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Ordering kinetics in systems with long-range interactions
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The growth kinetics following a quench from high temperatures to zero temperature is studied using

the time-dependent Ginzburg-Landau model. We investigate 1-dimensional systems with n-component
order parameter and assume that the interactions decay with distance r as P(r)-'r " with 0&cr &2.
The spherical limit (n = ~ ) is solved for both conserved and nonconserved order-parameter dynamics
and the scaling properties of the structure factor are calculated. We find scaling features (including mul-

tiscaling in the conserved case) that are similar to those of systems with short-range interactions. The
essential difference is that the short-range value of the dynamic critical exponent z, is replaced by
z =z, —2+cr and the form of the scaling function is modified. We also study the general n case for non-

conserved order-parameter dynamics and calculate the structure factor in an approximate scheme with

the results that (i) the spherical-limit value of z remains unchanged as n is decreased down to n=1 and

(ii) the spatial correlations decay at large distances as r

PACS number(s): 64.60.Cn, 64.60.My

I. INTRODUCTION

When a system is rapidly quenched from a high-
temperature disordered state to a temperature well below
its order-disorder point, phase separation occurs and
domains of ordered regions grow in time [1]. For a sys-
tem with O(n) symmetric order parameter, the excess en-

ergy is accumulated at the defects such as domain walls
(n =1), vortex strings (n =2), and monopoles (n =3),
etc. [2], and, as a result, the late stages of phase ordering
is governed by defect motion. Such processes of phase
ordering have been the subject of many theoretical and
experimental investigations [1].

At the late stages of phase ordering, the concept of the
dynamical scaling becomes important in describing the
growth of order. In the case of nonconserved order-
parameter dynamics, the system has a single characteris-
tic length, the average domain size l(t ), which grows as a
power law in time, l(t)-t' '. The growth exponent in
systems with short-range interactions seems to be in-
dependent of the dimensionality of the order parameter
[3—7] and z =2 for spatial dimensions d ~ 2. On the oth-
er hand, growth in a system with a conserved order pa-
rameter is more complicated. It is generally accepted
that one has simple scaling with z =3 for scalar order pa-
rameters [5—g]. Coniglio and Zanetti [9], however,
solved the spherical limit (n = Oo ) of the time-dependent
Landau-Czinzburg (TDGL) model, and found two length
scales diverging with an exponent (z =4) that is different
from the n =1 value. As a consequence of the two dis-
tinct length scales, they also found a "multiscaling" form
for the structure factor. Using general renormalization-
group arguments [5] as well as approximate methods [7],
it has been shown that the z=4 result is probably valid
for all n ~ 2, and multiscaling appears only in the n = ~
limit.

%'hen analyzing an experiment, one has to be aware of
the possible presence of long-range forces. Although

most theoretical work on growth of order has been car-
ried out to characterize systems with short-range interac-
tions, long-range forces such as dipole-dipole interac-
tions, elastic forces, or Rudermann-Kittel-Kasuya-
Yoshida (RKKY) -type interactions may play an itnpor-
tant role. In particular, just as in the case of critical phe-
nomena, both the critical exponents and the scaling func-
tions may change if the forces are suSciently long ranged
[10]. In fact, the time evolution of a block-copolytner
system [11,12] that can be described by a scalar con-
served model with long-range interactions displays a very
slow growth with an exponent that is close to zero. Thus
it is of interest to study how long-range interactions affect
the process of phase ordering.

In this paper, we use the TDGL model to study the dy-
namics of phase ordering in the presence of attractive
long-range interactions that decay with distance r as
f'(r)-r . After introducing the model in Sec. II,
the spherical limit (n = ~ ) is solved for both conserved
and nonconserved dynamics (Sec. III). We find that the
growth exponent z can be expressed through the corre-
sponding short-range value z, and the potential parame-
ter o. as z =z, —2+o (0 & o & 2). An explicit form of the
structure factor is also obtained, and we find multiscaling
in the case of conserved dynamics. In Sec. IV, we consid-
er the case of nonconserved dynamics for general n and
derive the correlation function in an approximation
developed by Bray and Puri [3] and Toyoki [4]. This ap-
proximate theory leads to the conclusions that (i) z is
equal to the spherical-limit value for all n, (ii) an explicit
form of the spatial correlation function can be obtained,
and (iii) the spatial correlations have a power-law tail at
large distances.

