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Spatially periodic orbits in coupled-map lattices
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We obtain the conditions that ensure the stability of spatially and temporally periodic orbits of
coupled-map lattices. The stability matrices can be put in a circulant and block circulant form. This al-
lows us to reduce the problem to smaller matrices corresponding to the building blocks of spatial period-
icity. We find that additional conditions are imposed as we expand the size of the lattice. For the
traveling-wave solution the analysis is considerably simplified. We have analyzed both the one-
dimensional and higher-dimensional lattices.

PACS number{s): 05.45.+b, 47.20.Ky

I. INTRODUCTION

Observation of routes to chaos in hydrodynamic exper-
iments has been one of the achievements of nonlinear
physics. However, not much is known about the spatially
extended systems with higher degrees of freedom. Some
attempts have been made recently to enhance our under-
standing in spatially extended systems. Considerable at-
tention that these systems have received during recent
times is due to their wide range of applications such as
turbulence, pattern formation in natural systems, soli-
tons, etc. [1—4]. They also exhibit a very rich phenome-
nology including a wide variety of both spatial as well as
temporal periodic structures, intermittency, chaos,
domain walls, kink dynamics, etc. Spatially extended sys-
tems have been modeled using various types of models
like cellular automata, coupled oscillator arrays, and
coupled-map lat tices.

Among the above-mentioned models the model of the
coupled-map lattice has been quite popular recently and
various studies have been carried out on it. The reason
for its popularity are simplicity in analysis and simula-
tion. This model is tractable, easy to handle numerically
as well as analytically, and is sometimes able to capture
the essential qualitative features of physical systems. De-
tailed numerical studies show that this model gives rise to
a variety of rich spatial and temporal structures [1]. It
has been successful in modeling some of the phenomena
in spatially extended systems. For example, it has been
used to model the real-life phenomenon like spatio-
temporal intermittency and spiral waves [5,6]. There has
also been a recent proposal of a coupled-map lattice mod-
el for crystal growth [7]. This model has been used in
contexts other than pattern formation and has been suc-
cessful in modeling the dynamics in a computationally
more efficient manner. As an example it has been
developed as an efficient scheme of simulating the kinet-
ics of important equations in phase-ordering processes
such as Cahn —Hilliard-Cook (CHC) and time-dependent
Ginzburg-Landau (TDGL) equations [8,9].

The problem that we will be dealing with here is of the
type where the spatial correlation is maintained
throughout the lattice [10]. The easiest example is the

wave kind of patterns on lattices which are basically spa-
tially periodic patterns. Such patterns are seen in various
physical systems and it is not necessary that a spatial
periodicity can exist only in temporally periodic systems
(e.g. , [11]). The model explored for studying these is that
of a coupled-map lattice. We note that Wailer and
Kapral [12] and Oppo and Kapral [13]have considered a
similar problem for some very specific maps and cou-
plings and for simple homogeneous and small period
solutions. Here we analyze the problem in a very general
way and obtain the conditions for the stability of the spa-
tially extended solutions. Periodic-orbit analysis for
coupled-map lattices is also recently given by Politi and
Torcini [14].

In Sec. II we develop the formalism for analyzing the
stability properties of spatially and temporally periodic
structures in one-dimensional coupled-map lattices. We
are able to reduce the problem to that of the analysis of
the building blocks of spatial periodicity. In Sec. III we
consider some illustrative examples. Some further
simplifications are possible for the traveling-wave solu-
tion. This is discussed in Sec. IV. In Sec. V we extend
the analysis to the coupled-map lattices in higher dimen-
sions. We conclude with a discussion in the last section.

II. SPATIALLY AND TEMPORALLY
PERIODIC ORBITS

In this section we address the problem of stability of
spatial and temporal periodic structures. We specifically
consider coupled-map lattices with nearest-neighbor cou-
plings. Consider following the general model,

xt+&( )i= phfp( x(ti)) +h&f&( (xi + 1))

+h,f,(x, (i —1)),
where x, (i) is the variable associated with the ith lattice
point at time t taking values in a suitably bounded phase
space. The maps fp, f„f, are some maps, such as
logistic map, which describe the evolution of an other-
wise isolated system. The parameters ho, h&, and h
represent the coupling strengths and are chosen so that
x, +,(i) lies in the same phase space (e.g., [0,1] for the

47 143 1993 The American Physical Society



P. M. GADE AND R. E. AMRITKAR 47

logistic map f (x)=px (1—x), 0 ~ p ~ 4). Henceforth we
assume that ho, h&, h

&
are positive. However, almost

all our results are valid even otherwise.
Let C~ denote a closed chain of N lattice points in

which the right-hand neighbor of the Nth point is the
first lattice point. We note that for N =1 the chain C,
consists of a single point which is to be understood as a
neighbor of itself. Let R, =(x,(1), . . . , x, (N)) denote the

state of the system for the chain C ~ at time t .Let
S,(N, 1) denote a solution of Eq. (1) with temporal
periodicity ~ for the chain C&, i.e.,

S,(N, I)=IR),R 2, . . . , R„R),Rq, . . . ] .

