.e., (E(t) ) is the actual average energy at time t, while
(E(t) )0 is the average energy that the system would have
at equilibrium at the temperature T(t).

For arbitrary laws of temperature variation little infor-
mation can be obtained from Eqs. (13) and (14), since
H (t) does not have a well-defined sign. The initial con-
dition can always be chosen so as to make H (t) positive
and, therefore, H is not a monotonically decreasing
quantity nor is the equilibrium distribution monotonical-
ly approached for all times. Nevertheless, if we restrict
ourselves to a continuous heating of the system, the term

(18)

d lnT
lim

dt
(20)

goes to zero under very general conditions. More pre-
cisely, if the equilibrium energy behaves as T in the limit
of high temperatures, the term given by Eq. (18) tends to
vanish if the asymptotic temperature variation rate be-
comes negligible compared with T . For normal sys-
tems the energy is either bounded or it increases linearly
with the temperature at high temperatures (constant
specific heat). In the former case it is a=0 and the con-
dition becomes

2dT
t~~ dt

while in the latter e = 1 and it must be

and Eq. (23) becomes equivalent to our assumption that
B(t), defined by Eq. (18), vanishes for t ~ ao.

Therefore, we have established that under continuous
heating all solutions of Eq. (1) tend asymptotically to the
time-dependent equilibrium distribution. The derivation
given above requires that the process defined by the mas-
ter equation is irreducible for all values of T, and also
that the heating rate is not too large, in the sense that
B(t), defined by Eq. (18), must go to zero in the long-time
limit.

Putting together the results of the last two sections, the
following picture emerges for the time evolution of a sys-
tem whose temperature is monotonically increased:
Starting from an arbitrary initial condition first, the sys-
tem tends to a regime where its state is determined by the
heating law, while the initial condition has been forgot-
ten. Later on, the curve describing the state of the sys-
tem in this regime asymptotically approaches the
temperature-dependent equilibrium curve. The main im-
plication of this description should be the existence of a
special solution of the master equation for each heating
law, such that all the other solutions would approach it
after an initial transient period. Following the terminolo-
gy that is usual in kinetic theory, we will refer to this spe-
cial solution as the normal solution of the master equa-
tion for the given heating law.

The existence of a normal solution for heating process-
es may play a crucial role in the explanation of the hys-
teresis effects that have been observed when a system is
cooled and then heated. These effects have been exten-
sively studied and analyzed in glasses [3], but the results
derived here can be applied to any system.

As is the case in kinetic theory, the construction of a
normal solution may be a formidable task. We have in-
vestigated the possibility of generating it by means of the
Hilbert method, and the results will be presented else-
where. In this paper we will only discuss a simple model
for which the normal solution can be easily found.
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IV. NORMAL SOLUTION FOR A TWO-LEVEL SYSTEM

y(t) =a exp[ P(—t) V], (25)

where P(t)=[k&T(t)] ', and a is the transition attempt
frequency. We will use it to define an adimensional time
variable, i.e., we formally take e = 1.

Since the model has only one degree of freedom, the
master equation can be written as a closed equation for
the probability p(t) of finding the system in the upper
state. Introducing the asymmetry parameter

(26)

the equation reads

p(t) =y(t) [y(t)"—[1+y(t)"]p(t) j . (27)

If the temperature is a monotonous function of time, and
its variation is given by

y(t)=rg [y(t)],
with r & 0 and g )0, the general solution of Eq. (27) is

y+ 1+P
p(y ) =poe"p dyr ro g(y)

y
'+j"

1 z z+z '+"
+ —f dy exp ——f dz

r ro g(y) r y g(y)

(2g)

(29)

The two-level system (TLS) has been used, in spite of
its simplicity, as a model to study the static properties of
glasses at low temperatures [4], and also their dynamical
properties at high temperatures [5—7]. The TLS has only
two states of energies 0 and c.. To jump from one state to
the other, the system must be thermally activated over a
barrier of energy V, measured from the upper state. The
transition rate for hopping from the upper state over the
barrier into the lower state is

where Po(x) is the equilibrium distribution of the TLS
written as a function of x, i.e.,

Po(x) = y(x)"
1+y(x)"

For x ))xo and x —xo &) 1, Eq. (33) reduces to

p(x)= f dx'Po(x')exp[ —(x —x')] .