II. THE MODEL

We consider the time-dependent Ginzburg-Landau
model [13] in which the time evolution of an n
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(il'(r, t)i)J(r', t')) =2L(V )T5; 5(r —r')5(t —t') . (2)

The system governed by Eq. (1) relaxes to an equilibrium
state described by the free-energy functional F([SJ).
Since we are interested in the effect of long-range forces,
the usual short-range part of the free-energy functional is
supplemented with a long-range part,

r

F t S) = fd'r — ' ISI'+ —"lsl'+-,'
I
&Sl'

——f d r f d r'S(r)P'(r r')S(r—'),
2

where the integrals are over d-dimensional space, u is a
constant, ro~ T, —T)0, with T, being the mean-field
critical temperature of the short-range system while T is
the final temperature of the quench. The term with P'(r)
represents the long-range interaction. The large-distance
behavior of P'(r) is assumed to be P(r) -r'

Introducing the Fourier transform Si„ofS'(r, t), Eq.
(1) is transformed into

BSk(t )
=Lg y(k)Si, (r ) ug — Si, Sf Siat ~ )

k' k"

+r)q(t), (4)

where the integrals fk= fd "k /(2~) are over d
dimensional spheres of radius A and qk is the noise in the
Fourier space. The kinetic coe%cient is Lk= 1 for non-
conserved dynamics, while it is Lk =k for the conserved
order parameter. In (4), we introduced

y(k) =rii —k +PV(k),

component, spatially varying order parameter
S(r, t)—:(S',S, . . . , S") is given by the following
Langevin equation:

BS(r, t ) L(~q) dF
( )

Bt 5S

Here L(V' ) is the kinetic coefficient that is a constant I o
for nonconserved dynamics while L ( V ) = —

A, V in the
case of conserved dynamics (in the following we set
I o=1 and A. =l by suitable choice of time scale). The
noise g—= (i)', i), . . . , i)") is a Gaussian-Markovian ran-
dom force with zero average and with a correlation func-
tion of the form

The replica Harniltonian obtained from RKKY interac-
tion contains a cubic nonlinearity and a long-range in-
teraction characterized by o =3. (iii) Roland and Desai
[15] analyzed a model of nonconserved dynamics for a
uniaxial ferromagnetic thin film that can be described by
repulsive interaction with o.=0 and n =1. (iv) Onuki
[16] derived an effective repulsive long-range interaction
that arises from elastic fields in a solid that undergoes
phase separation. In his model, a scalar order parameter
is the conserved quantity and o.=0. Nishimori and
Onuki [17] simulated phase separation in the presence of
elastic fields and found very slow growth of patterns.
Their results may also be interpreted as freezing of pat-
terns. (v) Ohta and Kawasaki [11] derived the effective
free energy to discuss the phase separation of block copo-
lymers. They found that the free energy has an effective
repulsive long-range force with o. = —2. The dynamics of
this system has been discussed by Bahiana and Oono [12],
who found again a very slow growth of order.

As we can see from the above list, many well-known
examples of long-range interactions are repulsive and
suppress domain growth. Attractive cases should also be
investigated, however, since it would be interesting to
find ways of accelerating domain growth. One has
learned from the dynamics of near-equilibrium critical
phenomena that attractive long-range interactions may
lead to an acceleration of critical relaxation [18] in the
sense that the dynamic critical exponent z becomes small-
er than the value of z in the corresponding short-range
system. This motivated us to investigate the phase order-
ing in the presence of attractive long-range interactions
with o in the range of 0 & o. & 2.

In closing this section, we should comment about the
range of o.. First, when o. )2, the attractive long-range
interaction is irrelevant because V(k ) ——k can be re-
garded as a correction to the short-range interaction k
term in a long-wavelength expansion. Consequently, one
expects that for o. ) 2 the essential features of domain
growth are described by the short-range limit. Second,
we set a lower bound of o. as 0, since the energies are
divergent in an infinite system when o. ~0. In the exam-
ples with o. &0 that were mentioned above, there should
exist a cutoff length that prevents the divergencies in the
thermodynamic limit.