Now consider a closed chain of twice the length, i.e.,
C ~~—:C2~~. Obviously, the spatially periodic sequence

S,(N 2)=I(R)R) )q, (R2R2}q, . . . , (R,R, }2,(R)R) }2, . . . j

of wavelength N built from the states IR, ] as the building blocks, is a solution of Eq. (1) for the closed chain C 2~ with
temporal periodicity r. Here the ordered pair (R,R, }z represents the state [x,(1), . . . , x, (N), x, (N+1), . . . , x, (2N)],
with x, (N +i ) =x, (i), i =1,2, . . .N, which is made up of two replicas of the state R, .

Thus from the above discussion it is clear that, in general, the sequence

S,(N, k)=I(R„.. . , R, )k, . . . , (R„.. . , R, }k,(R„.. . , R, }k, . . . ]

represents a solution of Eq. (1) for the closed chain C k x ~
with temporal periodicity ~ and wavelength N. Here the
ordered pair (R„.. . , R, )k represents a state made up
of k replicas of the state R, . We call S,(N, k) the k repli-
ca solution of S,(N, 1). We address the problem of what
can be stated about the stability properties of such spa-
tially and temporally periodic solutions S,(N, k), from
the analysis of the stability matrices for S,(N, 1) of the
building blocks [10]. In other words the question is,
What is the eAect of enlargement of phase space and the
couplings on the stability of the replica solutions?

A. Homogeneous case

where

and

f (x)=hofo(x)+h if i(x)+h if i(x)

df (x)
dx

solution with Ix, ] as building blocks [15]. Now the solu-
tion S,(1, 1)=Ix, ,xz, . . . , x„x„x2,. . . ] for the build-
ing block is a stable solution provided

We begin with the simplest case of %=1 so that R,
consists of a single lattice point x, (1)=x, and conse-
quently we suppress the lattice index. The replica solu-
tion S,(1,k) for the chain C k

= C k && &
is a homogeneous

For the homogeneous solution S,( l, k), the stability con-
dition is that modulus of all eigenvalues of the k Xk sta-
bility matrix J=J ' J2J

&
have magnitude less than

one. Here J, is a k X k Jacobian matrix given by

hof o(xt )

h, f', ( )x

h, f', (x, )

hfo(ox)t/l &f ) (xt )

h ]f ](xt) llofo(xt)

h ,f', (x, )

h, f', (x, )

h, f', (x, ) itof o(x, )

h, f', (x, )

h, f', (x, )

hof o(x, )

The matrix J, is a circulant matrix [16] and may be writ-
ten as

j,=circ(hof ', (x, ), h
&f &

(x„),0, . . . , 0,h, f ', (x, )} . (4)

A., „=[h ofo (x, ) +co„h,f ', (x, }+co"„'h,f', (x, )],
r =1,2, . . . , k (5)

where co„ is a kth root of unity given by

The eigenvalues of J, are given by [16]
i [2'( r —1)/k]

CO„ (6)
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Thus the eigenvalues of the stability matrix J are (C, ); =h, f', (x, (N))5;,5~ . (15)

=g[h f'(, )+ „h,f', (,)+ „" 'h, f', (,)] .
r=1

(7)

Let us now consider the solution S,(N, k) of the closed
chain C I, &&~ which is obtained by k replicas of the solu-
tion S,(N, 1) for C~. The stability of S,(N, k) is deter-
mined by the eigenvalues of kN XkX stability matrix
J=J,J, & J& where J, is a kXXkX Jacobian matrix
given by

Now A, „~ & 1, for all r, ensures the stability of the homo-
geneous solution S,( l, k).

Consider the special case when all the maps are the
same, i.e.,

B, 0

C, A, B,
0 C,

0 0 0 0 C
~ ~ o 0
~ ~ 0 0

(16)

fo(x)=f, (x)=f, (x)=f(x) . 0 0 0 . A, B,
For the stability of a single-point solution, i.e., for
S,(1,1) for the chain C, we should have

(h, +h, +h, )'g f'(x, (1)) &1.
&=1

(9)

The homogeneous solution $,(l, k) for the chain Cz is
stable if

7

I(& 0+~,&) +~,' '~ —))'Q f'(x, (1))l &1
t=1

where r =1,2, . . . , k .

Using triangle inequality and the fact that couplings
are positive, it can be proved that condition (10) can be
satisfied provided condition (9) is satisfied. Thus the sta-
bility of the homogeneous solution S,(l, k) is guaranteed
by the stability of the single-point solution S,(1,1) for the
same parameters of the map exhibiting no effect of en-
largement of phase space and the couplings.

Br 0 0 ' ' C, A

for k )2. For k =2, J, is

B,+C,
B,+C, (17)

0 0

0 M 0

and for k =1,J, =A, +B,+C, =j,. Wenote that Jacobi-
an matrix J, [Eqs. (16) and (17)] is a block circulant ma-
trix where each block is a N XN matrix [16] and may be
written as

J, =b circ( A„B„O,. . . , 0, C, ) . (1g)

This observation is crucial for our analysis of stability
properties. A block circulant matrix can be put into a
block-diagonal form by a unitary transformation. The
block-diagonal form is [16]

B. Case of higher spatial periods
D, =

0 0

(19)

Now we turn to the case of higher values of N for the
one-dimensional model given by Eq. (1). Consider the
solution S,(N, 1) for the closed chain C&. Stability of the
solution is determined by the eigenvalue with largest
magnitude of N XN matrix, M,"=A, +co„B,+co„'C, . (20)

where the matrices, M,", r =1, . . . , k, are N XN matrices
given by

J =J~J~—
& J»

where j, is the Jacobian matrix given by

j, =A, +B,+C, .