(34)

(35)

dr=
dt

=7 f (37)

with r = 10 . The system was initially at equilibrium at
three di6'erent temperatures, corresponding to y = 10
10, and 10 . Also plotted are the equilibrium distri-

The limits leading from Eq. (33) to Eq. (35) correspond to
a long-time limit for which the initial condition is forgot-
ten. Therefore, Eq. (35) is the normal solution whose ex-
istence was discussed in the previous section. From a for-
mal point of view, it can also be derived from Eq. (33) by
assuming that for T =0 (x =0) the system was at equilib-
rium (po =0).

Integration by parts of Eq. (35) yields

d go(x')
p(x) =go(x) —f dx', exp[ —(x —x')], (36)

0 Bx

and the condition given by Eq. (32) implies that for
x~ ~, the distribution tends to the equilibrium one. It
must be realized that, even if the heating is very fast and
Eqs. (19) and (32) are not verified, there is still a normal
solution given by Eq. (35). Nevertheless, one can not as-
sure in this case that the normal solution approaches the
equilibrium curve as T~ ~.

To illustrate the above results we present in Fig. 1

three numerical solutions of the master equation for the
TLS, Eq. (27), with asymmetry @=0.5. The variation of
the temperature is

Here po =p(yo), where yo is the value of y corresponding
to the initial temperature. To analyze Eq. (29) it is con-
venient to introduce the variable

CL
CD

O

1+px=
r o g(y)

which is a strictly growing function of x, and verified

limx =0 .

(30)

(31)

Moreover, if we consider heating laws satisfying Eq. (19),
it is

11mx = ~ (32)
I—10

p(x) =poexp[ —(x —xo )]

+ f dx'Po(x')exp[ —(x —x')],
0

(33)

Notice that the limits y~0 and y~1 correspond to
T~O and T~ oo, respectively. In terms of x, Eq. (29)
becomes

FIG. 1. Evolution of the upper-level population of the TI.S
as a function of the transition probability y for the heating law
given by Eq. (37). The three curves correspond to r = 10 and

p =0.5, with different initial conditions for the transition proba-
bility (from bottom to top yo is equal to 10 ', 10, and 10
respectively). The continuous line is the equilibrium popula-
tion, and the dashed one is the normal solution Eq. (36).
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FIG. 2. Hysteresis cycle of the upper-level population when
the TLS is first cooled (circles) and then heated (squares). The
asymmetry is p=0. 5 and the law of variation of y is Eq. (37),
with ~r~ =10 for both cooling and heating. The continuous
line is the equilibrium population, and the dashed line is the
normal solution.

bution and the normal solution Eq. (35). It is seen that at
low temperatures there is a clear distinction between the
equilibrium curve and the normal-solution curve, but
both converge at high temperatures.

The figures also clearly shows one of the main points of
this paper, namely, that the curves describing the heating
of the system from an arbitrary initial condition tend to-

ward the normal solution, and not towards the equilibri-
um curve. Therefore, if the system is heated from a point
to the left of the equilibrium curve it will cross this curve,
trying to reach the normal state. When the TLS is cooled
down from equilibrium, it deviates from it in such a way
that the value of p(t) becomes greater than the equilibri-
um one po(t), i.e., the cooling curve is to the left of the
equilibrium curve [5—7]. If the system is then heated at
the same rate it was cooled, it will not follow the same
way back to equilibrium, but we know that it will ap-
proach the normal curve. This is the origin of the hys-
teresis that has been found numerically several times
[6,7]. In Fig. 2 we show an example corresponding to the
law given by Eq. (37). The circles correspond to the cool-
ing process [Eq. (29) with r (0] and the squares to the
heating one (r )0). In both cases

~
r

~

= 10 . Since the
energy of the TLS is proportional to p, the different shape
of the cooling and heating curves shows up clearly if one
studies the behavior of the apparent heat capacity. While
it monotonically decreases during the cooling, it presents
a maximum along the heating path. This is a conse-
quence of the fact that the equilibrium distribution has a
greater average energy than the normal solution at the
same temperature. In a forthcoming paper, the results
obtained here will be applied to other systems, and their
physical implications will be discussed in detail.
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