III. SPHERICAL LIMIT OF THK TDGL
MODEL WITH LONG-RANGE INTERACTIONS

where A(k} is the Fourier component of f'(r), and its
asymptotic form for small k is given by
V(lkl=k)-1 —ck . In the following, we shall absorb
the constant PV(0)=P into ro, thus renormalizing the
mean-field critical temperature T„and we shall write
V(k }-—k

Before turning to the solution of Eq. (4), we discuss
physical examples where the short-range interactions
may be dominated by long-range forces: (i) The dipole-
dipole interaction is an important example of 0'(r) with
o.=0 but it is directional dependent, while we treat only
rotationally symmetric potentials. (ii) RKKY-type in-
teractions play an important role in spin glasses [14].

Growth of order in the spherical limit (n ~~ ) of the
short-range interaction TDCxL model has been much in-
vestigated [7,9,19—21]. An exact solution of the noncon-
served case verified the conventional scaling picture and
led to the conjecture that the growth exponent z =2 is in-
dependent of n. The solution of the conserved dynamics,
on the other hand, produced a growth exponent z=4
that is different from accepted value (z =3) in the case of
the scalar order parameter and, furthermore, the struc-
ture factor was shown to display an interesting "multi-
scaling" form. In this section, we shall investigate the
n = ~ limit of the TDGL model with long-range interac-
tion and obtain results that are rather similar to the
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short-range case.
In the spherical limit, one has u —I/n, and the model

becomes solvable because the nonlinear evolution equa-
tion (4) can be linearized, since the fiuctuations in
u QJS$(t )S).(t ) may be neglected. This quantity may be
replaced by [21,22]

n

u g (Sg(t )S$.(t ) ) =unC(k, t )5(k+k'),
j=1

(6)

where the brackets ( ) denote averaging over both the in-
itial conditions and the noise il&(t) and the dynamic
structure factor C(k, t)=(Sg(t)SJ &(t)) is taken to be
independent of both j and the direction of k. This means
that we restrict our studies to initial conditions that are
rotationally invariant both in the spin and coordinate
space. More general initial conditions can be treated
[19—21] by separating the transversal and longitudinal
components of C(k, t) and following the time evolution
of the magnetization as well. Our conclusions remain
valid for more general initial conditions, provided the ini-
tial correlations have no long-range part [20].

Using (6), one solves Eq. (4) and derives the following
self-consistency equation [22,23] for C(k, t ):

C(k, t)=b, exp f R(k, s)ds
0

+2L& Tf dt'exp f R(k,s)ds, (7)
0 0

where b, =C(k, O) is the initial structure factor of a disor-
dered state (the quench is from T= a&), and R (k, t ) is
given by

R(k, t)=2L& ra —k un f—C(k', t)
k'

W(t)=un f C(k, t) .
k

(9)

Setting T=O in (7), then integrating the equation by k
and taking a time derivative of the integral, we find the
following equation for @(t):

Note that %e have omitted the k term, since it is negligi-
ble compared to k in the long-wavelength limit, and we
set Pc = 1 )0 in (5), since we consider only attractive
long-range forces.

This discussion is considerably simplified if we assume
that the quench is to T=0, since then the second term on
the right-hand side of Eq. (7) disappears. This assump-
tion is not really needed, since the same results can be de-
rived for finite-temperature quenches following the steps
described in Ref. [20]. Since it is quite well established
that the temperature is an irrelevant variable in domain
growth problems [5,20], we present only the calculations
for the T=O limit.

At this point, the discussion of nonconserved and con-
served dynamics becomes different, and we shall first con-
sider the nonconserved dynamics. In that case, we have a
constant the kinetic coeScient, ECk = I 0=1, and the scal-
ing properties of C(k, t) can be obtained by deriving a
differential equation for

d
2r() — 4—24

crt
(10)

The above equation should contain an extra term of the
order 0(@exp( 2A —t )). Since we are interested in the
large-time limit, this term can be neg1ected. Equation
(10) is linear in @,so it can be solved exactly. The
long-time behavior, however, can be obtained easily from
the above form by an expansion in t '. The result is

Substituting this expression into Eq. (7), we find the stan-
dard scaling form for the structure factor

C(k, t ) = ld(t )j(kl(t ) ),
where

(12)

(13)

with z = cr and the scaling function f(x ) given by

f(x)=exp( —x') . (14)

C(k, t)=b, exp[ —2k + t+2k Q(t)],
where the function Q(t ) is defined as

Q(t)= f '
r0 un f C—{k,s) ds .