Here A, is a tridiagonal matrix given by

hof0(x, (1)) h, f I (x, (2)) 0

h, f', (x, (1)) hofo(x, (2)) h, f', (x, (3))

(12)

Note that this form is a generalization of Eq. (5). The
matrix M,' is the same as the matrix j, of Eq. (11) since
co& =1. The unitary matrix which affects the above block
diagonalization is a direct product of Fourier matrices of
sizes k Xk and N XN [16]. The elements of Fourier ma-
trices are only roots of unity and thus are independent of
the matrix being diagonalized. Consequently, the same
unitary matrix block diagonalizes the product of J, 's.
Thus the block-diagonal form of the product matrix
J =J ' ' J2J& is given by

(13)

, M,' 0

II~ =i Mi'

0

0

and the matrices B, and C, have only a single nonzero
element and are given by 0 MkLi. f =1

(B,);.=h,f ', (x, (1))5~5)i, (14) (21)
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M(8)= g(A, +e' B,+e ' C, ), (22)

The first block +; i M,' is the same as the matrix

j=j,j, i j, of Eq. (11). The stability properties of
the solution S,(N, k) are determined by the eigenvalues of
the matrix given by Eq. (21) of which j is only one con-
stituent block. In addition to the eigenvalues of j, we
now must look at the eigenvalues of the remaining k —1

blocks of Eq. (21). Thus the effects on the stability due to
the enlargement of the phase space and couplings mani-
fest themselves through the eigenvalues of the additional
blocks. A general block, M(8) (size N XN) has the fol-
lowing structure:

tions of entries of j [Eqs. (11)—(15)]. Thus the problem of
stability analysis of larger orbits is reduced to that of the
entries of j. This corresponds to the reduction of the
analysis of klV X kN matrices to that of X XN matrices.

Returning to Eq. (22), it is clear that if we check the ei-
genvalues of M(8) for 8 between 0 and 2m, it ensures the
stability for all values of k. Actually, it is sufhcient to
check for 0 ~ 0 ~ m. Of course, for a given value of k it is
sufficient to check for a maximum of [(k/2)+1] values
of 8 [17].

One can get further simplifications for ~=1, i.e., for a
fixed-point solution. In this case what is important is the
characteristic polynomial P of M(8), given by the deter-
minant of the matrix M (8) A,I, —

where we have set co„=e' and m, '=e
We note that the elements of M(8) are just combina-

P=Det[( A i+e' Bi+e 'sCi ) —QI],
where i =0, 1, . . . , k —1, i.e., the determinant of

(23)

hofo(x, (1))—A, h, f', (x, (2)) 0

h if i(xi(1)) hpfp(xi(2)) A, hif i(x (3))

0 h if ixi(2) hofo(xi(3))

h, f ', (x, (N))e'0

(24)

h,f ', (x, (1))e 0 hof o(x, (N})—A,

Let the characteristic polynomial for the above equa-
tion be

and k =2 implies the stability for any value of k, i.e., only
two values of 0, 0 and m, need to be studied.

a~A, +a~ ]k '+ +aiA+ao=o . (25) III. EXAMPLES

From Eq. (24), it can be seen that the only 8-dependent
term in the characteristic polynomial is

a =6 e'+6 e i+R
where

N

G+ = — h~, +f,(x(i)}

and

G = — h, g f, (x(i))

and R is some real constant. One can see that if deriva-
tives of the coupling functions are symmetric

then this term ao is real. One more case in which the
term ao is real is when any of the eigenvalues k is real for
some 8E (O, m. ) (0 and vr are excluded since polynomial is

any way real in these cases). In both the cases a theorem
in analysis by Polya and Szego [18] is useful. The
theorem implies that if all the roots lie in the complex
unit circle for extremum values of ao, i.e., for 0=0 and m

then they lie in the complex unit circle for the values in
between. Thus in these two cases, the stability for k =1

Here we illustrate the above formalism using a few ex-
amples.

A. Homogeneous case

hofo(x) =px(1 —x)—2@x,

h, f, (x)=h,f, (x)=yx .
(27)

Using Eq. (7) for the fixed point and the condition
k=+1, i.e., the condition for marginal stability, we ob-

As a specific example, for the special case when all the
maps are the same [Eq. (8)], we take the logistic map,

f (x) =ibex (1—x),
where 0 ~ p & 4 and x H [0, 1]. This map has several
stable periodic orbits depending on the value of p, [19].
In particular, it shows a period-doubling structure lead-
ing to a period-doubling attractor [19]. The analysis of
the preceding section shows that for the coupled logistic
map the entire period-doubling structure and the struc-
ture of other periodic windows will be lifted to the chain
C & for the same values of p together with the same stabil-
ity properties for all k.

The second example is that considered by Wailer and
Kapral [12]. They consider the maps
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p=+1+4y sin (8/2) (28)

where 8=2+j/k, j=1,2, . . . , k. This coincides with Eq.
(2.6) of Ref. [12].