0 k

(15)

(16}

It is clear from Eq. (15}that C(k, t) can have a maximum
at some k only if the two terms in the exponents have
different signs, i.e., if Q(t))0. One can see from (14)
that Q(t) can be positive if the initial correlations {b,) are
sufficiently small. Indeed, then the second term in the
time integral is negligible, and since r0 )0 we have
Q(t ) )0 for short times and one expects that Q remains
positive as un fC(k, t) approaches its stationary value
—r0 in the t ~ oo limit. The position of the maximum of
C(k, t) can be expressed in terms of Q(t) as

These results should be contrasted with those known
[19—21] for the short-range interaction case:

1/z zl(t)-(2t) ' and f, (x)=exp( —x '), where z, =2. We
can see that the scaling properties of the structure factor
in the long-range interaction case can be obtained from
the results for short-range interactions by simply replac-
ing z, by z =z, —2+ a..

We now turn to the discussion of conserved dynamics.
The k dependence of the kinetic coefficient, Lk =k,
makes the calculations rather involved, so we are able to
show only that a "self-consistent" solution with the ex-
pected scaling features does exist. The argument follows
the line developed for the case of short-range interactions
[9]. We start with the observation that the solution of
Eq. (7) should have the properties characteristic of
growth of order with the conserved order parameter.
Namely, for fixed t, C(k, t) should have a maximum as a
function of k at k (t) and, since this peak should evolve
with time into a Bragg peak, C(k, t) should scale with
k as C(k, t)-k ". In order to see how these proper-
ties may arise from Eq. (7), let us write it in the form
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2 Q(t)
2+a. t

(17)

and then the condition C(k, t ) —k gives the following
self-consistency equation:

k =exp(ok + t) . (18)

For t ~~, the asymptotic solution of the above equation
is given by

d lnt
o(2+o ) t

' 1/(2+o)

(19)

Using Eqs. (15), (17), and (19), we can show that the
structure factor obeys generalized scaling (termed "multi-
scaling" by Coniglio and Zanetti [9])just as in the case of
short-range interactions:

C(k, t)=[l~(t)]

y(x)=1+ (1 —x ) — (1 —x ) .
2 p+ 2+ cr

(21)

The emergence of multiscaling is the result of the pres-
ence of two length scales diverging slightly differently
[l(t)—t' 'and k '(t) —(t/lnt)'~', where z=2+o.] The.
above calculation shows that this feature of the conserved
dynamics in the spherical limit remains unchanged when
long-range interactions are introduced. It should be not-
ed, however, that Bray and Humayun [7] have shown
that there may be problems with the order of the limits
n ~~ and t ~~, and the multiscaling may be an ar-
tifact of the exchange of limits. Although they arrived at
this result for the case of short-range forces and they used
an approximate scheme, the argument is rather compel-
ling, and we feel that multiscaling may not be a feature of
the solution of finite-n systems. A feature of the spherical
limit that we believe pertains to systems with finite n is
the value of the scaling exponent that is changed from
the short-range value z =z, =4 to z =z, —2+ cr.

IV. AN APPROXIMATE SOLUTION
OF THK TDGL MODEL WITH LONG-RANGE

INTERACTIONS

In this section, we apply an approximate method
developed recently by Bray and Puri [3] and by Toyoki
[4] for solving the n-component TDGL equation with
nonconserved order-parameter dynamics. Since this
method gives reasonable results for models with short™
range interaction, we assume that it works in the long-

where l(t) = t '~' + ' and the "exponent" function p(x ) is
slightly more complicated than in the case of short-range
interactions [y, (x ) = 1 —(1 —x ) ], namely

range case, where the fluctuations are expected to be
smaller.

As in the previous section, we neglect the effects of
noise, and Eqs. (4) and (5) are supplemented by the initial
condition for the order-parameter field. Since we are in-
terested in a quench from the high-temperature phase,
the components of S(r, O) are assumed to be independent
Gaussian variables with (S'(r, O) );„=0,where ( );„is the
average by the initial configuration. The method of solu-
tion we use was originally developed by Kawasaki, Ya-
blik, and Gunton (KYG) [24] for treating scalar order pa-
rameter. They used a singular perturbation method for
describing relaxation for an unstable state. The KYG
method [24] as applied to an n-component model [3] as-
sumes that the asymptotic solution of (4) without noise is
given by

S(r, t)= v(r, t) v=M,
[1+M v(r, t) ]' (22)

The expression M, v/ v~ in (22) is valid for t~~. The
derivation of (22) and (23) is completely parallel to that in
a system with short-range interaction. The difference ex-
ists only in y(k) in (5). If (22) and (23) are correct, we
can guess that the characteristic length 1( t ) obeys
l(t)-t'~ because y(k)=ro —k . If n ~d, then Eqs. (22)
and (23) capture the essential features of the assembly of
topological defects [25] seeded at t=0: Except for the
"defects" (S=v=0), ~S~ approaches its equilibrium value
M, as t~ ~. The method in its original form, however,
does not assume the existence of defects, and it gives
correct results (as far as scaling exponents and scaling
functions are concerned) even in the n ~ ~ limit, where
no topological defects exist. It is not obvious that the
method should perform well for arbitrary n, since there
are examples of unexpected growth laws in models with
short-range interactions. It is known [26] that kink-
antikink dynamics results in a logarithmically increasing
l(t) for n =d=l. Furthermore, Newman, Bray, and
Moore [27] simulated one-dimensional hard spin models
and obtained a growth exponent z that is z =2 for n ~ 3
but z =4 for n =2. For n =d =2, Bray and Humayun
[28] reported an anomalous growth law z =4 from their
hard spin simulation. Although most of these examples
are in some sense special (zero-critical-temperature or
Kosterlitz-Thouless-type ordering transitions), they warn
us about the possible breakdown of the validity of (22)
and (23) for special values of n and d. We expect that
similar problems may arise when long-range forces are
present.

The field v is a Gaussian variable, so its correlation
function can be written as

(v'(r, t)v~(r', t)),„=6)h (~r r'~, t), — (24)

where h (r, t)=b, fke
r'""+' ' is calculated from (23).

Now the correlation function of the order parameter can

where M, =Qro/u is the equilibrium value of ~S~ and an
auxiliary field v(r, t) is introduced as the Fourier trans-
form of the noninteracting solution of (4):

v„( t ) =e xp[t )( k)]S„( 0) .



ORDERING KINETICS IN SYSTEMS WITH LONG-RANGE. . . 1503

be obtained as

C(r, t ) = (S(ro) S(ro+r) );„
v(r()) v(r()+r)

=M,
lr(r~) Iv(rr+r)l );„' (25)

Using ~v~
'= 3„fd" a/(2~)" e'"'a' " with

A„=2(" 'l n ' I ((n —1)/2), where I (x) is the I
function, we can rewrite C(r, t) as

»2 2"-""r(d/2)
r(d j~)

(d+2)/2o —le —x
0

x' r
d/2 —1 l( )

1 —d/2

I (d/2) "
(
—1) I ((2m+d )/0 )

I (d/o ) o m!I (d/2+m )
2m

X
2l (t)

(30)

Here

(26)
In obtaining the series we used the series representation
of the Bessel function and carried out a term-by-term in-
tegration. Equation (30) contains a single characteristic
length l (t) that increases with time as

={h (r) —h (r)h (0)(a +b ) l(t ) =(2t )" (31)
—[h (r) +h (0) ]ab cosOI

r

h (0)
Xexp — (a +b ) abh (r—) (27)

with 0 being the angle between a and b and, in obtaining
the second equality, we used the Gaussian property of the

ia v(ro)+ib v(r+ro), —(a +b )h (0)/2 —abh (r)

is clear that the effects of long-range interaction appear
only through y(k) in h (r). Therefore, we can integrate
Eq. (26) as in the case of the short-range model [4,29],
and find that

[I ((n+ 1)/2)]
' I (n/2)l (n/2+1)

1 1 n+2
2 2 2

(28)

h (r)
h (0)

=Cd
r 1 —dl2 f dk kdl2e2)(k)tJ r(kr )1/2 —1

dk kd —1 2y(k)t
0

(29)

where Cd=2' ' I (d/2) and Jd/2, (x) is the Bessel
function. Up to this point, the long-range nature of the
interaction did not impose any restriction on the generali-
ty of the results.