B. Stability of higher spatial periods

Now we will illustrate the procedure for higher N with
coupled logistic maps with p=4, i.e., f (x)=px(1 —x)
and

x, +,(i)= (1 e)f (x—, (i ) )

+ [f(x,(i—+1))+f(x, (i —1))], (29)

where 0~ e + 1. We discuss the stability of the following
solutions.

(a) First, consider a fixed-point solution
S, (2, 1)=(x+,x ) of Eq. (29) for the chain C2 with
x+ Wx . The solution is

[8e—3+(32e —36e+9)' ]
8(2e —1)

(30)

The stability of the k replica solution S, (2, k) can be
studied using Eq. (22). The criterion for the stability of a
k-replica solution is that any of the eigenvalues of the
Jacobian should not have modulus grater than unity. Us-
ing Eq. (22), one can say that the solution S, (2, k) is
stable if none of the k matrices M(0) have an eigenvalue
with modulus greater than unity. These matrices M(8)
are given by

(1 e)f'(x+)—
M(8) =

—(1+e ' )f'(x+ )

—(1+e' )f'(x )
2

(1 e)f '(x )—(31)

tain the boundaries of the stability region of the fixed
point and the periodic solution in the p-y plane. Our re-
sults coincide with those of Ref. [12]. For example, for
the fixed-point homogeneous solution x =0, the stability
criterion using Eq. (7) is given by

p(1 —2x*)—2y+y(e' +e 'e)=+1,
which means

These solutions exist when

32'' —28&+ 5 & 0, (34)

i.e., if e & —', =0.625 or e & 4
=0.25.

As in the previous case, using Eq. (22), we can say that
the solution Sz(2, k), is stable if none of the k matrices
M (0) have an eigenvalue with modulus greater than uni-
ty. In the present case matrices M(0) are given by

e = ( 19+&73 ) /32 =0.8608. . . and 0.3268. . . .

Thus the solution given by Eq. (30) is stable for the values
of e in the range (4+V'6) /8 =0.806. . . to
(19+V73)/32=0. 860. . . . At e=0.806. . . eigenvalue
crosses —1, and at @=0.860. . ., the eigenvalue crosses
the unit circle at complex conjugate values. As expected,
one gets period doubling in the first case for e (0.806. . . ,
and in the second case for e&0.860. . . a Hopf bifurca-
tion is observed.

Since this is a fixed-point solution with symmetric cou-
pling, we use the criterion noted in the preceding section.
To check the stability of the solution S,(2, k) for the
chain C«z obtained by k replicas of the solution
S, (2, 1), it is sufficient to consider only two values of 8,
namely 8=0 and m. in Eq. (19). The condition for stabili-
ty for 0=0 is the same as that for the solution S,(2, 1)
and one needs to check only for 0=m additionally. The
eigenvalues for the matrix M(~) are (1 e)f'—(x+ ) and
(1—e)f'(x ). Calculations on the lines of M (0) show
that no further condition is imposed for the stability in
the range in which S,(2, 1) solution is stable. Thus the
solution S,(2, k) remains stable for the same range of e
values for all k.

(b) We consider a period two solution of Eq. (29) for
the closed chain C2, namely Sz(2, 1)=[R„Rz,R„.. . ]
where R, =(x, (1),x, (2)) and Rz=(xz(1)=x, (2),xz(2)
=xi(1)) with xi(1)&x i(2). With some algebra it can be
seen that the solution is analytically given by

xi(1)=[8e—5+(32e —28e+5)' ]/[8(2e —1)],
(33)

x, (2)=[8e—5 —(32e —28e+5)'~ ]/[8(2e —1)] .

where 8=0,2m/k, . . . , (k —1)2m/k. For the stability of
original solution S, (2, 1) we have to consider the eigen-
values of M(0). The eigenvalue equation for M(0) is
given by

(1 e)f '(x, (1))——(1+e' )f'(x, (2))
2

M(8)= + —(1+e ' )f'(x, (1)) (1 —e)f'(x, (2))

(35)
(2e —1)A, +2(1—eQ, +(32e —36e+8)=0 . (32)

This equation has solution A, = —1 when
e = (4+&6 ) /8 =0. 8061. . . or e =0. 1939. . . and similarly
X=1 when @=0.75. The eigenvalue is complex if

where 8=0,2m/k, . . . , (k —1)2m/k. For the stability of
original solution S~(2, 1) we have to consider the eigen-
values of M(0). The eigenvalue equation for M(0) is
given by

[2(1—e)] —4(2e —1)(32e —36e+8) (0,
and has modulus unity when

2e —1 = + 32@2—36'+ 8,
i.e.,

A. (4e 4e+1)+—A( —128e +172e —72e+8)

+ 1024' —1792' + 1040' —224'+ 16=0 .

Let us rewrite this equation as

(36)
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2e —12e —1) —A, [(2e) —2(2e —1)( —32' +28@ —4 ]

+( —32' +28' —4) =0 . (37)

Let us introduce a variable Z '
b Z . igiven y Z = —~k. Wi th

een at satisfies the equation

(2e —1 )Z~ —2EZ —32m +28@—4=0 . (38)

1.0

0.8 ~l ~~'i']

0.6

0.4
5 0 5 10 15 20 25 30 35 40 45- 50

I

1.0

0.8 n n

0-6

This equation in Z is just like Eq. (32) in A. which

a one as replaced e b 1 —e.
stable for th

y
—e. Thus this solution is

s a e or the values of e in th
(4—&6)/8=0. 1938.

e range
to (13—&73)/32=0. 1392. . . .

At 4 —&6)/8 the eigenvalue in the r

] are squares of the solutions of Eq. (38).
The stability of the k replica solution Sz(2, k) has been

verified numerically using Eq. (22). For even k th

approaches th'
. . . . For odd k the

es is value according to the se u
0. 14009. . . for k =3 0.14026. . . for k =5; 0. 14031. . .
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e
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i 3), . . . , ~(N)= i(1))me, =,( )=x, (t),x,(2)=x, (t
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SN(N k)=I(R„.. . , R1)k, (R2, . . . , R2)k, . . . (RN, . . . , RN)k] .

The stability will be determined by the Jacobian

J=J~ . . J2JI . (39)

Now looking at the fact that the traveling-wave solution will look like a fixed point in a frame of reference moving with
the same velocity, one can infer that the different Jacobian matrices should be related by a unitary transformation. The
relevant transformation vr which is a kX X kN matrix is obvious. It should take the value of the variable at site i to the
site i + 1 cyclically. We have

vr =circ(0, 1,0, . . . , 0)

and the Jacobian matrix at time t is given by

(40)

(41)

where J, is a kX X kN matrix given by

hofo(xt(t) ) h,f ', (x, (t +1))
h if' i(x, (t)) hofo(x, (t+1))

h, f ', (x, (t)) 0

0

0

h, f', (x,(t —2))

h, f', (x, (t —1))
0

hof o(xt(t —1))

(42)

Using Eq. (41) and the property m" ' =7r ' we get

J .JJ =[a 'J]"
We also have [Eq. (39)]

JkN J2J1 [JN ' ' ' 1]

where we have used the time periodicity J„&+,=J, , r =0, 1,2, . . . , and i = 1,2, . . . , X. Hence

J =[sr 'J, ]

(43)

(44)

Thus eigenvalues of a JI are enough to infer about the stability of the traveling-wave solution. In fact, they are Nth
roots of the eigenvalues of J. The matrix m is unitary and real and hence m. '=m . Also, the fact to be noted is that

can be block diagonalized by the same transformation as for J& and so one can block diagonalize both, take the
product, and find the eigenvalues. Thus for a pattern R, =(x, (l),x, (2), . . . , x, (N)) repeated k times, we need to con-
sider the eigenvalues of N XN matrices M(0) which are given by

0 0 . . 0 e'

1 0 -. . 0 0

hofo(x, (1)) h, f', (x, (2)) . h, f', (x, (N))e'

h if' i(xi(1)) hofo(xi(2))
(45)

0 0 . 1 0 h, f ', (x, (1))e hof o(xi(N))

where 8=0,2'/k, . . . , (k —1)2m /k.
For the traveling-wave moving with velocity greater

than 1 (say p), ~ will have to be replaced by vrt', which can
again be block diagonalized in a similar manner.

Let us illustrate this procedure with the help of oscil-
lating period-two solution considered in Eq. (33) [exam-
ple (b) of the preceding section]. The stability of this
solution can be studied using the matrix m 'JI and the
corresponding eigenvalue equation is

t(, (2e—1)—2ie —32e +28e 4=0 . — (46)

We note that this equation is the same as Eq. (38) and the
conditions for stability are as discussed before. The sta-

0 eio

1 0 —(1+e ' )f'(x, (l))

—(1+e' )f'(x, (2))

(47)

The results that we get using this matrix match with the
one obtained while discussing this example in the preced-
ing section.

I

bility of the k replica solution S2(2, k) can be obtained by
considering the eigenvalues of the k matrices M(8) given
by [Eq. (45)]
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V. HIGHER-DIMENSIONAI. CASE

x„+,(i j )=hofo(x„(i,j))+h„+f„+(x„(i+1,j ))

+h» f (x„(i,j —1)), (48)

Let us consider a two-dimensional coupled-map lattice
model with periodic boundary conditions. This is an evo-
lution on the two-dimensional lattice L& & which is ax' y

X XN lattice. Let the evolution be given by the map

where 1 ~i ~N„and 1 ~j ~N . The functions fo, f +,f, f»+, f» are some functions which describe evolu-
tion in an otherwise isolated space. The parameters ho,
hz + hy + hz hy represent coupling strength and are
chosen so that x, +,(i) lies in the same phase space and
are assumed to be positive. We have associated variable
x at time t to each point of the two-dimensional lattice
L~ ~ . As in the one-dimensional case we impose cyclicx

boundary conditions. In the one-dimensional case the
lattice points form a ring of maps whereas here they form
a torus. Let

R, =[(x,(l, 1),x, (2, 1), . . . , x, (N„, 1)),(x,(1,2), . . .x, (N, 2)), . . . , (x, (1,N ), . . . , x, (N„N ))] (49)

denote the state of the lattice at time t. Let
S„(N„,1;N, 1) denote solution of Eq. (48) with temporal
periodicity ~, i.e.,

S,(N„, 1;N, 1 ) = IR ),R2, . . . , R„R„.. . ]

Now arguing on the lines of arguments in the one-
dimensional case, one can see that this solution repeated
p times in the direction of the first index and q times in
the direction of second index, i.e.,

S (N„,p;N, q)= I ([R) . . . , R~] )q

([R2, . . . , R~] )

([R„.. . , R, ] )

is a solution for the two-dimensional lattice L & & withpN, qN

temporal periodicity r Here . ( [R„;,R, ] ) ~
represents a state R, [Eq. (49)] repeated p times in the x
direction and q times in the y direction.