We now restrict ourselves to long-range attractive in-
teractions with 0&cd &2. If the short-range effects are
neglected as in the previous section, and the explicit form
of y(k ) = ro —k is used, we obtain

where s =[h (r)/h (0)] and F(a, b, c;s )

0[(a) (b ) j(c ) ](s /m! ), where (a)
=I (a+m )/I (a) is the Gaussian hypergeometric func-
tion [29].

The most important properties of the long-range in-
teraction that appear in s can be expressed as

If we substitute cr =2 in (30) we recover the usual result
s' 2=e " ', i.e., l(t) —t' . The correlation function
has a scaling form C(r, t)=C(rjl(t)). This result is val-
id, however only for 1 & o & 2, since the radius of conver-
gence of the series in Eq. (30) is zero for 0 & o & 1. In the
regime 0&o. 1 a series expansion is more difficult, but,
at least for d =1, we can derive a series expansion even
for 0 & o & 1 using the method of Montroll and West [30]:

1/2
O

0-2

r(l j~) „~
( —1)"r(~(n+1))

o.(n +1)+1n.z

X sin[~(7(n + 1)/2], (32)

2M
C(r, t)= arcsin(s' ) . (33)

For n ~~, using the asymptotic formula
n" 'I"(a+b)/I"(n+b)=1+0(n ') and F(a, b;c;s )

()[(a )„(b)„/(c)„](s"/n!)+0( ~c
~

') for
!c

~
)) 1 with (a )„=I (a + n ) /I (a ), we obtain

C(r, t ) =m2s)/2, (34)

which can be recognized as the Fourier transform of the
result (14), once it is noted that s' in (34) is proportional
to f kd k e'"'C(k, t) and that C(k, t) ~ exp( —2k t ).

Let us now discuss the spatial dependence of the corre-
lation function. The large-scale IX2/2=[r/2l(t)] ))1I
behavior is well described by the lowest-order term in the
series expression of the Gaussian hypergeometric func-
tion [29], and we find

C(r, t)=C(X)= s' (X) .
I (n /2)I (n /2+1) (35)

Since the numerator and the denominator in (29) have

where z=r/l(t). Note that the convergent series in (32)
is still scaled by l(t)-t' . Therefore, we believe that
Eq. (31) is valid for all 0&a &2.

Several limiting cases of (31) are of importance. For
n = 1, which is the Ising limit, the identify
F( —,', —,'; —', ;z )=arcsin(z)/z gives the well-known result

[4,29]
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2rot
asymptotic forms [30,31] h (r, t ) —e tr

2rot
h (0, r ) —e t ~, the large argument
s (X~ ~ ) is given by

C(X)-s.'"(X)-X-"-

and
limit of

(36)

Thus, in contrast to the short-range case, long-range in-

teractions generate a power-law tail in the scaling func-
tion.

On the other hand, the short-distance behavior
(X « 1) in our model is similar to that of the short-range
model [3,4]. The asymptotic form for 1 & o & 2 can be de-
scribed as

1 — a—(d, cr)' X at n =12

C(X)= 1 —a(d, o )Iln2 —
—,'lnX ——' —

—,'In[a(d, o )]IX at n =2 (37)

1 — ' 1+ X' t 3,
2 n —2

for odd n and
(38)

where a(d, o )=2I ((2+4)/o )/dI (d/a ). Equation (37)
is reduced to the short-range result if we substitute
a(d, o =2)= 1. The linear decay in the n = 1 case
represents Porod's law [32]. It is easy to show that the
leading singularity of C(X) appears in

n
d „&2 I ((n+I)/2) I ( —n/2)

f(x)-x (40)

for 1 & o. &2 and finite n just as in the case of short-range
interactions.

In summary, we find that phase ordering of the general
n-vector model with long-range interactions obeys usual
scaling and the characteristic length grows with time as
l(t) —t' . The scaling function of the spatial correla-
tions, however, has an interesting power-law tail at large
arguments.

a(d, o ) I (m+ —,')
C„.„(X)=(—1) ' X lnX

mm!(m —1)!
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C ( k, t ) —l ( t ) f( kl ( t ) ) obeys the generalized Porod's law
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