We again pose the same question as in the one-
dimensional case. We address the problem of what can
be stated about the stability properties of S,(N, p;N, q)
from the analysis of stability matrix of S,(N„, 1;N», 1).

A. Homogeneous case

We begin with the case 1V =1, N =1, i.e., a homo-
geneous solution. We will suppress the indices N„, X,
i.e., S,(N„p;N», q)—:S,(p, q). We will also suppress the
indices i and ji.e., x, , (i,j)—:x, . Let us consider the sta-
bility of the periodic solution with period ~,

Bx, (k, I)
«)mn —

~ (, )
(52)

where

and

m =(I —1)p+k

n =(j —1)p+i .

One can see that J, is a pq Xpq Jacobian matrix given
by

J, =b circ( Ao, A +,0, . . . , 0», A ) (53)

where Ao, A +, A are p Xp matrices given by

AD=circ(hofo(x, ),h„+f„'+(x,),0, . . . , 0,h„ f' (x, )),
A +=circ(h»+f'+(x, ),0, 0, . . . , 0),
A =circ(h f' (x, ),0, 0, . . . , 0),

and 0 is a square matrix of order p with all elements
p

equal to 0. Note that A + and A are diagonal ma-
trices and can also be written as

f(x)=hofo(x)+h ~f, +(x)+h„ f (x)

+h +f +(x)+h» f (x) .

For the homogeneous solution S,(p, q), the stability con-
dition is that modulus of all eigenvalues of the pq Xpq
stability matrix J =J ' ' ' J2J] have magnitude less than
one. Now we define Jacobian matrix J, as

S,( 1, 1)= I R „.. . , R „R„.. . ]

xl~ )x ~x1~ - ~ .

for the lattice L, , This is a stable solution provided

where

(50)

(51)

A»+ =h»+ f»'+ (x, )I

A» =h f' (x )I

where I is an unit matrix of order p.
Note that J, is a block circulant matrix with circulant

blocks. We can block diagonalize J, in matrices y, (s),
s =1,2, . . . , q where
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y, (s)= Ho+co, A ++co, 'A

=circ(hofo(x, )+h +f'+(x, )co, +h f» (x, )co, ', h +f„'+(x, ),0, . . . , 0, h„ f' (x, )) (54)

where

i{2m{s—1)/q)
S (55)

Let us consider the special case

fo=f —=f +=fy —=fy+=f . (61)

y, (s) can be further diagonalized to give the eigenvalues

k, (r, s), r =1,2, . . . ,p where

A., (r, s)=h Of o( x, ) +h +f'+(x, )cg, +h f' (x, )co,
'

+h„+f„'+ (x, )co„+h„ f„' (x, )co„', (56)

where

Now the eigenvalues of the Jacobian for this case are
given by

A, (r, s)= II(h +h co, +h co, '+h co,

+h„co„')f'(x, ) .

(62)
i{2&r —1)/p )

I"

Let us define the following vectors:

(57)
By triangle inequality and the fact that couplings are pos-
itive we get

F, +=(h +f„+(x,), h +f +(x, )),
F, = (h„ f, (x, ) h f (x, )),
Q~(r, s) =(co„,co, ),
Q (r, s)=(co„',co, ') .

Thus Eq. (56) can be written as

A, , (r, s)=hofo(x, )+F,+ Q+(r, s)+F, Q (r, s) .

(58)

1

A(r, s)= II A, , (r,s),
f=1

(60)

where r = 1, . . . , p and s =0, 1, . . . , q.

Equation (59) suggests that it is possible to extend the
result to higher dimensions. For example, in three di-
mensions, the same formulas hold except that each of the
vectors will have three components.

The pq eigenvalues of the total Jacobian matrix are
given by

fX(r, s)J & )X(i, l)f . (63)

However, A.(1, 1) is the eigenvalue for S,(1,1). The con-
dition for its stability is given in Eq. (51). Thus in this
case, stability of the homogeneous solution S,(p, q) is
guaranteed by the stability of the single-point solution
S,(1,1) for the same parameters of the map. We have
seen that a similar result holds good in one dimension.
Thus the above statement appears to hold irrespective of
the dimensionality of the lattice.

The second example is that considered by Oppo and
Kapral [13). They consider the maps

hof 0(x)=f (x)—4yx,
(64)

h„+f„+(x)=h, f„(x)=hy+f»+(x)=hy f» (x)=yx .

Let p =q =k. Using Eq. (62) for the fixed point and
periodic point, we obtain the condition for A, =+1, i.e.,
the condition for marginal stability. Our results coincide
with those of Ref. [13]. For the spatially homogeneous
periodic point, using Eq. (62), N eigenvalues A, (k&, k2),
(k, =1,2, . . . , k; k2=1, 2, . . . , k) are given by

~(k k»=II[f'( ) 4r+r( .—,
+ k, + k+ k'))

t=1
r= II [f'(, )+4y( o [ (k, +k, )/k] o [2 (k, —k, )/k] —1)] .

t=1
(65)

The condition for marginal stability is that at least one of
these eigenvalues is of magnitude unity and no eigenvalue
is having magnitude greater than unity. The criterion
coincides with Eqs. (2.6) and (2.7) of Ref. [13].

B. Case of higher spatial period

Now let us consider the case of higher spatial periodi-
city. As one would guess from the previous discussions,

the Jacobian in this case should turn out to be the block
circulant matrix with block circulant blocks and one
should be able to block diagonalize them. This expecta-
tion is true indeed. We will discuss this case in detail
now.

The problem is what can be stated about stability prop-
erties of $,(N„,p;N, q) from the analysis of stability
analysis of stability matrices of S,(N„, 1;N, 1). To make
the analysis easy we number the sites in a particular way.
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Let us associate a function g(i, j) with the site (i,j)
defined by

g(i,j )= (pN„N„)+ (N„N )
X

+[(jmodN ) —1]N„+(imodN„), (66)

where [ ] denotes the integer part. One can see that this
function associates a unique number between 1 and
N X pq with each point on the lattice. Now we define
Jacobian matrix J, as

Bx,(k, l)
(J, )

Bx, , (i,j)
where

(67)

and

m =g (k, I)

J, =b circ(Ap Ay+&ON N ~& ~ ~ ~ &ON N ~& Ay )
x y&' ' x y~' (68)

is a block circulant matrix of order q with blocks being
XxXyp XXz Xyp matrices, where

Ap=b circ(Bp B + ON N . . . ON N B„)
x x y

Ay+ =b circ(By+, ON N, . . . , 0N N ),
x y x y

Ay =b circ(By ON N . . . ON N )
x y x y

Here Ao, A +, A are block circulant matrices of or-
der p with blocks being matrices of order X XN . Ma-
trices A +, A are themselves block-diagonal matrices
and can be written in form of direct product with identity
matrix,

A +=8 +@I

A =B gI

n =g(i j) .

Using Eq. (67) the Jacobian matrix looks like the fol-
lowing:

of the variable x associated with the site is periodic with
period N„N . Any ith element in this order is equivalent
to k (N„Ny )+ith element. Thus one can view the lattice
as comprising of pq identical blocks. The nonzero ele-
ments in the matrix Bo describe connections between the
sites within a block while the nonzero elements in the ma-
trices B„+,B,B +, B represent the connections be-
tween different blocks.

The only nonzero matrix elements of Bz+ B By+,
B are

(B„+) „X+(x,(l,j)), m =jN, n =(j —1)N„+1;
(B„) „=X (x,(N, j)), m =(j —1)N +1, n =jN„;
(By+) = Y+(xt(i, 1)) m =(N 1)N +i n =i

(By ) „=Y (x, (i,N )), m =i, n =(Ny —l)N„+i .

where j =1, . . . , N and i =1, . . . , N . The remaining
elements are zero. We have also used the following sim-
plifying notation:

W(z) =hpf p(z),

X+ (z) =h„+f„'+ (z),
X (z)=h f ' (z),
Y+(z)=hy~f'+(z),

(z) =hy fy' (z) .

Matrix Bo is a bit more complicated. It is almost like the
Jacobian for the case p =q = 1 except for the fact that the
elements coming in due to periodic boundary conditions
are absent. The nonzero elements of Bo are given by

(Bp) = W'(x, (i,j)},
(Bp) +,=X+(x,(i+1,j)), i (N, ,

(Bp),=X (x, (i —1,j)), i ) 1,

(Bp) +N =Y+(x,(i j +1)), j (N

(Bp) N =Y (x (ij —1}), j)1,
While indexing the site (i,j) by using the function

g (i,j ), we have effectively divided the lattice in pq identi-
cal blocks. If one scans the lattice sites corresponding to
the ascending order defined by the function g, the value

where m =(j —l)N„+i, i =1, . . . , N„, j =1, . . . , N .
Matrix J, can be block diagonalized into blocks of or-

der %&gyp and the blocks are given by

—1=b circ(Bp+B +co +By —~ B + 0N N y
~ 0N N px

(69)
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Let us define the following vectors. The components of
these vectors are N N XN„N matrices

F +=(B.+», +»
F, =(B,By ),
Q+(r, s)=(co„Itv ~,co,Itv tt ),

x y x y

Q (r, s)=(co„'Itv iv, co, 'Iiv iv ) .
x y x y

This allows us to write M, (r, s) in a vector form,

M, (r, s)=Bo+F,+ Q+(r, s)+F, Q (r, s) .

Thus the final matrices appear in the form

(71)

(72)

M(r, s)= g [Bo+F,+ Q+(r, s)+F, Q (r, s)] . (73)

Thus the job of diagonalizing N&Nypq XN&Nypq ma-
trix is reduced to diagonalization of pq matrices of order
N„N .

VI. DISCUSSION

We have discussed the conditions that ensure the sta-
bility of spatially and temporally periodic orbits. In addi-
tion, our analysis also leads to the following important
conclusion about unstable periodic orbits. As noted in a
comment after Eq. (21), the matrix j appears as a block of
the matrix D. Hence, a solution built out of the replicas
of unstable periodic orbits will also be unstable. Enlarge-
ment of phase space and the efFect of couplings cannot
stabilize an unstable replica solution. The unstable
periodic orbits are dense on the chaotic attractor. They
are supposed to form the backbone of the dynamics on
the attractor. One can calculate properties like invariant
density, Lyapunov exponent knowing the periodic orbits

where s =1,2, . . . , q. The matrices I,(s) can be further
block diagonalized as [see Eqs. (55) and (57)]

M, (r, s)=Bo+B +co, +B co, '+B,+co„+B co„' .

(70)

[21,22]. One can even predict the time series using them
[23]. Our formalism will be useful if one tries to use un-
stable periodic orbits to analyze the spatially extended
systems. It is clear that the replica solutions can be used
to construct a hierarchy of unstable periodic orbits based
on the orbits for building blocks. This may help in the
organization of spatio-temporal chaos on the lines of ar-
guments in Ref. [21].

So far as spatially and temporally periodic orbits are
concerned, we have shown that the stability of spatially
and temporally periodic orbits can be analyzed in terms
of smaller ones made up of building blocks of spatial
periodicity. We find that for the homogeneous solution
no further conditions are imposed if fo

=f, =f, and
the stable solution for a single point remains stable on the
enlargement of phase space and the introduction of cou-
plings. However, solutions with larger wavelengths re-
quire additional conditions for stability. These condi-
tions depend on the stability matrices for the building
block of spatial periodicity and the roots of unity. The
stability conditions undergo an additional simplification
in the case of a traveling wave solution. We have dis-
cussed this brieAy.

We have also discussed the two-dimensional extension
of our formalism. From the convenient form in which
the equations can be set, it is obvious that the generaliza-
tion to higher dimensions is also possible.

If one tries to analyze the problems similar to the ones
analyzed here, in oscillator arrays this procedure can be
easily used to simplify the computation. Even if the mod-
el involves more than nearest-neighbor interactions, such
as next-nearest-neighbor interaction or global coupling,
the procedure still remains useful with minor
modifications. Thus the scope of our formalism is fairly
general and can be used to analyze a variety of physical
problems.

ACKNOWLEDGMENTS

One of the authors (R.E.A. ) thanks the Department of
Science and Technology (India) for financial assistance
while the other (P.M.G.) thanks UGC (India) for finan-
cial assistance.

[1]J. P. Crutchfield and K. Kaneko, in Directions in Chaos,
edited by Hao-bai-lin (World-Scientific, Singapore, 1987),
Vol. II, and references therein.

[2] E.g. , K. R. Shreenivasan, in Frontiers in Fluid Mechanics,
edited by J. J. Lumley (Springer-Verlag, Berlin, 1985).

[3] T. Schreiber, J. Phys. A 23, L393 (1990).
[4] K. Kaneko, Physica D 34, 1 (1989);Frog. Theor. Phys. 72,

480 (1984).
[5] H. Chate and P. Mannevile, Physica D 32, 409 (1988).
[6] D. Barkley, in Nonlinear Structures in Dynamical Systems,

edited by Lui Lam and H. C. Moris (Springer-Verlag, New
York, 1990).

[7] Davis A. Kessler, H. Levine, and W. N. Reynolds, Phys.
Rev. A 42, 6125 (1990).

[8] Y. Oono and S. Puri, Phys. Rev. Lett. 58, 836 (1987); Phys.
Rev. A 38, 434 (1988);38, 1542 (1988).

[9] A. Chakroborty and J. D. Gunton, Phys. Rev. B 37, 3798
(1988).

[10]A preliminary version of a part of this work has already
been published in R. E. Amritkar, P. M. Cxade, A. D. Gan-
gal, and V. M. Nandkumaran, Phys. Rev. A 44, 3407
(1991).

[11]S. Cliberto, in Measures of Complexity and Chaos, edited
by N. A. Abraham et al. (Plenum, New York, 1989).

[12] I. Wailer and R. Kapral, Phys. Rev. A 30, 2047 (1984).
[13]Gian-Luca Oppo and R. Kapral, Phys. Rev. A 33, 4219

(1986).
[14]A. Politi and A. Torcini, Chaos (to be published).
[15] See, e.g. , K. Kaneko, Physica D 37, 60 (1989).
[16] P. J. Davis, Circulant Matrices (Wiley, New York, 1979).
[17] It is possible to obtain bounds on the eigenvalues of M

[Eq. (20)] which are independent of 0, in terms of matrix



154 P. M. GADE AND R. E. AMRITKAR 47

norms A and the absolute values of the nonzero elements
of B and C. However, these bounds are, in general, weak.

[18]G. P61ya and G. Szego, Problems and Theorems in
Analysis (Springer-Verlag, New York, 1976), Chap. V.

[19]See, e.g. , P. Collet and J. P. Eckmann, Iterated Maps on
the Interval as Dynamical Systems (Birkhauser, Boston,
1980).

[20] K. E. Anderson and R. P. Behringer, Physica D 51, 444

(1991).
[21] D. Auerbach, P. Cvitanovic, J. P. Eckmann, G.

Gunaratne, and I. Procaccia, Phys. Rev. Lett. 58, 2387
(1987);P. Cvitanovic, ibid. 61, 2724 (1988).

[22] G. H. Gunaratne, in Directions in Chaos 1World-Scientific,
Singapore, 1990), Vol. III.

[23] K. Pawelzik and H. G. Schuster, Phys. Rev. A 43, 1808
(1991).


